Project

General

Profile

« Previous | Next » 

Revision 552b7959

Added by Benoit Parmentier almost 9 years ago

assessment part3, solving figures count and clean up

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part3.R
7 7
#Analyses, figures, tables and data are also produced in the script.
8 8
#AUTHOR: Benoit Parmentier 
9 9
#CREATED ON: 03/23/2014  
10
#MODIFIED ON: 02/09/2016            
10
#MODIFIED ON: 02/10/2016            
11 11
#Version: 5
12 12
#PROJECT: Environmental Layers project     
13 13
#COMMENTS: Initial commit, script based on part 2 of assessment, will be modified further for overall assessment 
......
188 188

  
189 189
  setwd(out_dir)
190 190
  
191
  list_outfiles <- vector("list", length=31) #collect names of output files, this should be dynamic?
192
  list_outfiles_names <- vector("list", length=31) #collect names of output files
191
  list_outfiles <- vector("list", length=35) #collect names of output files, this should be dynamic?
192
  list_outfiles_names <- vector("list", length=35) #collect names of output files
193 193
  counter_fig <- 0 #index of figure to collect outputs
194 194
  
195 195
  #i <- year_predicted
......
447 447
    title(paste("RMSE with scaling for all tiles: ",model_name[i],sep=""))
448 448
    dev.off()
449 449
    list_outfiles[[counter_fig+2]] <- paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep="")
450
    counter_fig <- counter_fig +2
450 451
  }
451
  counter_fig <- counter_fig + length(model_name)
452
  #counter_fig <- counter_fig + length(model_name)
452 453
  r6 <-c("figure_3a","Boxplot overall accuracy with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[6]])  
453 454
  r7 <-c("figure_3b","Boxplot overall accuracy with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[7]])  
454 455
  r8 <-c("figure_3a","Boxplot overall accuracy with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[8]])
455 456
  r9 <-c("figure_3b","Boxplot overall accuracy with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]])  
456 457

  
457 458
  ################ 
458
  ### Figure 4: plot predicted tiff for specific date per model
459
  ### Figure 4: plot accuracy metric by month
459 460
  ## Replace by break out by season?
460 461
  
461
  #y_var_name <-"dailyTmax"
462
  #index <-244 #index corresponding to Sept 1
463
  
464
  # if (mosaic_plot==TRUE){
465
  #   index  <- 1 #index corresponding to Jan 1
466
  #   date_selected <- "20100901"
467
  #   name_method_var <- paste(interpolation_method,"_",y_var_name,"_",sep="")
468
  # 
469
  #   pattern_str <- paste("mosaiced","_",name_method_var,"predicted",".*.",date_selected,".*.tif",sep="")
470
  #   lf_pred_list <- list.files(pattern=pattern_str)
471
  # 
472
  #   for(i in 1:length(lf_pred_list)){
473
  #     
474
  #   
475
  #     r_pred <- raster(lf_pred_list[i])
476
  #   
477
  #     res_pix <- 480
478
  #     col_mfrow <- 1
479
  #     row_mfrow <- 1
480
  #   
481
  #     png(filename=paste("Figure4_models_predicted_surfaces_",model_name[i],"_",name_method_var,"_",data_selected,"_",out_suffix,".png",sep=""),
482
  #        width=col_mfrow*res_pix,height=row_mfrow*res_pix)
483
  #   
484
  #     plot(r_pred)
485
  #     title(paste("Mosaiced",model_name[i],name_method_var,date_selected,sep=" "))
486
  #     dev.off()
487
  #   }
488
  #   #Plot Delta and clim...
489
  # 
490
  #    ## plotting of delta and clim for later scripts...
491
  # 
492
  # }
462
  for(i in 1:length(model_name)){
463
    
464
    tb_subset <- subset(tb,pred_mod==model_name[i])#mod1 is i=1, mod_kr is last
465
    labels <- month.abb # abbreviated names for each month
466
    
467
    ## Figure 4a
468
    fig_filename <- paste("Figure4a_boxplot_overall_accuracy_separated_by_month_with_outliers_",model_name[i],"_",out_suffix,".png",sep="")
469
    png(filename=fig_filename,
470
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
493 471
  
472
    boxplot(rmse~month_no,data=tb_subset,ylab=metric_name,xlab="averaged by month",axes=F)#,names=tb$pred_mod)
473
    axis(1, labels = FALSE)
474
    ## Plot x axis labels at default tick marks
475
    text(1:length(labels), par("usr")[3] - 0.25, srt = 45, adj = 1,cex=0.8,
476
           labels = labels, xpd = TRUE)
477
    axis(2)
478
    box()
479
    title(paste("Overall accuracy for ", model_name[i], " by month for ",region_name,sep=""))
480
    
481
    #p<- bwplot(rmse~year_predicted | reg , data=tb_subset,ylim=c(0,5),
482
             #main="RMSE per model and region over all tiles")
483
    #print(p)
484
    dev.off()
485
    
486
    list_outfiles[[counter_fig+1]] <- fig_filename
487
    counter_fig <- counter_fig + 1
488

  
489
    fig_filename <- paste("Figure4b_boxplot_overall_separated_by_month_scaling_",model_name[i],"_",out_suffix,".png",sep="")
490
    png(filename=fig_filename,
491
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
494 492
  
493
    boxplot(rmse~month_no,data=tb_subset,ylim=c(0,5),outline=FALSE,ylab=metric_name,
494
            xlab="averaged by month",axes=F)#,names=tb$pred_mod)
495
    axis(1, labels = FALSE)
496
    ## Plot x axis labels at default tick marks
497
    text(1:length(labels), par("usr")[3] - 0.25, srt = 45, adj = 1,cex=0.8,
498
           labels = labels, xpd = TRUE)
499
    axis(2)
500
    box()
501

  
502
    title(paste("Overall accuracy for ", model_name[i], " by month for ",region_name,sep=""))
503
    #p<- bwplot(rmse~year_predicted | reg , data=tb_subset,ylim=c(0,5),
504
             #main="RMSE per model and region over all tiles")
505
    #print(p)
506
    dev.off()
507

  
508
    list_outfiles[[counter_fig+1]] <- fig_filename
509
    counter_fig <- counter_fig + 1
510
  }
511
  #counter_fig <- counter_fig + length(model_name)
512
  r10 <-c("figure_4a","Boxplot overall accuracy by month with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[10]])  
513
  r11 <-c("figure_4b","Boxplot overall accuracy by month with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[11]])  
514
  r12 <-c("figure_4a","Boxplot overall accuracy by month with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[12]])
515
  r13 <-c("figure_4b","Boxplot overall accuracy by month with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[13]])  
516

  
495 517
  ######################
496 518
  ### Figure 5: plot accuracy ranked 
497 519
  
......
519 541
    title(paste("RMSE ranked by tile for ",model_name[i],sep=""))
520 542
    
521 543
    dev.off()
522
    list_outfiles[[counter_fig+i]] <- fig_filename
544
    list_outfiles[[counter_fig+1]] <- fig_filename
545
    counter_fig <- counter_fig + 1
523 546
  }
524 547
  
525
  counter_fig <- counter_fig + length(model_name)
548
  #counter_fig <- counter_fig + length(model_name)
526 549
  
527
  r10 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]])
528
  r11 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]])  
550
  r14 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[14]])
551
  r15 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[15]])  
529 552

  
530 553
  ######################
531 554
  ### Figure 6: plot map of average RMSE per tile at centroids
......
571 594
  }
572 595
  counter_fig <- counter_fig+length(model_name)
573 596

  
574
  r12 <-c("figure_6","Average accuracy metrics map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]])
575
  r13 <-c("figure_6","Average accuracy metrics map at centroids","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]])  
597
  r16 <-c("figure_6","Average accuracy metrics map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[16]])
598
  r17 <-c("figure_6","Average accuracy metrics map at centroids","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[17]])  
576 599
  
577 600
  
578 601
  ######################
......
594 617
  nb<-nrow(subset(summary_metrics_v,model_name=="mod1"))  
595 618
  sum(subset(summary_metrics_v,model_name=="mod1")$n_missing)/nb #33/35
596 619
  
597
  ## Make this a figure...
598
  
599
  #plot(summary_metrics_v)
600
  #Make this a function later so that we can explore many thresholds...
601
  #Problem here
602
  #Browse[3]> c
603
   #Error in grid.Call.graphics(L_setviewport, pvp, TRUE) : 
604
  #non-finite location and/or size for viewport
605 620

  
606 621
  j<-1 #for model name 1,mod1
607 622
  for(i in 1:length(threshold_missing_day)){
......
613 628
    
614 629
    fig_filename <- paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i],
615 630
                       "_",out_suffix,".png",sep="")
631
    list_outfiles[[counter_fig+i]] <- fig_filename
616 632

  
617 633
    if(sum(summary_metrics_v_subset$n_missing) > 0){#then there are centroids to plot!!!
618 634
      
......
638 654

  
639 655
    } 
640 656
     
641
    list_outfiles[[counter_fig+i]] <- fig_filename
657
    #list_outfiles[[counter_fig+i]] <- fig_filename
642 658
  }
643 659
  counter_fig <- counter_fig+length(threshold_missing_day) #currently 4 days...
644 660

  
645
  r14 <-c("figure_7","Number of missing days threshold1 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]])
646
  r15 <-c("figure_7","Number of missing days threshold2 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]])  
647
  r16 <-c("figure_7","Number of missing days threshold3 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]])
648
  r17 <-c("figure_7","Number of missing days threshold4 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]])  
661
  r18 <-c("figure_7","Number of missing days threshold1 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[18]])
662
  r19 <-c("figure_7","Number of missing days threshold2 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[19]])  
663
  r20 <-c("figure_7","Number of missing days threshold3 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[20]])
664
  r21 <-c("figure_7","Number of missing days threshold4 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[21]])  
649 665

  
650 666
  ### Potential
651 667
  png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""),
......
657 673
  
658 674
  list_outfiles[[counter_fig+1]] <- paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep="")
659 675
  counter_fig <- counter_fig + 1
660
  r18 <-c("figure_7b","Number of daily predictions per_models","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]])  
676
  r22 <-c("figure_7b","Number of daily predictions per_models","mod1",metric_name,region_name,year_predicted,list_outfiles[[22]])  
661 677
  
662 678
  table(tb$pred_mod)
663 679
  table(tb$index_d)
......
685 701
  
686 702
  list_outfiles[[counter_fig+1]] <- paste("Figure7c_histogram_number_daily_predictions_per_models","_",out_suffix,".png",sep="")
687 703
  counter_fig <- counter_fig + 1
688
  r19 <-c("figure_7c","Histogram number daily predictions per models","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]])  
704
  r23 <-c("figure_7c","Histogram number daily predictions per models","mod1",metric_name,region_name,year_predicted,list_outfiles[[23]])  
689 705

  
690
  
691 706
  #table(tb)
692 707
  ## Figure 7b
693 708
  #png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""),
......
743 758
  counter_fig <- counter_fig + 1
744 759
  
745 760
  
746
  r20 <-c("figure 8a","Boxplot overall accuracy by model separated by region with outliers",NA,metric_name,region_name,year_predicted,list_outfiles[[20]])  
747
  r21 <-c("figure 8b","Boxplot overall accuracy by model separated by region with scaling",NA,metric_name,region_name,year_predicted,list_outfiles[[21]])  
761
  r24 <-c("figure 8a","Boxplot overall accuracy by model separated by region with outliers",NA,metric_name,region_name,year_predicted,list_outfiles[[24]])  
762
  r25 <-c("figure 8b","Boxplot overall accuracy by model separated by region with scaling",NA,metric_name,region_name,year_predicted,list_outfiles[[25]])  
748 763

  
749 764
  #######
750 765
  ##Second, plot for each model separately
......
787 802

  
788 803
  }
789 804
  
790
  r22 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[22]])  
791
  r23 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[23]])  
792
  r24 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[24]])  
793
  r25 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[25]])  
805
  r26 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[26]])  
806
  r27 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[27]])  
807
  r28 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[28]])  
808
  r29 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[29]])  
794 809

  
795 810
  #####################################################
796 811
  #### Figure 9: plotting boxplot by year and regions ###########
......
799 814
  res_pix <- 480
800 815
  col_mfrow <- 1
801 816
  row_mfrow <- 1
802

  
803
  png(filename=paste("Figure9a_boxplot_overall_separated_by_year_and_model_with_oultiers_",out_suffix,".png",sep=""),
817
  fig_filename <- paste("Figure9a_boxplot_overall_separated_by_year_and_model_with_oultiers_",out_suffix,".png",sep="")
818
  png(filename= fig_filename,
804 819
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
805 820
  #This will need to be changed, the layout is difficult at this stage 
806 821
  #p<- bwplot(rmse~pred_mod + reg + year_predicted, data=tb,
......
809 824
             main="RMSE per model and region over all tiles")
810 825
  print(p)
811 826
  dev.off()
812
  
827
  list_outfiles[[counter_fig+1]] <- fig_filename
828
  counter_fig <- counter_fig + 1
829

  
813 830
  ## Figure 9b
814
  png(filename=paste("Figure9b_boxplot_overall_separated_by_year_and_model_scaling_",out_suffix,".png",sep=""),
831
  fig_filename <- paste("Figure9b_boxplot_overall_separated_by_year_and_model_scaling_",out_suffix,".png",sep="")
832
  png(filename= fig_filename,
815 833
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
816 834
  
817 835
  #boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
......
820 838
             main="RMSE per model and region over all tiles")
821 839
  print(p)
822 840
  dev.off()
841
  list_outfiles[[counter_fig+1]] <- fig_filename
842
  counter_fig <- counter_fig + 1
823 843

  
824 844
  for(i in 1:length(model_name)){
825 845
    
......
855 875
    counter_fig <- counter_fig + 1
856 876
  }
857 877
  
858
  r26 <-c("figure 9a","Boxplot overall accuracy separated_by year and model with oultiers",NA,metric_name,region_name,year_predicted,list_outfiles[[22]])  
859
  r27 <-c("figure 9b","Boxplot overall accuracy separated_by year and model with scaling",NA,metric_name,region_name,year_predicted,list_outfiles[[23]])  
860
  r28 <-c("figure 9c","Boxplot overall accuracy separated by year with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[24]])  
861
  r29 <-c("figure 9d","Boxplot overall accuracy separated by year with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[25]])  
862
  r30 <-c("figure 9c","Boxplot overall accuracy separated by year with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[24]])  
863
  r31 <-c("figure 9d","Boxplot overall accuracy separated by year with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[25]])  
878
  r30 <-c("figure 9a","Boxplot overall accuracy separated_by year and model with oultiers",NA,metric_name,region_name,year_predicted,list_outfiles[[30]])  
879
  r31 <-c("figure 9b","Boxplot overall accuracy separated_by year and model with scaling",NA,metric_name,region_name,year_predicted,list_outfiles[[31]])  
880
  r32 <-c("figure 9c","Boxplot overall accuracy separated by year with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[32]])  
881
  r33 <-c("figure 9d","Boxplot overall accuracy separated by year with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[33]])  
882
  r34 <-c("figure 9c","Boxplot overall accuracy separated by year with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[34]])  
883
  r35 <-c("figure 9d","Boxplot overall accuracy separated by year with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[35]])  
864 884

  
865 885
  ##############################################################
866 886
  ############## Prepare object to return
......
869 889
  # This is hard coded and can be improved later on for flexibility. It works for now...                                                                 
870 890
  #This data.frame contains all the files from the assessment
871 891

  
872
  #Should have this at the location of the figures!!! will be done later?    
873
  #r1 <-c("figure_1","Tiles processed for the region",NA,NA,region_name,year_predicted,list_outfiles[[1]])
874
  #r2 <-c("figure_2a","Boxplot of accuracy with outliers by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[2]]) 
875
  #r3 <-c("figure_2a","boxplot of accuracy with outliers by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[3]])
876
  #r4 <-c("figure_2b","Boxplot of accuracy with scaling by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[4]])  
877
  #r5 <-c("figure_2b","Boxplot of accuracy with scaling by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[5]])  
878
  #r6 <-c("figure_3a","Boxplot overall accuracy with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[6]])  
879
  #r7 <-c("figure_3b","Boxplot overall accuracy with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[7]])  
880
  #r8 <-c("figure_3a","Boxplot overall accuracy with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[8]])
881
  #r9 <-c("figure_3b","Boxplot overall accuracy with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]])  
882
  #r10 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[10]])
883
  #r11 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[11]])  
884
  #r12 <-c("figure_6","Average accuracy metrics map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[12]])
885
  #r13 <-c("figure_6","Average accuracy metrics map at centroids","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[13]])  
886
  #r14 <-c("figure_7","Number of missing days threshold1 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[14]])
887
  #r15 <-c("figure_7","Number of missing days threshold2 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[15]])  
888
  #r16 <-c("figure_7","Number of missing days threshold3 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[16]])
889
  #r17 <-c("figure_7","Number of missing days threshold4 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[17]])  
890
  #r18 <-c("figure_7b","Number of daily predictions per_models","mod1",metric_name,region_name,year_predicted,list_outfiles[[18]])  
891
  #r19 <-c("figure_7c","Histogram number daily predictions per models","mod1",metric_name,region_name,year_predicted,list_outfiles[[19]])  
892
  #r20 <-c("figure 8a","Boxplot overall accuracy by model separated by region with outliers",NA,metric_name,region_name,year_predicted,list_outfiles[[20]])  
893
  #r21 <-c("figure 8b","Boxplot overall accuracy by model separated by region with scaling",NA,metric_name,region_name,year_predicted,list_outfiles[[21]])  
894
  #r22 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[22]])  
895
  #r23 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[23]])  
896
  #r24 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[24]])  
897
  #r25 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[25]])  
898

  
899 892
  #Assemble all the figures description and information in a data.frame for later use
900 893
  list_rows <-list(r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15,r16,r17,r18,r19,r20,r21,r22,r23,r24,
901
                   r25,r26,r27,r28,r29,r30,r31)
894
                   r25,r26,r27,r28,r29,r30,r31,r32,r33,r34,r35)
902 895
  df_assessment_figures_files <- as.data.frame(do.call(rbind,list_rows))
903 896
  names(df_assessment_figures_files) <- c("figure_no","comment","model_name","reg","metric_name","year_predicted","filename")
904 897
  
......
912 905
  ######################################################
913 906
  ##### Prepare objet to return ####
914 907

  
915
  assessment_obj <- list(df_assessment_files, df_assessment_figures_files)
908
  assessment_obj <- list(list_df_assessment_files, df_assessment_figures_files)
916 909
  names(assessment_obj) <- c("df_assessment_files", "df_assessment_figures_files")
917 910
  ## Prepare list of files to return...
918 911
  return(assessment_obj)

Also available in: Unified diff