Revision 557475f8
Added by Benoit Parmentier about 8 years ago
climate/research/oregon/interpolation/global_product_assessment_part0_functions.R | ||
---|---|---|
1 | 1 |
#################################### INTERPOLATION OF TEMPERATURES ####################################### |
2 |
####################### Assessment of product part 2 functions: mosaic and accuracy ##############################
|
|
2 |
####################### Script for assessment of scaling up on NEX : part 0 ##############################
|
|
3 | 3 |
#This script uses the worklfow code applied to the globe. Results currently reside on NEX/PLEIADES NASA. |
4 |
#This part 2 of the product assessment focuses on graphics to explore the spatial patterns of raster times series as figures. |
|
5 |
#The file contains functions to genrate figures and animation (movie). |
|
4 |
#This script checks the number of predictions by tiles and years. |
|
5 |
#with the goal of predicting potential gaps or missing predictions in fugure mosaics by region. |
|
6 |
#The general logic is to check the number of overlap by shapefile polyon tiles |
|
7 |
#along with the predicitons for every day of the year (*.tif) |
|
8 |
#Summary tables and data are also produced in the script. |
|
9 |
# |
|
6 | 10 |
#AUTHOR: Benoit Parmentier |
7 |
#CREATED ON: 10/03/2016
|
|
8 |
#MODIFIED ON: 10/22/2016
|
|
9 |
#Version: 2
|
|
11 |
#CREATED ON: 10/31/2016
|
|
12 |
#MODIFIED ON: 11/03/2016
|
|
13 |
#Version: 1
|
|
10 | 14 |
#PROJECT: Environmental Layers project |
15 |
#COMMENTS: removing unused functions and clean up for part0 global prodduct assessment part0 |
|
16 |
#TODO:#PROJECT: Environmental Layers project |
|
11 | 17 |
#COMMENTS: |
12 | 18 |
#TODO: |
13 | 19 |
#1) Add plot broken down by year and region |
... | ... | |
64 | 70 |
env[[nm]] |
65 | 71 |
} |
66 | 72 |
|
67 |
pre_process_raster_mosaic_fun <- function(i,list_param){ |
|
68 |
|
|
69 |
|
|
70 |
## Extract parameters |
|
71 |
|
|
72 |
lf <- list_param$lf |
|
73 |
python_bin <- list_param$python_bin |
|
74 |
infile_mask <- list_param$infile_mask |
|
75 |
scaling <- list_param$scaling |
|
76 |
mask_pred <- list_param$mask_pred |
|
77 |
matching <- list_param$matching |
|
78 |
NA_flag_val <- list_param$NA_flag_val |
|
79 |
out_suffix <- list_param$out_suffix |
|
80 |
out_dir <- list_param$out_dir |
|
81 |
|
|
82 |
raster_name_in <- lf[i] |
|
83 |
|
|
84 |
#Step 1: match extent and resolution |
|
85 |
if(matching==TRUE){ |
|
86 |
lf_files <- c(raster_name_in) #match to mask |
|
87 |
rast_ref <- infile_mask |
|
88 |
##Maching resolution is probably only necessary for the r mosaic function |
|
89 |
#Modify later to take into account option R or python... |
|
90 |
list_param_raster_match <- list(lf_files,rast_ref,file_format,python_bin,out_suffix,out_dir) |
|
91 |
names(list_param_raster_match) <- c("lf_files","rast_ref","file_format","python_bin","out_suffix","out_dir_str") |
|
92 |
r_pred_matched <- raster_match(1,list_param_raster_match) |
|
93 |
raster_name_in <- c(r_pred_matched) |
|
94 |
} |
|
95 |
|
|
96 |
#Step 2: mask |
|
97 |
if(mask_pred==TRUE){ |
|
98 |
r_mask <- raster(infile_mask) |
|
99 |
extension_str <- extension(raster_name_in) |
|
100 |
raster_name_tmp <- gsub(extension_str,"",basename(raster_name_in)) |
|
101 |
raster_name <- file.path(out_dir,paste(raster_name_tmp,"_masked.tif",sep = "")) |
|
102 |
r_pred <- mask(raster(raster_name_in),r_mask,filename = raster_name,overwrite = TRUE) |
|
103 |
} |
|
104 |
|
|
105 |
NAvalue(r_pred) <- NA_flag_val |
|
106 |
#r_pred <- setMinMax(r_pred) |
|
107 | 73 |
|
108 |
#Step 3: remove scaling factor |
|
109 |
raster_name_in <- filename(r_pred) |
|
110 |
extension_str <- extension(raster_name_in) |
|
111 |
raster_name_tmp <- gsub(extension_str,"",basename(filename(r_pred))) |
|
112 |
raster_name_out <- file.path(out_dir,paste(raster_name_tmp,"_rescaled.tif",sep = "")) |
|
113 |
#r_pred <- overlay(r_pred, fun=function(x){x*1/scaling},filename=raster_name,overwrite=T) |
|
114 |
|
|
115 |
#raster_name_in <- "comp_r_m_use_edge_weights_weighted_mean_gam_CAI_dailyTmax_19990102_reg4_1999_m_gam_CAI_dailyTmax_19990102_reg4_1999_m__meeting_NASA_reg4_04292016_masked.tif" |
|
116 |
python_cmd <- file.path(python_bin,"gdal_calc.py") |
|
117 |
cmd_str3 <- paste(python_cmd, |
|
118 |
paste("-A ", raster_name_in,sep=""), |
|
119 |
paste("--outfile=",raster_name_out,sep=""), |
|
120 |
#paste("--type=","Int32",sep=""), |
|
121 |
"--co='COMPRESS=LZW'", |
|
122 |
paste("--NoDataValue=",NA_flag_val,sep=""), |
|
123 |
paste("--calc='(A)*",scaling,"'",sep=""), |
|
124 |
"--overwrite",sep=" ") #division by zero is problematic... |
|
125 |
#system(cmd_str3) |
|
126 |
system(cmd_str3) |
|
127 |
#NAvalue(r_pred) <- NA_flag_val |
|
128 |
#r_pred <- |
|
129 |
r_pred <- setMinMax(raster(raster_name_out)) |
|
130 |
|
|
131 |
return(raster_name_out) |
|
132 |
} |
|
133 |
|
|
134 |
plot_raster_mosaic <- function(i,list_param){ |
|
135 |
#Function to plot raster image |
|
136 |
# |
|
137 |
#INPUTS |
|
138 |
#1) l_dates |
|
139 |
#2) r_stack |
|
140 |
#3) NA_flag_val |
|
141 |
#4) out_dir, |
|
142 |
#5) out_suffix_str |
|
143 |
#6) region_name |
|
144 |
#7) variable_name |
|
145 |
#8) zlim_val |
|
146 |
# |
|
147 |
|
|
148 |
############# Start script ######### |
|
149 |
|
|
150 |
l_dates <- list_param$l_dates |
|
151 |
r_mosaiced_scaled <- list_param$r_mosaiced_scaled |
|
152 |
NA_flag_val <- list_param$NA_flag_val |
|
153 |
out_dir <- list_param$out_dir |
|
154 |
out_suffix <- list_param$out_suffix |
|
155 |
region_name <- list_param$region_name |
|
156 |
variable_name <- list_param$variable_name |
|
157 |
zlim_val <- list_param$zlim_val |
|
158 |
|
|
159 |
#for (i in 1:length(nlayers(r_mosaic_scaled))){ |
|
160 |
|
|
161 |
date_proc <- l_dates[i] |
|
162 |
r_pred <- subset(r_mosaiced_scaled,i) |
|
163 |
NAvalue(r_pred)<- NA_flag_val |
|
164 |
|
|
165 |
raster_name <- filename(r_pred) |
|
166 |
extension_str <- extension(raster_name) |
|
167 |
raster_name_tmp <- gsub(extension_str,"",basename(raster_name)) |
|
168 |
|
|
169 |
date_proc <- l_dates[i] |
|
170 |
if(class(date_proc)!="Date"){ |
|
171 |
date_val <- as.Date(strptime(date_proc,"%Y%m%d")) |
|
172 |
#month_name <- month.name(date_val) |
|
173 |
}else{ |
|
174 |
date_val <- date_proc |
|
175 |
} |
|
176 |
|
|
177 |
month_str <- format(date_val, "%b") ## Month, char, abbreviated |
|
178 |
year_str <- format(date_val, "%Y") ## Year with century |
|
179 |
day_str <- as.numeric(format(date_val, "%d")) ## numeric month |
|
180 |
date_str <- paste(month_str," ",day_str,", ",year_str,sep="") |
|
181 |
|
|
182 |
res_pix <- 1200 |
|
183 |
#res_pix <- 480 |
|
184 |
col_mfrow <- 1 |
|
185 |
row_mfrow <- 1 |
|
186 |
|
|
187 |
|
|
188 |
if(is.null(zlim_val)){ |
|
189 |
|
|
190 |
if(is.na(minValue(r_pred))){ |
|
191 |
r_pred <- setMinMax(r_pred) |
|
192 |
} |
|
193 |
|
|
194 |
zlim_val_str <- paste(c(minValue(r_pred),maxValue(r_pred)),sep="_",collapse="_") |
|
195 |
#png_filename <- file.path(out_dir,paste("Figure4_clim_mosaics_day_","_",date_proc,"_",region_name,"_zlim_",zlim_val_str,"_",out_suffix,".png",sep ="")) |
|
196 |
#raster_name_tmp |
|
197 |
png_filename <- file.path(out_dir,paste("Figure_",raster_name_tmp,"_zlim_",zlim_val_str,"_",out_suffix,".png",sep ="")) |
|
198 |
|
|
199 |
title_str <- paste("Predicted ",variable_name, " on ",date_str , " ", sep = "") |
|
200 |
#browser() |
|
201 |
|
|
202 |
png(filename=png_filename,width = col_mfrow * res_pix,height = row_mfrow * res_pix) |
|
203 |
|
|
204 |
plot(r_pred,main =title_str,cex.main =1.5,col=matlab.like(255), |
|
205 |
legend.shrink=0.8,legend.width=0.8) |
|
206 |
#axis.args = list(cex.axis = 1.6), #control size of legend z |
|
207 |
#legend.args=list(text='dNBR', side=4, line=2.5, cex=2.2)) |
|
208 |
#legend.args=list(text='dNBR', side=4, line=2.49, cex=1.6)) |
|
209 |
dev.off() |
|
210 |
}else{ |
|
211 |
|
|
212 |
zlim_val_str <- paste(zlim_val,sep="_",collapse="_") |
|
213 |
#png_filename <- file.path(out_dir,paste("Figure_mosaics_day_","_",date_proc,"_",region_name,"_",zlim_val_str,"_",out_suffix,".png",sep ="")) |
|
214 |
|
|
215 |
png_filename <- file.path(out_dir,paste("Figure_",raster_name_tmp,"_zlim_",zlim_val_str,"_",out_suffix,".png",sep ="")) |
|
216 |
|
|
217 |
title_str <- paste("Predicted ",variable_name, " on ",date_str , " ", sep = "") |
|
218 |
|
|
219 |
png(filename=png_filename,width = col_mfrow * res_pix,height = row_mfrow * res_pix) |
|
220 |
|
|
221 |
plot(r_pred,main =title_str,cex.main =1.5,col=matlab.like(255),zlim=zlim_val, |
|
222 |
legend.shrink=0.8,legend.width=0.8) |
|
223 |
#axis.args = list(cex.axis = 1.6), #control size of legend z |
|
224 |
#legend.args=list(text='dNBR', side=4, line=2.5, cex=2.2)) |
|
225 |
#legend.args=list(text='dNBR', side=4, line=2.49, cex=1.6)) |
|
226 |
dev.off() |
|
227 |
} |
|
228 |
|
|
229 |
return(png_filename) |
|
230 |
} |
|
231 |
|
|
232 |
extract_date <- function(i,x,item_no=NULL){ |
|
233 |
y <- unlist(strsplit(x[[i]],"_")) |
|
234 |
if(is.null(item_no)){ |
|
235 |
date_str <- y[length(y)-2] #count from end |
|
236 |
}else{ |
|
237 |
date_str <- y[item_no] |
|
238 |
} |
|
239 |
return(date_str) |
|
240 |
} |
|
241 |
|
|
242 |
finding_missing_dates <- function(date_start,date_end,list_dates){ |
|
243 |
#this assumes daily time steps!! |
|
244 |
#can be improved later on |
|
245 |
|
|
246 |
#date_start <- "19840101" |
|
247 |
#date_end <- "19991231" |
|
248 |
date1 <- as.Date(strptime(date_start,"%Y%m%d")) |
|
249 |
date2 <- as.Date(strptime(date_end,"%Y%m%d")) |
|
250 |
dates_range <- seq.Date(date1, date2, by="1 day") #sequence of dates |
|
251 |
|
|
252 |
missing_dates <- setdiff(as.character(dates_range),as.character(list_dates)) |
|
253 |
#df_dates_missing <- data.frame(date=missing_dates) |
|
254 |
#which(df_dates$date%in%missing_dates) |
|
255 |
#df_dates_missing$missing <- 1 |
|
256 |
|
|
257 |
df_dates <- data.frame(date=as.character(dates_range),missing = 0) |
|
258 |
|
|
259 |
df_dates$missing[df_dates$date %in% missing_dates] <- 1 |
|
260 |
#a$flag[a$id %in% temp] <- 1 |
|
261 |
|
|
262 |
missing_dates_obj <- list(missing_dates,df_dates) |
|
263 |
names(missing_dates_obj) <- c("missing_dates","df_dates") |
|
264 |
return(missing_dates_obj) |
|
265 |
} |
|
266 | 74 |
|
267 | 75 |
check_missing <- function(lf, pattern_str=NULL,in_dir=".",date_start="1984101",date_end="20141231",item_no=13,out_suffix="",num_cores=1,out_dir="."){ |
268 | 76 |
#Function to check for missing files such as mosaics or predictions for tiles etc. |
... | ... | |
329 | 137 |
return(df_time_series_obj) |
330 | 138 |
} |
331 | 139 |
|
140 |
|
|
332 | 141 |
############################ END OF SCRIPT ################################## |
Also available in: Unified diff
removing unused functions and clean up for part0 global prodduct assessment part0