1 |
4ef959c2
|
Adam M. Wilson
|
#! /bin/R
|
2 |
|
|
### Script to download and process the NDP-026D station cloud dataset
|
3 |
710f7456
|
Adam M. Wilson
|
setwd("~/acrobates/adamw/projects/interp/data/NDP026D")
|
4 |
|
|
|
5 |
|
|
library(multicore)
|
6 |
|
|
library(latticeExtra)
|
7 |
|
|
library(doMC)
|
8 |
ddd9a810
|
Adam M. Wilson
|
library(rasterVis)
|
9 |
710f7456
|
Adam M. Wilson
|
library(rgdal)
|
10 |
|
|
## register parallel processing
|
11 |
|
|
registerDoMC(20)
|
12 |
|
|
|
13 |
4ef959c2
|
Adam M. Wilson
|
|
14 |
|
|
## available here http://cdiac.ornl.gov/epubs/ndp/ndp026d/ndp026d.html
|
15 |
|
|
|
16 |
|
|
## Get station locations
|
17 |
a6d44f2d
|
Adam M. Wilson
|
system("wget -N -nd http://cdiac.ornl.gov/ftp/ndp026d/cat01/01_STID -P data/")
|
18 |
4ef959c2
|
Adam M. Wilson
|
st=read.table("data/01_STID",skip=1)
|
19 |
|
|
colnames(st)=c("StaID","LAT","LON","ELEV","ny1","fy1","ly1","ny7","fy7","ly7","SDC","b5c")
|
20 |
|
|
st$lat=st$LAT/100
|
21 |
|
|
st$lon=st$LON/100
|
22 |
|
|
st$lon[st$lon>180]=st$lon[st$lon>180]-360
|
23 |
|
|
|
24 |
710f7456
|
Adam M. Wilson
|
## download data
|
25 |
4ef959c2
|
Adam M. Wilson
|
system("wget -N -nd ftp://cdiac.ornl.gov/pub/ndp026d/cat67_78/* -A '.tc.Z' -P data/")
|
26 |
|
|
system("gunzip data/*.Z")
|
27 |
|
|
|
28 |
710f7456
|
Adam M. Wilson
|
## get monthly mean cloud amount MMCF
|
29 |
|
|
#system("wget -N -nd ftp://cdiac.ornl.gov/pub/ndp026d/cat08_09/* -A '.tc.Z' -P data/")
|
30 |
|
|
#system("gunzip data/*.Z")
|
31 |
4ef959c2
|
Adam M. Wilson
|
#f121=c(6,6,6,7,6,7,6,2) #format 121
|
32 |
|
|
#c121=c("StaID","NobD","AvgDy","NobN","AvgNt","NobDN","AvgDN","Acode")
|
33 |
710f7456
|
Adam M. Wilson
|
#cld=do.call(rbind.data.frame,lapply(sprintf("%02d",1:12),function(m) {
|
34 |
|
|
# d=read.fwf(list.files("data",pattern=paste("MMCA.",m,".tc",sep=""),full=T),skip=1,widths=f162)
|
35 |
|
|
# colnames(d)=c121
|
36 |
|
|
# d$month=as.numeric(m)
|
37 |
|
|
# return(d)}
|
38 |
|
|
# ))
|
39 |
|
|
|
40 |
|
|
## define FWF widths
|
41 |
|
|
f162=c(5,5,4,7,7,7,4) #format 162
|
42 |
4ef959c2
|
Adam M. Wilson
|
c162=c("StaID","YR","Nobs","Amt","Fq","AWP","NC")
|
43 |
|
|
|
44 |
710f7456
|
Adam M. Wilson
|
## use monthly timeseries
|
45 |
|
|
cld=do.call(rbind.data.frame,mclapply(sprintf("%02d",1:12),function(m) {
|
46 |
4ef959c2
|
Adam M. Wilson
|
d=read.fwf(list.files("data",pattern=paste("MNYDC.",m,".tc",sep=""),full=T),skip=1,widths=f162)
|
47 |
|
|
colnames(d)=c162
|
48 |
|
|
d$month=as.numeric(m)
|
49 |
710f7456
|
Adam M. Wilson
|
print(m)
|
50 |
4ef959c2
|
Adam M. Wilson
|
return(d)}
|
51 |
|
|
))
|
52 |
|
|
|
53 |
710f7456
|
Adam M. Wilson
|
## add lat/lon
|
54 |
|
|
cld[,c("lat","lon")]=st[match(cld$StaID,st$StaID),c("lat","lon")]
|
55 |
4ef959c2
|
Adam M. Wilson
|
|
56 |
a6d44f2d
|
Adam M. Wilson
|
## drop missing values
|
57 |
4ef959c2
|
Adam M. Wilson
|
cld$Amt[cld$Amt<0]=NA
|
58 |
|
|
cld$Fq[cld$Fq<0]=NA
|
59 |
|
|
cld$AWP[cld$AWP<0]=NA
|
60 |
|
|
cld$NC[cld$NC<0]=NA
|
61 |
710f7456
|
Adam M. Wilson
|
cld=cld[cld$Nobs>0,]
|
62 |
4ef959c2
|
Adam M. Wilson
|
|
63 |
710f7456
|
Adam M. Wilson
|
## calculate means and sds
|
64 |
a6d44f2d
|
Adam M. Wilson
|
cldm=do.call(rbind.data.frame,by(cld,list(month=as.factor(cld$month),StaID=as.factor(cld$StaID)),function(x){
|
65 |
710f7456
|
Adam M. Wilson
|
data.frame(
|
66 |
|
|
month=x$month[1],
|
67 |
|
|
StaID=x$StaID[1],
|
68 |
|
|
cld=mean(x$Amt[x$Nobs>10]/100,na.rm=T),
|
69 |
|
|
cldsd=sd(x$Amt[x$Nobs>10]/100,na.rm=T))}))
|
70 |
|
|
cldm[,c("lat","lon")]=st[match(cldm$StaID,st$StaID),c("lat","lon")]
|
71 |
|
|
|
72 |
99b3508d
|
Adam M. Wilson
|
## means by year
|
73 |
|
|
cldy=do.call(rbind.data.frame,by(cld,list(year=as.factor(cld$YR),StaID=as.factor(cld$StaID)),function(x){
|
74 |
|
|
data.frame(
|
75 |
|
|
year=x$YR[1],
|
76 |
|
|
StaID=x$StaID[1],
|
77 |
|
|
cld=mean(x$Amt[x$Nobs>10]/100,na.rm=T),
|
78 |
|
|
cldsd=sd(x$Amt[x$Nobs>10]/100,na.rm=T))}))
|
79 |
|
|
cldy[,c("lat","lon")]=st[match(cldy$StaID,st$StaID),c("lat","lon")]
|
80 |
|
|
|
81 |
|
|
|
82 |
710f7456
|
Adam M. Wilson
|
#cldm=foreach(m=unique(cld$month),.combine='rbind')%:%
|
83 |
|
|
# foreach(s=unique(cld$StaID),.combine="rbind") %dopar% {
|
84 |
|
|
# x=cld[cld$month==m&cld$StaID==s,]
|
85 |
|
|
# data.frame(
|
86 |
|
|
# month=x$month[1],
|
87 |
|
|
# StaID=x$StaID[1],
|
88 |
|
|
# Amt=mean(x$Amt[x$Nobs>10],na.rm=T)/100)}
|
89 |
|
|
|
90 |
a6d44f2d
|
Adam M. Wilson
|
|
91 |
99b3508d
|
Adam M. Wilson
|
## write out the tables
|
92 |
|
|
write.csv(cldy,file="cldy.csv")
|
93 |
a6d44f2d
|
Adam M. Wilson
|
write.csv(cldm,file="cldm.csv")
|
94 |
|
|
|
95 |
555815c9
|
Adam M. Wilson
|
#########################################################################
|
96 |
a6d44f2d
|
Adam M. Wilson
|
##################
|
97 |
|
|
###
|
98 |
|
|
cldm=read.csv("cldm.csv")
|
99 |
99b3508d
|
Adam M. Wilson
|
cldy=read.csv("cldy.csv")
|
100 |
a6d44f2d
|
Adam M. Wilson
|
|
101 |
4ef959c2
|
Adam M. Wilson
|
|
102 |
710f7456
|
Adam M. Wilson
|
##make spatial object
|
103 |
|
|
cldms=cldm
|
104 |
|
|
coordinates(cldms)=c("lon","lat")
|
105 |
|
|
projection(cldms)=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
|
106 |
|
|
|
107 |
ddd9a810
|
Adam M. Wilson
|
##make spatial object
|
108 |
|
|
cldys=cldy
|
109 |
|
|
coordinates(cldys)=c("lon","lat")
|
110 |
|
|
projection(cldys)=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
|
111 |
|
|
|
112 |
710f7456
|
Adam M. Wilson
|
#### Evaluate MOD35 Cloud data
|
113 |
|
|
mod35=brick("../modis/mod35/MOD35_h11v08.nc",varname="CLD01")
|
114 |
|
|
mod35sd=brick("../modis/mod35/MOD35_h11v08.nc",varname="CLD_sd")
|
115 |
|
|
projection(mod35)="+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs"
|
116 |
99b3508d
|
Adam M. Wilson
|
|
117 |
|
|
|
118 |
|
|
### use data from google earth engine
|
119 |
ddd9a810
|
Adam M. Wilson
|
mod35=raster("../modis/mod09/global_2009/MOD35_2009.tif")
|
120 |
99b3508d
|
Adam M. Wilson
|
mod09=raster("../modis/mod09/global_2009/MOD09_2009.tif")
|
121 |
|
|
|
122 |
ddd9a810
|
Adam M. Wilson
|
## LULC
|
123 |
|
|
system(paste("gdalwarp -r near -co \"COMPRESS=LZW\" -tr ",paste(res(mod09),collapse=" ",sep=""),
|
124 |
|
|
"-tap -multi -t_srs \"", projection(mod09),"\" /mnt/data/jetzlab/Data/environ/global/landcover/MODIS/MCD12Q1_IGBP_2005_v51.tif ../modis/mod12/MCD12Q1_IGBP_2005_v51.tif"))
|
125 |
|
|
lulc=raster("../modis/mod12/MCD12Q1_IGBP_2005_v51.tif")
|
126 |
|
|
lulc=ratify(lulc)
|
127 |
|
|
require(plotKML); data(worldgrids_pal) #load IGBP palette
|
128 |
|
|
IGBP=data.frame(ID=0:16,col=worldgrids_pal$IGBP[-c(18,19)],stringsAsFactors=F)
|
129 |
|
|
IGBP$class=rownames(IGBP);rownames(IGBP)=1:nrow(IGBP)
|
130 |
|
|
levels(lulc)=list(IGBP)
|
131 |
|
|
lulc=crop(lulc,mod09)
|
132 |
|
|
|
133 |
99b3508d
|
Adam M. Wilson
|
n=100
|
134 |
|
|
at=seq(0,100,length=n)
|
135 |
|
|
colr=colorRampPalette(c("black","green","red"))
|
136 |
|
|
cols=colr(n)
|
137 |
|
|
|
138 |
ddd9a810
|
Adam M. Wilson
|
dif=mod35-mod09
|
139 |
|
|
bwplot(dif~as.factor(lulc))
|
140 |
99b3508d
|
Adam M. Wilson
|
|
141 |
ddd9a810
|
Adam M. Wilson
|
levelplot(mod35,col.regions=cols,at=at,margins=F,maxpixels=1e6)#,xlim=c(-100,-50),ylim=c(0,10))
|
142 |
|
|
levelplot(lulc,att="class",col.regions=levels(lulc)[[1]]$col,margin=F,maxpixels=1e6)
|
143 |
a6d44f2d
|
Adam M. Wilson
|
|
144 |
ddd9a810
|
Adam M. Wilson
|
#cldys=spTransform(cldys,CRS(projection(mod35)))
|
145 |
710f7456
|
Adam M. Wilson
|
|
146 |
|
|
mod35v=foreach(m=unique(cldm$month),.combine="rbind") %do% {
|
147 |
|
|
dr=subset(mod35,subset=m);projection(dr)=projection(mod35)
|
148 |
|
|
dr2=subset(mod35sd,subset=m);projection(dr2)=projection(mod35)
|
149 |
|
|
ds=cldms[cldms$month==m,]
|
150 |
|
|
ds$mod35=unlist(extract(dr,ds,buffer=10,fun=mean,na.rm=T))
|
151 |
|
|
# ds$mod35sd=extract(dr2,ds,buffer=10)
|
152 |
|
|
print(m)
|
153 |
|
|
return(ds@data[!is.na(ds$mod35),])}
|
154 |
|
|
|
155 |
ddd9a810
|
Adam M. Wilson
|
y=2009
|
156 |
|
|
d=cldys[cldys$year==y,]
|
157 |
|
|
|
158 |
|
|
d$mod35_10=unlist(extract(mod35,d,buffer=10000,fun=mean,na.rm=T))
|
159 |
|
|
d$mod09_10=unlist(extract(mod09,d,buffer=10000,fun=mean,na.rm=T))
|
160 |
|
|
d$dif=d$mod35_10-d$mod09_10
|
161 |
|
|
d$dif2=d$mod35_10-d$cld
|
162 |
|
|
|
163 |
|
|
d$lulc=unlist(extract(lulc,d))
|
164 |
|
|
d$lulc_10=unlist(extract(lulc,d,buffer=10000,fun=mode,na.rm=T))
|
165 |
|
|
d$lulc=factor(d$lulc,labels=IGBP$class)
|
166 |
|
|
|
167 |
|
|
save(d,file="annualsummary.Rdata")
|
168 |
|
|
|
169 |
|
|
## quick model to explore fit
|
170 |
|
|
plot(cld~mod35,groups=lulc,data=d)
|
171 |
|
|
summary(lm(cld~mod35+as.factor(lulc),data=d))
|
172 |
|
|
summary(lm(cld~mod09_10,data=d))
|
173 |
|
|
summary(lm(cld~mod09_10+as.factor(lulc),data=d))
|
174 |
|
|
summary(lm(cld~mod09_10+as.factor(lulc),data=d))
|
175 |
|
|
|
176 |
|
|
### exploratory plots
|
177 |
|
|
xyplot(cld~mod09_10,groups=lulc,data=d@data,pch=16,cex=.5)+layer(panel.abline(0,1,col="red"))
|
178 |
|
|
xyplot(cld~mod09_10+mod35_10|as.factor(lulc),data=d@data,type=c("p","r"),pch=16,cex=.25,auto.key=T)+layer(panel.abline(0,1,col="green"))
|
179 |
|
|
xyplot(cld~mod35_10|as.factor(lulc),data=d@data,pch=16,cex=.5)+layer(panel.abline(0,1,col="red"))
|
180 |
|
|
xyplot(mod35_10~mod09_10|as.factor(lulc),data=d@data,pch=16,cex=.5)+layer(panel.abline(0,1,col="red"))
|
181 |
|
|
|
182 |
|
|
densityplot(stack(mod35,mod09))
|
183 |
|
|
boxplot(mod35,lulc)
|
184 |
|
|
|
185 |
|
|
bwplot(mod09~mod35|cut(y,5),data=stack(mod09,mod35))
|
186 |
|
|
|
187 |
710f7456
|
Adam M. Wilson
|
## month factors
|
188 |
|
|
cldm$month2=factor(cldm$month,labels=month.name)
|
189 |
|
|
## add a color key
|
190 |
|
|
breaks=seq(0,100,by=25)
|
191 |
|
|
cldm$cut=cut(cldm$cld,breaks)
|
192 |
|
|
cp=colorRampPalette(c("blue","orange","red"))
|
193 |
|
|
cols=cp(length(at))
|
194 |
|
|
|
195 |
|
|
## read in global coasts for nice plotting
|
196 |
|
|
library(maptools)
|
197 |
|
|
|
198 |
|
|
data(wrld_simpl)
|
199 |
|
|
coast <- unionSpatialPolygons(wrld_simpl, rep("land",nrow(wrld_simpl)), threshold=5)
|
200 |
|
|
coast=as(coast,"SpatialLines")
|
201 |
|
|
#coast=spTransform(coast,CRS(projection(mod35)))
|
202 |
|
|
|
203 |
|
|
|
204 |
|
|
## write a pdf
|
205 |
|
|
#dir.create("output")
|
206 |
|
|
pdf("output/NDP026d.pdf",width=11,height=8.5)
|
207 |
|
|
|
208 |
|
|
## map of stations
|
209 |
|
|
xyplot(lat~lon,data=st,pch=16,cex=.5,col="black",auto.key=T,
|
210 |
|
|
main="NDP-026D Cloud Climatology Stations",ylab="Latitude",xlab="Longitude")+
|
211 |
|
|
layer(sp.lines(coast,col="grey"),under=T)
|
212 |
|
|
|
213 |
|
|
xyplot(lat~lon|month2,groups=cut,data=cldm,pch=".",cex=.2,auto.key=T,
|
214 |
|
|
main="Mean Monthly Cloud Coverage",ylab="Latitude",xlab="Longitude",
|
215 |
|
|
par.settings = list(superpose.symbol= list(pch=16,col=c("blue","green","yellow","red"))))+
|
216 |
|
|
layer(sp.lines(coast,col="grey"),under=T)
|
217 |
|
|
|
218 |
|
|
|
219 |
|
|
## Validation
|
220 |
|
|
m=10
|
221 |
|
|
zlim=c(40,100)
|
222 |
|
|
dr=subset(mod35,subset=m);projection(dr)=projection(mod35)
|
223 |
|
|
ds=cldms[cldms$month==m,]
|
224 |
|
|
plot(dr,col=cp(100),zlim=zlim,main="Comparison of MOD35 Cloud Frequency and NDP-026D Station Cloud Climatologies",
|
225 |
|
|
ylab="Northing (m)",xlab="Easting (m)",sub="MOD35 is proportion of cloudy days, while NDP-026D is Mean Cloud Coverage")
|
226 |
|
|
plot(ds,add=T,pch=21,cex=3,lwd=2,fg="black",bg=as.character(cut(ds$cld,breaks=seq(zlim[1],zlim[2],len=5),labels=cp(4))))
|
227 |
|
|
#legend("topright",legend=seq(zlim[1],zlim[2],len=5),pch=16,col=cp(length(breaks)))
|
228 |
|
|
|
229 |
|
|
|
230 |
|
|
xyplot(mod35~cld,data=mod35v,subscripts=T,auto.key=T,panel=function(x,y,subscripts){
|
231 |
|
|
td=mod35v[subscripts,]
|
232 |
|
|
# panel.segments(x-td$cldsd[subscripts],y,x+td$cldsd[subscripts],y,subscripts=subscripts)
|
233 |
|
|
panel.xyplot(x,y,subscripts=subscripts,type=c("p","smooth"),pch=16,col="black")
|
234 |
|
|
# panel.segments(x-td$cldsd[subscripts],y,x+td$cldsd[subscripts],y,subscripts=subscripts)
|
235 |
|
|
},ylab="MOD35 Proportion Cloudy Days",xlab="NDP-026D Mean Monthly Cloud Amount",
|
236 |
|
|
main="Comparison of MOD35 Cloud Mask and Station Cloud Climatologies")
|
237 |
|
|
|
238 |
|
|
#xyplot(mod35~cld|month,data=mod35v,subscripts=T,auto.key=T,panel=function(x,y,subscripts){
|
239 |
|
|
# td=mod35v[subscripts,]
|
240 |
|
|
# panel.segments(x-td$cldsd[subscripts],y,x+td$cldsd[subscripts],y,subscripts=subscripts)
|
241 |
|
|
# panel.xyplot(x,y,subscripts=subscripts,type=c("p","smooth"),pch=16,col="black")
|
242 |
|
|
# panel.segments(x-td$cldsd[subscripts],y,x+td$cldsd[subscripts],y,subscripts=subscripts)
|
243 |
|
|
# },ylab="MOD35 Proportion Cloudy Days",xlab="NDP-026D Mean Monthly Cloud Amount",
|
244 |
|
|
# main="Comparison of MOD35 Cloud Mask and Station Cloud Climatologies")
|
245 |
|
|
|
246 |
|
|
|
247 |
|
|
dev.off()
|
248 |
|
|
|
249 |
|
|
graphics.off()
|