Project

General

Profile

« Previous | Next » 

Revision 58b48212

Added by Benoit Parmentier almost 9 years ago

reading list of dir from files and clean up in assessment part3

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part3.R
1 1
##############################  INTERPOLATION OF TEMPERATURES  #######################################
2 2
#######################  Script for assessment of scaling up on NEX : part3 ##############################
3 3
#This script uses the worklfow code applied to the globe. Results currently reside on NEX/PLEIADES NASA.
4
#This script complement part1 and part2 of the accuracy assessment and group tables and outputs 
4
#Combining tables and figures for individual runs for years and tiles.
5
#This script complements part1 and part2 of the accuracy assessment and group tables and outputs 
5 6
#from run of accuracy assessement generated earlier.
6 7
#Analyses, figures, tables and data are also produced in the script.
7 8
#AUTHOR: Benoit Parmentier 
8 9
#CREATED ON: 03/23/2014  
9
#MODIFIED ON: 02/05/2016            
10
#MODIFIED ON: 02/07/2016            
10 11
#Version: 5
11 12
#PROJECT: Environmental Layers project     
12 13
#COMMENTS: Initial commit, script based on part 2 of assessment, will be modified further for overall assessment 
......
48 49
#out_dir <- "/nobackup/bparmen1/" #on NEX
49 50
#in_dir_shp <- "/nobackupp4/aguzman4/climateLayers/output4/subset/shapefiles/"
50 51

  
51
in_dir <- "/data/project/layers/commons/NEX_data"
52
#in_dir <- "/data/project/layers/commons/NEX_data/reg4_assessment"
52 53
#list_in_dir_run <-
53 54
#in_dir_list <-  c("output_run_global_analyses_pred_2009_reg4","output_run_global_analyses_pred_2010_reg4",
54 55
#                  "output_run_global_analyses_pred_2011_reg4","output_run_global_analyses_pred_2012_reg4",
55 56
#                  "output_run_global_analyses_pred_2013_reg4","output_run_global_analyses_pred_2014_reg4")
56
in_dir_list_filename <- "/data/project/layers/commons/NEX_data/regions_input_files/stage6_in_dir_list_02052016.txt"
57
#in_dir_list_filename <- "/data/project/layers/commons/NEX_data/reg4_assessment/stage6_reg4_in_dir_list_02072016.txt"
57 58
#in_dir <- "" #PARAM 0
58 59
#y_var_name <- "dailyTmax" #PARAM1
59 60
#interpolation_method <- c("gam_CAI") #PARAM2
60
out_suffix <- "global_analyses_overall_assessment_reg4_01272016"
61
#out_suffix <- "global_analyses_overall_assessment_reg4_02072016"
61 62
#out_suffix <- "output_run10_1000x3000_global_analyses_02102015"
62 63
#out_suffix <- "run10_1500x4500_global_analyses_pred_1992_10052015" #PARAM3
63 64
#out_dir <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_1992_10052015" #PARAM4
64
create_out_dir_param <- TRUE #PARAM 5
65
#create_out_dir_param <- TRUE #PARAM 5
65 66
#mosaic_plot <- FALSE #PARAM6
66 67
#if daily mosaics NULL then mosaicas all days of the year
67 68
#day_to_mosaic <- c("19920101","19920102","19920103") #PARAM7
68 69
#CRS_WGS84 <-    CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 #CONSTANT1
69 70
#CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
70 71
#proj_str<- CRS_WGS84 #PARAM 8 #check this parameter
71
file_format <- ".rst" #PARAM 9
72
NA_value <- -9999 #PARAM10
73
NA_flag_val <- NA_value
72
#file_format <- ".rst" #PARAM 9
73
#NA_value <- -9999 #PARAM10
74
#NA_flag_val <- NA_value
74 75
#multiple_region <- TRUE #PARAM 12
75 76
#region_name <- "world" #PARAM 13
76
countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #PARAM 13, copy this on NEX too
77
#countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #PARAM 13, copy this on NEX too
77 78
#plot_region <- TRUE
78 79
#num_cores <- 6 #PARAM 14
79
region_name <- c("reg4") #reference region to merge if necessary, if world all the regions are together #PARAM 16
80
#region_name <- c("reg4") #reference region to merge if necessary, if world all the regions are together #PARAM 16
80 81
#use previous files produced in step 1a and stored in a data.frame
81 82
#df_assessment_files <- "df_assessment_files_reg4_1984_run_global_analyses_pred_12282015.txt" #PARAM 17
82
threshold_missing_day <- c(367,365,300,200) #PARM18
83
#threshold_missing_day <- c(367,365,300,200) #PARM18
83 84

  
84 85
#list_param_run_assessment_plottingin_dir <- list(in_dir,y_var_name, interpolation_method, out_suffix, 
85 86
#                      out_dir, create_out_dir_param, mosaic_plot, proj_str, file_format, NA_value,
......
845 846
  
846 847
##################### END OF SCRIPT ######################
847 848

  
848
#### Run on the bridge:
849

  
850
#args<-commandArgs(TRUE)
851
#script_path<-"/nobackupp6/aguzman4/climateLayers/finalCode/environmental-layers/climate/research/oregon/interpolation"
852
#dataHome<-"/nobackupp6/aguzman4/climateLayers/interp/testdata/"
853
#script_path2<-"/nobackupp6/aguzman4/climateLayers/finalCode/environmental-layers/climate/research/world/interpolation"
854

  
855
#CALLED FROM MASTER SCRIPT:
856

  
857
script_path <- "/nobackupp8/bparmen1/env_layers_scripts" #path to script
858
function_assessment_part1_functions <- "global_run_scalingup_assessment_part1_functions_02112015.R" #PARAM12
859
function_assessment_part1a <-"global_run_scalingup_assessment_part1a_01042016.R"
860
function_assessment_part2 <- "global_run_scalingup_assessment_part2_01062016.R"
861
function_assessment_part2_functions <- "global_run_scalingup_assessment_part2_functions_01032016.R"
862
source(file.path(script_path,function_assessment_part1_functions)) #source all functions used in this script 
863
source(file.path(script_path,function_assessment_part1a)) #source all functions used in this script 
864
source(file.path(script_path,function_assessment_part2)) #source all functions used in this script 
865
source(file.path(script_path,function_assessment_part2_functions)) #source all functions used in this script 
866

  
867
### Parameters and arguments ###
868
  
869
var<-"TMAX" # variable being interpolated
870
if (var == "TMAX") {
871
  y_var_name <- "dailyTmax"
872
  y_var_month <- "TMax"
873
}
874
if (var == "TMIN") {
875
  y_var_name <- "dailyTmin"
876
  y_var_month <- "TMin"
877
}
878

  
879
#interpolation_method<-c("gam_fusion") #other otpions to be added later
880
interpolation_method<-c("gam_CAI")
881
CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs";
882
#CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs";
883
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
884

  
885
out_region_name<-""
886
list_models<-c("y_var ~ s(lat,lon,k=5) + s(elev_s,k=3) + s(LST,k=3)")
887

  
888
#reg1 (North Am), reg2(Europe),reg3(Asia), reg4 (South Am), reg5 (Africa), reg6 (Australia-Asia)
889
#master directory containing the definition of tile size and tiles predicted
890
in_dir1 <- "/nobackupp6/aguzman4/climateLayers/out/"
891
#/nobackupp6/aguzman4/climateLayers/out_15x45/1982
892

  
893
#region_names <- c("reg23","reg4") #selected region names, #PARAM2
894
region_name <- c("reg4") #run assessment by region, this is a unique region only
895
#region_names <- c("reg1","reg2","reg3","reg4","reg5","reg6") #selected region names, #PARAM2
896
interpolation_method <- c("gam_CAI") #PARAM4
897
out_prefix <- "run_global_analyses_pred_12282015" #PARAM5
898
#out_dir <- "/nobackupp8/bparmen1/" #PARAM6
899
out_dir <- "/nobackupp8/bparmen1/output_run_global_analyses_pred_12282015"
900
#out_dir <-paste(out_dir,"_",out_prefix,sep="")
901
create_out_dir_param <- FALSE #PARAM7
902

  
903
#CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs";
904
#CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs";
905
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
906

  
907
#list_year_predicted <- 1984:2004
908
list_year_predicted <- c("2014")
909
#year_predicted <- list_year_predicted[1]
910

  
911
file_format <- ".tif" #format for mosaiced files #PARAM10
912
NA_flag_val <- -9999  #No data value, #PARAM11
913
num_cores <- 6 #number of cores used #PARAM13
914
plotting_figures <- TRUE #running part2 of assessment to generate figures...
915
  
916
##Additional parameters used in part 2, some these may be removed as code is simplified
917
mosaic_plot <- FALSE #PARAM14
918
day_to_mosaic <- c("19920102","19920103","19920103") #PARAM15
919
multiple_region <- TRUE #PARAM16
920
countries_shp <- "/nobackupp8/bparmen1/NEX_data/countries.shp" #PARAM17
921
#countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #Atlas
922
plot_region <- TRUE  #PARAM18
923
threshold_missing_day <- c(367,365,300,200)#PARAM19
924

  
925
year_predicted <- list_year_predicted[1]
926
in_dir <- out_dir #PARAM 0
927
#y_var_name <- "dailyTmax" #PARAM1 , already set
928
#interpolation_method <- c("gam_CAI") #PARAM2, already set
929
out_suffix <- out_prefix #PARAM3
930
#out_dir <-  #PARAM4, already set
931
create_out_dir_param <- FALSE #PARAM 5, already created and set
932
#mosaic_plot <- FALSE #PARAM6
933
#if daily mosaics NULL then mosaicas all days of the year
934
#day_to_mosaic <- c("19920101","19920102","19920103") #PARAM7
935
#CRS_locs_WGS84 already set
936
proj_str <- CRS_locs_WGS84 #PARAM 8 #check this parameter
937
#file_format <- ".rst" #PARAM 9, already set
938
#NA_flag_val <- -9999 #PARAM 11, already set
939
#multiple_region <- TRUE #PARAM 12
940
#countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #PARAM 13, copy this on NEX too
941
#plot_region <- TRUE
942
#num_cores <- 6 #PARAM 14, already set
943
#region_name <- c("reg4") #reference region to merge if necessary, if world all the regions are together #PARAM 16
944
#use previous files produced in step 1a and stored in a data.frame
945
df_assessment_files_name <- "df_assessment_files_reg4_2014_run_global_analyses_pred_12282015.txt"# #PARAM 17, set in the script
946
df_assessment_files <- read.table(df_assessment_files_name,stringsAsFactors=F,sep=",")
947
#threshold_missing_day <- c(367,365,300,200) #PARM18
948

  
949
list_param_run_assessment_plotting <-list(  list_param_run_assessment_plotting,
950
    in_dir,y_var_name, interpolation_method, out_suffix,
951
    out_dir, create_out_dir_param, mosaic_plot, proj_str, file_format, NA_flag_val,
952
    multiple_region, countries_shp, plot_region, num_cores,
953
    region_name, df_assessment_files_name, threshold_missing_day,year_predicted
954
  )
955

  
956
names(list_param_run_assessment_plotting) <- c("list_param_run_assessment_plotting$in_dir_list_filename #PARAM 0"
957
    "in_dir","y_var_name","interpolation_method","out_suffix",
958
    "out_dir","create_out_dir_param","mosaic_plot","proj_str","file_format","NA_flag_val",
959
    "multiple_region","countries_shp","plot_region","num_cores",
960
    "region_name","df_assessment_files_name","threshold_missing_day","year_predicted"
961
  )
962

  
963
#function_assessment_part2 <- "global_run_scalingup_assessment_part2_01032016.R"
964
#source(file.path(script_path,function_assessment_part2)) #source all functions used in this script
965

  
966
debug(run_assessment_plotting_prediction_fun)
967
df_assessment_figures_files <-
968
  run_assessment_plotting_prediction_fun(list_param_run_assessment_plotting)
969

  
970

  
971

  
972

  
973

  
974 849

  
975 850

  
976 851

  

Also available in: Unified diff