Project

General

Profile

« Previous | Next » 

Revision 526d623d

Added by Benoit Parmentier about 9 years ago

modifying main mosaicing script for call from shell and stage 7 on NEX

View differences:

climate/research/oregon/interpolation/global_run_scalingup_mosaicing.R
5 5
#Analyses, figures, tables and data are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 04/14/2015  
8
#MODIFIED ON: 12/30/2015            
8
#MODIFIED ON: 01/01/2016            
9 9
#Version: 5
10 10
#PROJECT: Environmental Layers project     
11 11
#COMMENTS: analyses run for reg4 1992 for test of mosaicing using 1500x4500km and other tiles
12 12
#TODO:
13
#1) Make this is a script/function callable from the shell/bas
13
#1) Make this is a script/function callable from the shell/bash
14 14
#2) clean up temporary files, it builds currently on the disk
15 15
#3) fix output folder for some of output files: create a mosaic output folder if doesn't exist?
16
#4) create a helper function for inputs/arguments to automate...?? Could also be in the assessment stage
16
#4) create a helper function for inputs/arguments to automate (optparse pacakge)...?? 
17
    #Could also be in the assessment stage
17 18

  
18 19
### Before running, the gdal modules and other environment parameters need to be set if on NEX-NASA.
19 20
### This can be done by running the following commands:
......
70 71
#in_dir <- "/nobackupp8/bparmen1/output_run10_1500x4500_global_analyses_pred_1992_12072015" #NEX
71 72

  
72 73
in_dir_tiles <- file.path(in_dir,"tiles") #this is valid both for Atlas and NEX
73

  
74 74
y_var_name <- "dailyTmax" #PARAM2
75 75
interpolation_method <- c("gam_CAI") #PARAM3
76 76
region_name <- "reg4" #PARAM 4 #reg4 South America, Africa reg5,Europe reg2, North America reg1, Asia reg3
......
100 100
use_autokrige <- F #PARAM 19
101 101

  
102 102
###Separate folder for masks by regions, should be listed as just the dir!!... #PARAM 20
103
#infile_mask <- "/nobackupp8/bparmen1/regions_input_files/r_mask_reg4.tif"
103
#infile_mask <- "/nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_reg4.tif"
104 104
infile_mask <- "/data/project/layers/commons/NEX_data/regions_input_files/r_mask_reg4.tif"
105

  
106
#tb_accuracy_name <- file.path(in_dir,paste("tb_diagnostic_v_NA","_",out_suffix_str,".txt",sep=""))
107
#tb_accuracy_name <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_1992_12072015/tb_diagnostic_v_NA_run10_1500x4500_global_analyses_pred_1992_12072015.txt" #PARAM 21
108
#data_month_s_name <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_1992_12072015/data_month_s_NAM_run10_1500x4500_global_analyses_pred_1992_12072015.txt" #PARAM 22
109
#data_day_v_name <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_1992_12072015/data_day_v_NAM_run10_1500x4500_global_analyses_pred_1992_12072015.txt" #PARAM 23
110
#data_day_s_name <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_1992_12072015/data_day_s_NAM_run10_1500x4500_global_analyses_pred_1992_12072015.txt" ##PARAM 24
111
#df_tile_processed_name <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_1992_12072015/df_tile_processed_run10_1500x4500_global_analyses_pred_1992_12072015.txt" ##PARAM 25
105
## All of this is interesting so use df_assessment!!
106
df_assessment_files_name <- "df_assessment_files_reg4_1984_run_global_analyses_pred_12282015.txt" # data.frame with all files used in assessmnet, PARAM 21
112 107

  
113 108
#in_dir can be on NEX or Atlas
114
## All of this is interesting so use df_assessment!!
115
tb_v_accuracy_name <- file.path(in_dir, basename(df_assessment_files$files[2])) #PARAM 21
116
tb_s_accuracy_name <- file.path(in_dir, basename(df_assessment_files$files[4])) #PARAM 21
117
data_month_s_name <- file.path(in_dir,basename(df_assessment_files$files[5])) #PARAM 22
118
data_day_v_name <- file.path(in_dir, basename(df_assessment_files$files[6])) #PARAM 23
119
data_day_s_name <- file.path(in_dir, basename(df_assessment_files$files[7])) ##PARAM 24
120
df_tile_processed_name <- file.path(in_dir, basename(df_assessment_files$files[11]))
121
pred_data_month_info <- file.path(in_dir, basename(df_assessment_files$files[9]))
122
pred_data_day_info <- file.path(in_dir, basename(df_assessment_files$files[10]))
123 109

  
124 110
#python script and gdal on NEX NASA:
125 111
#mosaic_python <- "/nobackupp6/aguzman4/climateLayers/sharedCode/"
......
130 116

  
131 117
algorithm <- "python" #PARAM 28 #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann
132 118
#algorithm <- "R" #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann
133
 
134 119
match_extent <- "FALSE" #PARAM 29 #try without matching!!!
135 120

  
136 121
#for residuals...
......
234 219
  
235 220
  ###Separate folder for masks by regions, should be listed as just the dir!!... #PARAM 20
236 221
  #infile_mask <- "/nobackupp8/bparmen1/regions_input_files/r_mask_reg4.tif"
237
  infile_mask <- list_param_run_mosaicing_prediction$infile_mask #"/data/project/layers/commons/NEX_data/regions_input_files/r_mask_reg4.tif"
222
  infile_mask <- list_param_run_mosaicing_prediction$infile_mask # input mask used in defining the region
238 223
  
239 224
  #in_dir can be on NEX or Atlas
240
  tb_v_accuracy_name <- list_param_run_mosaicing_prediction$tb_accuracy_name #<- file.path(in_dir,"tb_diagnostic_v_NA_run10_1500x4500_global_analyses_pred_1992_12072015.txt") #PARAM 21
241
  tb_s_accuracy_name <- list_param_run_mosaicing_prediction$tb_accuracy_name #<- file.path(in_dir,"tb_diagnostic_v_NA_run10_1500x4500_global_analyses_pred_1992_12072015.txt") #PARAM 21
242
  data_month_s_name <- list_param_run_mosaicing_prediction$data_month_s_name # file.path(in_dir,"data_month_s_NAM_run10_1500x4500_global_analyses_pred_1992_12072015.txt") #PARAM 22
243
  data_day_v_name <- list_param_run_mosaicing_prediction$data_day_v_name # file.path(in_dir,"data_day_v_NAM_run10_1500x4500_global_analyses_pred_1992_12072015.txt") #PARAM 23
244
  data_day_s_name <- list_param_run_mosaicing_prediction$data_day_s_name # file.path(in_dir,"data_day_s_NAM_run10_1500x4500_global_analyses_pred_1992_12072015.txt") ##PARAM 24
245
  df_tile_processed_name <- list_param_run_mosaicing_prediction$df_tile_processed_name # file.path(in_dir,"df_tile_processed_run10_1500x4500_global_analyses_pred_1992_12072015.txt") ##PARAM 25
246
  
225
  df_assessment_files_name <- list_param_run_mosaicing_prediction$df_assessment_files_name # data.frame with all files used in assessmnet, PARAM 21
226

  
247 227
  #python script and gdal on NEX NASA:
248 228
  #mosaic_python <- "/nobackupp6/aguzman4/climateLayers/sharedCode/"
249 229
  #python_bin <- "/nobackupp6/aguzman4/climateLayers/sharedModules2/bin"
250 230
  #python script and gdal on Atlas NCEAS
251
  mosaic_python <- list_param_run_mosaicing_prediction$mosaic_python # "/data/project/layers/commons/NEX_data/sharedCode" #PARAM 26
252
  python_bin <- list_param_run_mosaicing_prediction$python_bin # "/usr/bin" #PARAM 27
231
  mosaic_python <- list_param_run_mosaicing_prediction$mosaic_python # "/data/project/layers/commons/NEX_data/sharedCode" #PARAM 22
232
  python_bin <- list_param_run_mosaicing_prediction$python_bin # "/usr/bin" #PARAM 23
253 233
  
254
  algorithm <- list_param_run_mosaicing_prediction$algorithm #"python" #PARAM 28 #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann
234
  algorithm <- list_param_run_mosaicing_prediction$algorithm #"python" #PARAM 24 #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann
255 235
  #algorithm <- "R" #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann
256 236
  
257
  match_extent <- list_param_run_mosaicing_prediction$match_extent #"FALSE" #PARAM 29 #try without matching!!!
237
  match_extent <- list_param_run_mosaicing_prediction$match_extent #"FALSE" #PARAM 25 #try without matching!!!
258 238
  
259 239
  #for residuals...
260
  list_models <- list_param_run_mosaicing_prediction$list_models #  NULL #PARAM 30
240
  list_models <- list_param_run_mosaicing_prediction$list_models #  NULL #PARAM 26
261 241
  #list_models <- paste(var_pred,"~","1",sep=" ") #if null then this is the default...
262 242
  
263 243
  ####### PART 1: Read in data and process data ########
......
278 258
  
279 259
  setwd(out_dir)
280 260
  
261
  ### Read in assessment and accuracy files
262
  df_assessment_files <- read.table(df_assessment_files_name,stringsAsFactors=F,sep=",")
263

  
264
  tb_v_accuracy_name <- file.path(in_dir, basename(df_assessment_files$files[2])) 
265
  tb_s_accuracy_name <- file.path(in_dir, basename(df_assessment_files$files[4])) 
266
  tb_s_month_accuracy_name <- file.path(in_dir, basename(df_assessment_files$files[3])) 
267
  data_month_s_name <- file.path(in_dir,basename(df_assessment_files$files[5])) 
268
  data_day_v_name <- file.path(in_dir, basename(df_assessment_files$files[6])) 
269
  data_day_s_name <- file.path(in_dir, basename(df_assessment_files$files[7])) 
270
  #data_month_v_name <- file.path(in_dir,basename(df_assessment_files$files[8])) 
271
  pred_data_month_info_name <- file.path(in_dir, basename(df_assessment_files$files[9]))
272
  pred_data_day_info_name <- file.path(in_dir, basename(df_assessment_files$files[10]))
273
  df_tile_processed_name <- file.path(in_dir, basename(df_assessment_files$files[11]))
274

  
281 275
  # accuracy table by tiles
282
  tb <- read.table(tb_accuracy_name,sep=",")
283
  # textfiles of stations by month
284
  data_month_s <- read.table(file.path(data_month_s_name),sep=",")
285
  data_day_s <- read.table(file.path(data_day_s_name),sep=",") #daily testing/validation stations by dates and tiles
286
  data_day_v <- read.table(file.path(data_day_v_name),sep=",") #daily training stations by dates and tiles
287
  
288
  df_tile_processed <- read.table( df_tile_processed_name,sep=",")
276
  tb <- read.table(tb_v_accuracy_name,sep=",")
277
  tb_s <- read.table(tb_s_accuracy_name,sep=",")
278
  data_month_s <- read.table(data_month_s_name,sep=",") # textfiles of stations by month
279
  data_day_s <- read.table(data_day_s_name,sep=",") #daily testing/validation stations by dates and tiles
280
  data_day_v <- read.table(data_day_v_name,sep=",") #daily training stations by dates and tiles
281
  df_tile_processed <- read.table(df_tile_processed_name,sep=",")
289 282
  
290 283
  #list all files to mosaic for a list of day
291 284
  #Take into account multiple region in some cases!!!  

Also available in: Unified diff