Revision 51e58cfc
Added by Benoit Parmentier over 10 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part1.R | ||
---|---|---|
5 | 5 |
#Part 1 create summary tables and inputs for figure in part 2 and part 3. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 03/23/2014 |
8 |
#MODIFIED ON: 09/16/2014
|
|
8 |
#MODIFIED ON: 10/04/2014
|
|
9 | 9 |
#Version: 3 |
10 | 10 |
#PROJECT: Environmental Layers project |
11 | 11 |
#TO DO: |
... | ... | |
458 | 458 |
#### Parameters and constants |
459 | 459 |
|
460 | 460 |
#in_dir1 <- "/data/project/layers/commons/NEX_data/test_run1_03232014/output" #On Atlas |
461 |
#in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/" #On NEX |
|
462 |
in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output20Deg2/" |
|
463 |
|
|
461 |
#in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output20Deg2/" |
|
462 |
in_dir1 <-"/nobackupp4/aguzman4/climateLayers/output20Deg_75overlap/reg4" |
|
464 | 463 |
#/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/finished.txt |
465 |
in_dir_reg <- list.dirs(path=in_dir1,recursive=FALSE) #get the list regions processed for this run |
|
466 |
in_dir_list <- list.dirs(path=in_dir_reg,recursive=FALSE) #get the list of tiles/directories with outputs |
|
464 |
in_dir_list <- list.dirs(path=in_dir1,recursive=FALSE) #get the list regions processed for this run |
|
465 |
in_dir_list_all <- in_dir_list |
|
466 |
#in_dir_list <- list.dirs(path=in_dir_reg,recursive=FALSE) #get the list of tiles/directories with outputs |
|
467 | 467 |
|
468 | 468 |
#in_dir_list <- in_dir_list[grep("bak",basename(basename(in_dir_list)),invert=TRUE)] #the first one is the in_dir1 |
469 |
in_dir_subset <- in_dir_list[grep("subset",basename(in_dir_list),invert=FALSE)] #select directory with shapefiles...
|
|
469 |
in_dir_subset <- in_dir_list[grep("subset",basename(in_dir_reg),invert=FALSE)] #select directory with shapefiles...
|
|
470 | 470 |
in_dir_shp <- file.path(in_dir_subset,"shapefiles") |
471 |
#in_dir_shp <- in_dir_list[grep("shapefiles",basename(in_dir_subset),invert=FALSE)] #select directory with shapefiles... |
|
472 |
|
|
473 |
#[27] "/nobackupp4/aguzman4/climateLayers/output20Deg2//reg2/outLogs" |
|
474 |
#[28] "/nobackupp4/aguzman4/climateLayers/output20Deg2//reg2/sept01" |
|
475 |
#[29] "/nobackupp4/aguzman4/climateLayers/output20Deg2//reg2/serial" |
|
476 |
#[30] "/nobackupp4/aguzman4/climateLayers/output20Deg2//reg2/subset" |
|
477 |
#[31] "/nobackupp4/aguzman4/climateLayers/output20Deg2//reg2/testFit" |
|
478 |
|
|
479 |
#in_dir_subset <- in_dir_list[grep("subset",basename(in_dir_list),invert=FALSE)] #select directory with shapefiles... |
|
480 |
#in_dir_subset <- in_dir_list[grep("serial",basename(in_dir_list),invert=FALSE)] #select directory with shapefiles... |
|
481 |
#in_dir_subset <- in_dir_list[grep("sept01",basename(in_dir_list),invert=FALSE)] #select directory with shapefiles... |
|
482 |
#in_dir_subset <- in_dir_list[grep("testFit",basename(in_dir_list),invert=FALSE)] #select directory with shapefiles... |
|
483 |
|
|
484 |
#Only 6 folders/regions contain information |
|
485 |
|
|
486 |
#[1] "/nobackupp4/aguzman4/climateLayers/output20Deg2//reg2/subset" |
|
487 |
#[2] "/nobackupp4/aguzman4/climateLayers/output20Deg2//reg3/subset" |
|
488 |
#[3] "/nobackupp4/aguzman4/climateLayers/output20Deg2//reg4/subset" |
|
489 |
#[4] "/nobackupp4/aguzman4/climateLayers/output20Deg2//reg5/subset" |
|
490 |
#[5] "/nobackupp4/aguzman4/climateLayers/output20Deg2//reg6/subset" |
|
491 |
#[6] "/nobackupp4/aguzman4/climateLayers/output20Deg2//reg7/subset" |
|
492 |
|
|
493 |
in_dir_reg <- dirname(in_dir_subset) |
|
494 |
in_dir_list <- list.dirs(path=in_dir_reg,recursive=FALSE) #get the list of directories with resutls by 10x10 degree tiles |
|
495 |
#select only directories used for predictions |
|
496 |
in_dir_list <- in_dir_list[grep(".*._.*.",basename(in_dir_list),invert=FALSE)] #select directory with shapefiles... |
|
497 | 471 |
|
472 |
#select only directories used for predictions |
|
473 |
in_dir_reg <- in_dir_list[grep(".*._.*.",basename(in_dir_list),invert=FALSE)] #select directory with shapefiles... |
|
474 |
in_dir_reg <- in_dir_list[grep("july_tiffs",basename(in_dir_reg),invert=TRUE)] #select directory with shapefiles... |
|
475 |
in_dir_list <- in_dir_reg |
|
498 | 476 |
#Models used. |
499 | 477 |
#list_models<-c("y_var ~ s(lat,lon,k=4) + s(elev_s,k=3) + s(LST,k=3)", |
500 | 478 |
# "y_var ~ s(lat,lon,k=5) + s(elev_s,k=3) + s(LST,k=3)", |
501 | 479 |
# "y_var ~ s(lat,lon,k=8) + s(elev_s,k=4) + s(LST,k=4)", |
502 | 480 |
|
503 |
#use subset for now: |
|
504 |
|
|
505 |
#in_dir_list <- c( |
|
506 |
#"/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/40.0_-120.0/", |
|
507 |
#"/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/35.0_-115.0/") |
|
508 | 481 |
|
509 | 482 |
#in_dir_list <- file.path(in_dir1,read.table(file.path(in_dir1,"processed.txt"))$V1) |
510 | 483 |
#in_dir_list <- as.list(in_dir_list[-1]) |
... | ... | |
520 | 493 |
# the last directory contains shapefiles |
521 | 494 |
y_var_name <- "dailyTmax" |
522 | 495 |
interpolation_method <- c("gam_CAI") |
523 |
out_prefix<-"run6_global_analyses_09162014"
|
|
496 |
out_prefix<-"run7_global_analyses_10042014"
|
|
524 | 497 |
|
525 | 498 |
#out_dir<-"/data/project/layers/commons/NEX_data/" #On NCEAS Atlas |
526 | 499 |
out_dir <- "/nobackup/bparmen1/" #on NEX |
... | ... | |
560 | 533 |
|
561 | 534 |
lf_covar_obj <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="covar_obj.*.RData",full.names=T)}) |
562 | 535 |
lf_covar_tif <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="covar.*.tif",full.names=T)}) |
563 |
#diagnostics_obj_gam_fitting_dailyTmax7__08062014.RData |
|
564 |
#lf_diagnostic_obj <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="diagnostics_.*.RData",full.names=T)}) |
|
565 |
#lf_diagnostic_obj <- lf_diagnostic_obj[grep("lk_min",lf_diagnostic_obj,invert=T)] #remove object that have lk_min... |
|
566 | 536 |
|
567 | 537 |
## This will be part of the raster_obj function |
568 | 538 |
#debug(create_raster_prediction_obj) |
569 | 539 |
#out_prefix_str <- paste(basename(in_dir_list),out_prefix,sep="_") |
570 | 540 |
#lf_raster_obj <- create_raster_prediction_obj(in_dir_list,interpolation_method, y_var_name,out_prefix_str,out_path_list=NULL) |
571 | 541 |
|
572 |
#lf_raster_obj <- c("/nobackupp4/aguzman4/climateLayers/output20Deg/reg2//-10.0_-70.0//raster_prediction_obj_gam_CAI_dailyTmax-10.0_-70.0_run5_global_analyses_08252014.RData" |
|
573 |
# ,"/nobackupp4/aguzman4/climateLayers/output20Deg/reg4//40.0_0.0//raster_prediction_obj_gam_CAI_dailyTmax40.0_0.0_run5_global_analyses_08252014.RData" |
|
574 |
# ,"/nobackupp4/aguzman4/climateLayers/output20Deg/reg4//50.0_0.0//raster_prediction_obj_gam_CAI_dailyTmax50.0_0.0_run5_global_analyses_08252014.RData" |
|
575 |
# ,"/nobackupp4/aguzman4/climateLayers/output20Deg/reg6//60.0_40.0//raster_prediction_obj_gam_CAI_dailyTmax60.0_40.0_run5_global_analyses_08252014.RData" |
|
576 |
# ,"/nobackupp4/aguzman4/climateLayers/output20Deg/reg6//30.0_40.0//raster_prediction_obj_gam_CAI_dailyTmax30.0_40.0_run5_global_analyses_08252014.RData" |
|
577 |
# ,"/nobackupp4/aguzman4/climateLayers/output20Deg/reg8//40.0_130.0//raster_prediction_obj_gam_CAI_dailyTmax40.0_130.0_run5_global_analyses_08252014.RData")# |
|
578 |
|
|
579 | 542 |
########################## START SCRIPT ############################## |
580 | 543 |
|
581 | 544 |
################################################################ |
... | ... | |
592 | 555 |
df_tile_processed$path_NEX <- in_dir_list |
593 | 556 |
|
594 | 557 |
##Quick exploration of raster object |
595 |
robj1 <- load_obj(list_raster_obj_files[[4]]) #This is an example tile
|
|
558 |
robj1 <- load_obj(list_raster_obj_files[[7]]) #This is an example tile
|
|
596 | 559 |
#robj1 <- load_obj(lf_raster_obj[4]) #This is tile tile |
597 | 560 |
|
598 | 561 |
names(robj1) |
599 |
names(robj1$method_mod_obj[[1]]) #for January 1, 2010 |
|
600 |
names(robj1$method_mod_obj[[1]]$dailyTmax) #for January |
|
562 |
names(robj1$method_mod_obj[[2]]) #for January 1, 2010 |
|
563 |
names(robj1$method_mod_obj[[2]]$dailyTmax) #for January |
|
564 |
names(robj1$method_mod_obj[[11]]) #for January 1, 2010 |
|
565 |
names(robj1$method_mod_obj[[11]]$dailyTmax) #for January |
|
601 | 566 |
|
602 | 567 |
names(robj1$clim_method_mod_obj[[1]]$data_month) #for January |
603 | 568 |
names(robj1$validation_mod_month_obj[[1]]$data_s) #for January with predictions |
604 | 569 |
#Get the number of models predicted |
605 | 570 |
nb_mod <- length(unique(robj1$tb_diagnostic_v$pred_mod)) |
571 |
list_formulas <- (robj1$clim_method_mod_obj[[1]]$formulas) |
|
606 | 572 |
|
607 | 573 |
#list_tb_diagnostic_v <- mclapply(lf_validation_obj,FUN=function(x){try( x<- load_obj(x)); try(extract_from_list_obj(x,"metrics_v"))},mc.preschedule=FALSE,mc.cores = 6) |
608 | 574 |
#names(list_tb_diagnostic_v) <- list_names_tile_id |
... | ... | |
663 | 629 |
write.table((tb_diagnostic_v_NA), |
664 | 630 |
file=file.path(out_dir,paste("tb_diagnostic_v_NA","_",out_prefix,".txt",sep="")),sep=",") |
665 | 631 |
|
632 |
################# |
|
633 |
###Table 3: monthly station information with predictions for all tiles |
|
634 |
|
|
666 | 635 |
## Monthly fitting information |
667 | 636 |
tb_month_diagnostic_s_list <- mclapply(list_raster_obj_files,FUN=function(x){try(x<-load_obj(x));try(x[["tb_month_diagnostic_s"]])},mc.preschedule=FALSE,mc.cores = 6) |
668 | 637 |
|
... | ... | |
684 | 653 |
write.table((tb_month_diagnostic_s_NA), |
685 | 654 |
file=file.path(out_dir,paste("tb_month_diagnostic_s_NA","_",out_prefix,".txt",sep="")),sep=",") |
686 | 655 |
|
687 |
## daily fit info: |
|
688 |
|
|
689 |
tb_diagnostic_s_list <- mclapply(list_raster_obj_files,FUN=function(x){try(x<-load_obj(x));try(x[["tb_diagnostic_s"]])},mc.preschedule=FALSE,mc.cores = 6) |
|
690 |
|
|
691 |
names(tb_diagnostic_s_list) <- list_names_tile_id |
|
692 |
tb_diagnostic_s_tmp <- remove_from_list_fun(tb_diagnostic_s_list)$list |
|
693 |
#df_tile_processed$tb_diag <- remove_from_list_fun(tb_diagnostic_v_list)$valid |
|
694 |
|
|
695 |
tb_diagnostic_s_NA <- do.call(rbind.fill,tb_diagnostic_s_tmp) #create a df for NA tiles with all accuracy metrics |
|
696 |
tile_id_tmp <- lapply(1:length(tb_diagnostic_s_tmp), |
|
697 |
FUN=function(i,x,y){rep(y[i],nrow(x[[i]]))},x=tb_diagnostic_s_tmp,y=names(tb_diagnostic_s_tmp)) |
|
698 |
|
|
699 |
tb_diagnostic_s_NA$tile_id <- unlist(tile_id_tmp) #adding identifier for tile |
|
700 |
|
|
701 |
tb_diagnostic_s_NA <- merge(tb_diagnostic_s_NA,df_tile_processed[,1:2],by="tile_id") |
|
702 |
|
|
703 |
write.table((tb_diagnostic_s_NA), |
|
704 |
file=file.path(out_dir,paste("tb_diagnostic_s_NA","_",out_prefix,".txt",sep="")),sep=",") |
|
705 |
|
|
706 |
|
|
707 |
####### process gam fitting diagnostic info |
|
708 |
|
|
709 |
#/nobackupp4/aguzman4/climateLayers/output20Deg/reg5/20.0_30.0//diagnostics_obj_gam_fitting_TMax_9_mod2_08062014.RData |
|
710 |
#lf_diagnostic_obj <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="diagnostics_.*.RData",full.names=T)}) |
|
711 |
#lf_diagnostic_obj <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="diagnostics_obj_gam_fitting_TMax_*_mod*_08062014.RData",full.names=T)}) |
|
712 |
#lf_diagnostic_obj <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="diagnostics_obj_gam_fitting_TMax_.*._mod.*._08062014.RData",full.names=T)}) |
|
713 |
|
|
714 |
#lf_diagnostic_obj <- lf_diagnostic_obj[grep("lk_min",lf_diagnostic_obj,invert=T)] #remove object that have lk_min... |
|
715 |
|
|
716 |
#names(lf_diagnostic_obj) <- list_names_tile_id |
|
717 |
#lf_diagnostic_obj_tmp <- remove_from_list_fun(lf_diagnostic_obj)$list |
|
718 |
#df_tile_processed$tb_diag <- remove_from_list_fun(tb_diagnostic_v_list)$valid |
|
719 |
|
|
720 |
#gam_diagnostic_tb_list <- vector("list",length=length(lf_diagnostic_obj_tmp)) |
|
721 |
#for(i in 1:length(lf_diagnostic_obj_tmp)){ |
|
722 |
# l_diagnostic_obj_tmp <- lf_diagnostic_obj_tmp[[i]] |
|
723 |
# tile_id_name <- names(lf_diagnostic_obj_tmp)[i] |
|
724 |
# #l_diagnostic_obj_tmp <- l_diagnostic_obj_tmp[grep("lk_min",l_diagnostic_obj_tmp,invert=T)] #remove object that have lk_min... |
|
725 |
# l_diagnostic_obj_tmp_list <- lapply(l_diagnostic_obj_tmp,FUN=function(x){try(x<-load_obj(x));try(x[["df_diagnostics"]])})#,mc.preschedule=FALSE,mc.cores = 6) |
|
726 |
# gam_diagnostic_tb <- do.call(rbind.fill,l_diagnostic_obj_tmp_list)#create a df for NA tiles with all accuracy metrics |
|
727 |
# gam_diagnostic_tb$tile_id <- tile_id_name |
|
728 |
# gam_diagnostic_tb_list[[i]] <- gam_diagnostic_tb |
|
729 |
#} |
|
730 |
|
|
731 |
#gam_diagnostic_df <- do.call(rbind.fill,gam_diagnostic_tb_list) #create a df for NA tiles with all accuracy metrics |
|
732 |
|
|
733 |
#write.table(gam_diagnostic_df, |
|
734 |
# file=file.path(out_dir,paste("gam_diagnostic_df_",out_prefix,".txt",sep="")),sep=",") |
|
735 |
|
|
736 |
|
|
737 |
#Now look at the 100 tiles of 10x10 |
|
738 |
#lf_test<-list.files("/nobackupp4/aguzman4/climateLayers/output10Deg/*/*/","diagnostics_obj_gam_fitting*") |
|
739 |
#lf_test <-list.files("/nobackupp4/aguzman4/climateLayers/output10Deg/","diagnostics_obj_gam_fitting.*.RData",recursive=T,full.names=T) |
|
740 |
|
|
741 |
#gam_diagnostic_10x10tb_list <- vector("list",length=length(lf_test)) |
|
742 |
#lf_diagnostic_obj_tmp <- lf_test |
|
743 |
#for(i in 1:length( lf_diagnostic_obj_tmp)){ |
|
744 |
# l_diagnostic_obj_tmp <- lf_diagnostic_obj_tmp[[i]] |
|
745 |
# tile_coord <- basename(dirname(lf_diagnostic_obj_tmp[i])) |
|
746 |
# #l_diagnostic_obj_tmp <- l_diagnostic_obj_tmp[grep("lk_min",l_diagnostic_obj_tmp,invert=T)] #remove object that have lk_min... |
|
747 |
# l_diagnostic_obj_tmp_list <- lapply(l_diagnostic_obj_tmp,FUN=function(x){try(x<-load_obj(x));try(x[["df_diagnostics"]])})#,mc.preschedule=FALSE,mc.cores = 6) |
|
748 |
# gam_diagnostic_tb <- do.call(rbind.fill,l_diagnostic_obj_tmp_list)#create a df for NA tiles with all accuracy metrics |
|
749 |
# gam_diagnostic_tb$tile_coord <- tile_coord |
|
750 |
# gam_diagnostic_10x10tb_list[[i]] <- gam_diagnostic_tb |
|
751 |
#} |
|
752 |
|
|
753 |
#gam_diagnostic_10x10_df <- do.call(rbind.fill,gam_diagnostic_10x10tb_list) #create a df for NA tiles with all accuracy metrics |
|
754 |
|
|
755 |
#list_tile_coord <- unique(gam_diagnostic_10x10_df$tile_coord) |
|
756 |
#list_tile_id <- paste("tile_",1:length(list_tile_coord),sep="") |
|
757 |
|
|
758 |
#tile_id_df <- data.frame(tile_coord=list_tile_coord,tile_id=list_tile_id) |
|
759 |
#gam_diagnostic_10x10_df <- merge(gam_diagnostic_10x10_df,tile_id_df,by="tile_coord") |
|
760 |
|
|
761 |
# write.table(gam_diagnostic_10x10_df, |
|
762 |
# file=file.path(out_dir,paste("gam_diagnostic_10x10_df_",out_prefix,".txt",sep="")),sep=",") |
|
763 |
|
|
764 |
################# |
|
765 |
###Table 3: monthly station information with predictions for all tiles |
|
766 |
|
|
767 | 656 |
#load data_month for specific tiles |
768 | 657 |
# data_month <- extract_from_list_obj(robj1$clim_method_mod_obj,"data_month") |
769 | 658 |
# names(data_month) #this contains LST means (mm_1, mm_2 etc.) as well as TMax and other info |
... | ... | |
783 | 672 |
# write.table((data_month_NAM), |
784 | 673 |
# file=file.path(out_dir,paste("data_month_s_NAM","_",out_prefix,".txt",sep="")),sep=",") |
785 | 674 |
|
675 |
## daily fit info: |
|
676 |
|
|
677 |
tb_diagnostic_s_list <- mclapply(list_raster_obj_files,FUN=function(x){try(x<-load_obj(x));try(x[["tb_diagnostic_s"]])},mc.preschedule=FALSE,mc.cores = 6) |
|
678 |
|
|
679 |
names(tb_diagnostic_s_list) <- list_names_tile_id |
|
680 |
tb_diagnostic_s_tmp <- remove_from_list_fun(tb_diagnostic_s_list)$list |
|
681 |
#df_tile_processed$tb_diag <- remove_from_list_fun(tb_diagnostic_v_list)$valid |
|
682 |
|
|
683 |
tb_diagnostic_s_NA <- do.call(rbind.fill,tb_diagnostic_s_tmp) #create a df for NA tiles with all accuracy metrics |
|
684 |
tile_id_tmp <- lapply(1:length(tb_diagnostic_s_tmp), |
|
685 |
FUN=function(i,x,y){rep(y[i],nrow(x[[i]]))},x=tb_diagnostic_s_tmp,y=names(tb_diagnostic_s_tmp)) |
|
686 |
|
|
687 |
tb_diagnostic_s_NA$tile_id <- unlist(tile_id_tmp) #adding identifier for tile |
|
688 |
|
|
689 |
tb_diagnostic_s_NA <- merge(tb_diagnostic_s_NA,df_tile_processed[,1:2],by="tile_id") |
|
690 |
|
|
691 |
write.table((tb_diagnostic_s_NA), |
|
692 |
file=file.path(out_dir,paste("tb_diagnostic_s_NA","_",out_prefix,".txt",sep="")),sep=",") |
|
693 |
|
|
786 | 694 |
##### Table 4: Add later on: daily info |
787 | 695 |
### with also data_s and data_v saved!!! |
788 | 696 |
|
... | ... | |
794 | 702 |
#get shape files for the region being assessed: |
795 | 703 |
|
796 | 704 |
list_shp_world <- list.files(path=in_dir_shp,pattern=".*.shp",full.names=T) |
797 |
l_shp <- unlist(lapply(1:length(list_shp_world),FUN=function(i){paste(strsplit(list_shp_world[i],"_")[[1]][2:3],collapse="_")})) |
|
705 |
l_shp <- unlist(lapply(1:length(list_shp_world), |
|
706 |
FUN=function(i){paste(strsplit(list_shp_world[i],"_")[[1]][3:4],collapse="_")})) |
|
707 |
|
|
798 | 708 |
matching_index <- match(basename(in_dir_list),l_shp) |
799 | 709 |
list_shp_reg_files <- list_shp_world[matching_index] |
800 | 710 |
df_tile_processed$shp_files <-list_shp_world[matching_index] |
... | ... | |
879 | 789 |
#l_pattern_models <- lapply(c(".*predicted_mod1_0_1.*",".*predicted_mod2_0_1.*",".*predicted_mod3_0_1.*",".*predicted_mod_kr_0_1.*"), |
880 | 790 |
# FUN=function(x){paste(x,dates_l,".*.tif",sep="")}) |
881 | 791 |
#l_pattern_models <- lapply(pred_pattern_str, |
882 |
FUN=function(x){paste(x,dates_l,".*.tif",sep="")}) |
|
792 |
# FUN=function(x){paste(x,dates_l,".*.tif",sep="")})
|
|
883 | 793 |
|
884 |
date_l# <- paste("clim_month_",1:12,sep="") |
|
794 |
#date_l# <- paste("clim_month_",1:12,sep="")
|
|
885 | 795 |
#l_pattern_models <- lapply(c("_mod1_0_1.*","_mod2_0_1.*","_mod3_0_1.*","_mod_kr_0_1.*"), |
886 | 796 |
# FUN=function(x){paste("*.",month_l,x,".*.tif",sep="")}) |
887 | 797 |
#l_pattern_models <- lapply(c(".*delta_dailyTmax_mod1_del_0_1.*",".*delta_dailyTmax_mod2_del_0_1.*",".*delta_dailyTmax_mod3_del_0_1.*",".*delta_dailyTmax_mod_kr_del_0_1.*"), |
... | ... | |
1075 | 985 |
pred_data_info <- mclapply(1:length(list_raster_obj_files[list_names_tile_id]),FUN=extract_daily_training_testing_info,list_param=list_param_training_testing_info,mc.preschedule=FALSE,mc.cores = 6) |
1076 | 986 |
#pred_data_info <- mclapply(1:length(list_raster_obj_files[list_names_tile_id][1:6]),FUN=extract_daily_training_testing_info,list_param=list_param_training_testing_info,mc.preschedule=FALSE,mc.cores = 6) |
1077 | 987 |
#pred_data_info <- lapply(1:length(list_raster_obj_files),FUN=extract_daily_training_testing_info,list_param=list_param_training_testing_info) |
1078 |
pred_data_info <- lapply(1:length(list_raster_obj_files[1]),FUN=extract_daily_training_testing_info,list_param=list_param_training_testing_info) |
|
988 |
#pred_data_info <- lapply(1:length(list_raster_obj_files[1]),FUN=extract_daily_training_testing_info,list_param=list_param_training_testing_info)
|
|
1079 | 989 |
|
1080 | 990 |
pred_data_info_tmp <- remove_from_list_fun(pred_data_info)$list #remove data not predicted |
1081 | 991 |
##Add tile nanmes?? it is alreaready there |
... | ... | |
1126 | 1036 |
Atlas_hostname <- "parmentier@atlas.nceas.ucsb.edu" |
1127 | 1037 |
lf_cp_shp <- df_tile_processed$shp_files #get all the files... |
1128 | 1038 |
|
1129 |
lf_cp_shp_pattern <- gsub(".shp","*",base_name(lf_cp_shp))
|
|
1039 |
lf_cp_shp_pattern <- gsub(".shp","*",basename(lf_cp_shp)) |
|
1130 | 1040 |
lf_cp_shp_pattern <- file.path(dirname(lf_cp_shp),lf_cp_shp_pattern) |
1131 | 1041 |
filenames_NEX <- paste(lf_cp_shp_pattern,collapse=" ") #copy raster prediction object |
1132 | 1042 |
|
Also available in: Unified diff
scaling up assessemnt part 1 testing 75% overlap in North Africa