Project

General

Profile

« Previous | Next » 

Revision 54460160

Added by Benoit Parmentier over 9 years ago

global asssessment part 1, 1500x4500km including missing tiles in region 1

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part1.R
5 5
#Part 1 create summary tables and inputs files for figure in part 2 and part 3.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 03/23/2015            
8
#MODIFIED ON: 03/25/2015            
9 9
#Version: 4
10 10
#PROJECT: Environmental Layers project  
11 11
#TO DO:
......
15 15
#
16 16
#First source these files:
17 17
#Resolved call issues from R.
18
source /nobackupp6/aguzman4/climateLayers/sharedModules/etc/environ.sh 
19
MODULEPATH=$MODULEPATH:/nex/modules/files
20
module load pythonkits/gdal_1.10.0_python_2.7.3_nex
18
#source /nobackupp6/aguzman4/climateLayers/sharedModules/etc/environ.sh 
19
#MODULEPATH=$MODULEPATH:/nex/modules/files
20
#module load pythonkits/gdal_1.10.0_python_2.7.3_nex
21 21

  
22 22
# These are the names and number for the current subset regions used for global runs:
23 23
#reg1 - North America (NAM)
......
71 71
#master directory containing the definition of tile size and tiles predicted
72 72
#in_dir1 <- "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/"
73 73
in_dir1 <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km" #PARAM1
74
in_dir1b <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/singles" #PARAM1, add for now in_dir1 can be a list...
75

  
74 76

  
75 77
region_names <- c("reg1","reg2","reg3","reg4","reg5","reg6") #selected region names, #PARAM2
78
region_namesb <- c("reg_1b","reg_2b","reg_6b") #selected region names, #PARAM2
79

  
76 80
y_var_name <- "dailyTmax" #PARAM3
77 81
interpolation_method <- c("gam_CAI") #PARAM4
78
out_prefix<-"run10_1500x4500_global_analyses_03232015" #PARAM5
82
out_prefix<-"run10_1500x4500_global_analyses_03252015" #PARAM5
79 83

  
80 84
#out_dir<-"/data/project/layers/commons/NEX_data/" #On NCEAS Atlas
81 85
#out_dir <- "/nobackup/bparmen1/" #on NEX
......
134 138
#list of shapefiles used to define tiles
135 139
in_dir_shp_list <- list.files(in_dir_shp,".shp",full.names=T)
136 140

  
141
## load problematic tiles
142

  
143
in_dir_listb <- list.dirs(path=in_dir1b,recursive=FALSE) #get the list regions processed for this run
144
#basename(in_dir_list)
145
in_dir_listb<- lapply(region_namesb,FUN=function(x,y){y[grep(x,basename(y),invert=FALSE)]},y=in_dir_listb) 
146

  
147
in_dir_list_allb  <- lapply(in_dir_listb,function(x){list.dirs(path=x,recursive=F)})
148
in_dir_listb <- unlist(in_dir_list_allb)
149
#in_dir_list <- in_dir_list[grep("bak",basename(basename(in_dir_list)),invert=TRUE)] #the first one is the in_dir1
150
in_dir_subsetb <- in_dir_listb[grep("subset",basename(in_dir_listb),invert=FALSE)] #select directory with shapefiles...
151
in_dir_shpb <- file.path(in_dir_subsetb,"shapefiles")
152

  
153
#select only directories used for predictions
154
in_dir_regb <- in_dir_listb[grep(".*._.*.",basename(in_dir_listb),invert=FALSE)] #select directory with shapefiles...
155
#in_dir_reg <- in_dir_list[grep("july_tiffs",basename(in_dir_reg),invert=TRUE)] #select directory with shapefiles...
156
in_dir_listb <- in_dir_regb
157
    
158
in_dir_listb <- in_dir_listb[grep("bak",basename(basename(in_dir_listb)),invert=TRUE)] #the first one is the in_dir1
159
#list of shapefiles used to define tiles
160
in_dir_shp_listb <- list.files(in_dir_shpb,".shp",full.names=T)
161

  
162

  
163
#### Combine now...
164

  
165
in_dir_list <- c(in_dir_list,in_dir_listb)
166
in_dir_reg <- c(in_dir_reg,in_dir_regb)
167
in_dir_shp <- c(in_dir_shp,in_dir_shpb)
168
in_dir_shp_list <- c(in_dir_shp_list,in_dir_shp_listb)
169
#in_dir_list <- c(in_dir_list,in_dir_listb)
170

  
137 171
#system("ls /nobackup/bparmen1")
138 172

  
139 173
if(create_out_dir_param==TRUE){
......
231 265

  
232 266
#################
233 267
###Table 2: daily validation/testing accuracy metrics for all tiles
234
#this takes about 25min
268
#this takes about 55min
235 269
#tb_diagnostic_v_list <- lapply(list_raster_obj_files,FUN=function(x){x<-load_obj(x);x[["tb_diagnostic_v"]]})                           
236 270
tb_diagnostic_v_list <- mclapply(list_raster_obj_files,FUN=function(x){try(x<-load_obj(x));try(x[["tb_diagnostic_v"]])},mc.preschedule=FALSE,mc.cores = num_cores)                           
237 271

  
......
250 284
write.table((tb_diagnostic_v_NA),
251 285
            file=file.path(out_dir,paste("tb_diagnostic_v_NA","_",out_prefix,".txt",sep="")),sep=",")
252 286

  
287
##Take where shutdown took place after pathcing
288
summary_metrics_v_NA <- read.table(file=file.path(out_dir,paste("summary_metrics_v2_NA_",out_prefix,".txt",sep="")),sep=",")
289
#fname <- file.path(out_dir,paste("summary_metrics_v2_NA_",out_suffix,".txt",sep=""))
290
tb_diagnostic_v_NA <- read.table(file=file.path(out_dir,paste("tb_diagnostic_v_NA","_",out_prefix,".txt",sep="")),sep=",")
291
#tb_diagnostic_s_NA_run10_global_analyses_11302014.txt
292
#tb_s <- read.table(file=file.path(out_dir,paste("tb_diagnostic_s_NA","_",out_suffix,".txt",sep="")),sep=",")
293

  
294
#tb_month_s <- read.table(file=file.path(out_dir,paste("tb_month_diagnostic_s_NA","_",out_suffix,".txt",sep="")),sep=",")
295
#pred_data_month_info <- read.table(file=file.path(out_dir,paste("pred_data_month_info_",out_suffix,".txt",sep="")),sep=",")
296
#pred_data_day_info <- read.table(file=file.path(out_dir,paste("pred_data_day_info_",out_suffix,".txt",sep="")),sep=",")
297
#df_tile_processed <- read.table(file=file.path(out_dir,paste("df_tile_processed_",out_suffix,".txt",sep="")),sep=",")
298

  
253 299
#################
254 300
###Table 3: monthly fit/training accuracy information for all tiles
255 301

  
......
378 424
#get shape files for the region being assessed:
379 425

  
380 426
list_shp_world <- list.files(path=in_dir_shp,pattern=".*.shp",full.names=T)
381
l_shp <- unlist(lapply(1:length(list_shp_world),
382
                       FUN=function(i){paste(strsplit(list_shp_world[i],"_")[[1]][3:4],collapse="_")}))
383
l_shp <- gsub(".shp","",l_shp)
427
l_shp <- gsub(".shp","",basename(list_shp_world))
428
l_shp <- sub("shp_","",l_shp)
429

  
430
#l_shp <- unlist(lapply(1:length(list_shp_world),
431
#                       FUN=function(i){paste(strsplit(list_shp_world[i],"_")[[1]][3:4],collapse="_")}))
432
l_shp <- unlist(lapply(1:length(l_shp),
433
                       FUN=function(i){paste(strsplit(l_shp[i],"_")[[1]][1:2],collapse="_")}))
434

  
384 435
matching_index <- match(basename(in_dir_list),l_shp)
385 436
list_shp_reg_files <- list_shp_world[matching_index]
386 437
df_tile_processed$shp_files <-list_shp_world[matching_index]

Also available in: Unified diff