Project

General

Profile

« Previous | Next » 

Revision 521e4de1

Added by Benoit Parmentier over 9 years ago

assessment part1 with differnt mask and buffer

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part1.R
5 5
#Part 1 create summary tables and inputs files for figure in part 2 and part 3.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 05/26/2015            
8
#MODIFIED ON: 07/30/2015            
9 9
#Version: 4
10 10
#PROJECT: Environmental Layers project  
11 11
#TO DO:
......
72 72
#in_dir1 <- "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/"
73 73
#in_dir1 <- "/nobackupp6/aguzman4/climateLayers/out_15x45" #PARAM1
74 74
#in_dir1b <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/singles" #PARAM1, add for now in_dir1 can be a list...
75
in_dir1 <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/" #PARAM1, add for now in_dir1 can be a list...
76

  
77
region_names <- c("reg4") #selected region names, #PARAM2
75
#in_dir1 <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/" #PARAM1, add for now in_dir1 can be a list...
76
#in_dir1 <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/elevTest/1kmBuff/"
77
in_dir1 <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/elevTest/"
78 78

  
79
#region_names <- c("reg4") #selected region names, #PARAM2
80
region_names <- c("1kmBuff","2kmBuff","combined")
79 81
#region_names <- c("reg1","reg2","reg3","reg4","reg5","reg6") #selected region names, #PARAM2
80 82
#region_namesb <- c("reg_1b","reg_1c","reg_2b","reg_3b","reg_6b") #selected region names, #PARAM2
81 83

  
82 84
y_var_name <- "dailyTmax" #PARAM3
83 85
interpolation_method <- c("gam_CAI") #PARAM4
84
out_prefix<-"run10_1500x4500_global_analyses_pred_2010_05262015" #PARAM5
86
out_prefix<-"run10_1500x4500_global_analyses_pred_2010_testelev_07302015" #PARAM5
87

  
85 88
#output_run10_1500x4500_global_analyses_pred_2003_04102015/
86 89

  
87 90
#out_dir<-"/data/project/layers/commons/NEX_data/" #On NCEAS Atlas
......
93 96
CRS_locs_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84, #PARAM8
94 97

  
95 98
#day_to_mosaic <- c("20100101","20100901") #PARAM9
96
day_to_mosaic <- c("20100829","20100830","20100831",
97
                   "20100901","20100902","20100903")
99
#day_to_mosaic <- c("20100829","20100830","20100831",
100
#                   "20100901","20100902","20100903")
98 101

  
99 102
#day_to_mosaic <- NULL #if day to mosaic is null then mosaic all dates?
100 103

  
......
127 130
in_dir_list_all  <- lapply(in_dir_list,function(x){list.dirs(path=x,recursive=F)})
128 131
in_dir_list <- unlist(in_dir_list_all)
129 132
#in_dir_list <- in_dir_list[grep("bak",basename(basename(in_dir_list)),invert=TRUE)] #the first one is the in_dir1
130
in_dir_subset <- in_dir_list[grep("subset",basename(in_dir_list),invert=FALSE)] #select directory with shapefiles...
133

  
134
#this was changed
135
in_dir_list_tmp <- list.dirs(path=in_dir1,recursive=FALSE) #get the list regions processed for this run
136
in_dir_subset <- in_dir_list_tmp[grep("subset",basename(in_dir_list_tmp),invert=FALSE)] #select directory with shapefiles...
131 137
in_dir_shp <- file.path(in_dir_subset,"shapefiles")
132 138

  
133 139
#select only directories used for predictions
......
135 141
#in_dir_reg <- in_dir_list[grep("july_tiffs",basename(in_dir_reg),invert=TRUE)] #select directory with shapefiles...
136 142
in_dir_list <- in_dir_reg
137 143
    
144

  
138 145
in_dir_list <- in_dir_list[grep("bak",basename(basename(in_dir_list)),invert=TRUE)] #the first one is the in_dir1
139 146
#list of shapefiles used to define tiles
140 147
in_dir_shp_list <- list.files(in_dir_shp,".shp",full.names=T)
......
182 189

  
183 190
##raster_prediction object : contains testing and training stations with RMSE and model object
184 191

  
192

  
185 193
list_raster_obj_files <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="^raster_prediction_obj.*.RData",full.names=T)})
186 194
basename(dirname(list_raster_obj_files[[1]]))
187 195
list_names_tile_coord <- lapply(list_raster_obj_files,FUN=function(x){basename(dirname(x))})

Also available in: Unified diff