Project

General

Profile

Download (18.8 KB) Statistics
| Branch: | Revision:
1
Systematic landcover bias in Collection 5 MODIS cloud mask and derived products – a global overview
2
__________
3

    
4

    
5
```r
6
opts_chunk$set(eval = F)
7
```
8

    
9

    
10
This document describes the analysis of the Collection 5 MOD35 data.
11

    
12
# Google Earth Engine Processing
13
The following code produces the annual (2009) summaries of cloud frequency from MOD09, MOD35, and MOD11 using the Google Earth Engine 'playground' API [http://ee-api.appspot.com/](http://ee-api.appspot.com/). 
14

    
15
```coffee
16
var startdate="2009-01-01"
17
var stopdate="2009-12-31"
18

    
19
// MOD11 MODIS LST
20
var mod11 = ee.ImageCollection("MOD11A2").map(function(img){ 
21
  return img.select(['LST_Day_1km'])});
22
// MOD09 internal cloud flag
23
var mod09 = ee.ImageCollection("MOD09GA").filterDate(new Date(startdate),new Date(stopdate)).map(function(img) {
24
  return img.select(['state_1km']).expression("((b(0)/1024)%2)");
25
});
26
// MOD35 cloud flag
27
var mod35 = ee.ImageCollection("MOD09GA").filterDate(new Date(startdate),new Date(stopdate)).map(function(img) {
28
  return img.select(['state_1km']).expression("((b(0))%4)==1|((b(0))%4)==2");
29
});
30

    
31
//define reducers
32
var COUNT = ee.call("Reducer.count");
33
var MEAN = ee.call("Reducer.mean");
34

    
35
//a few maps of constants
36
c100=ee.Image(100);  //to multiply by 100
37
c02=ee.Image(0.02);  //to scale LST data
38
c272=ee.Image(272.15); // to convert K->C
39

    
40
//calculate mean cloudiness (%), rename, and convert to integer
41
mod09a=mod09.reduce(MEAN).select([0], ['MOD09']).multiply(c100).int8();
42
mod35a=mod35.reduce(MEAN).select([0], ['MOD35']).multiply(c100).int8();
43

    
44
/////////////////////////////////////////////////
45
// Generate the cloud frequency surface:
46
getMiss = function(collection) {
47
  //filter by date
48
i2=collection.filterDate(new Date(startdate),new Date(stopdate));
49
// number of layers in collection
50
i2_n=i2.getInfo().features.length;
51
//get means
52
// image of -1s to convert to % missing
53
c1=ee.Image(-1);
54
// 1 Calculate the number of days with measurements
55
// 2 divide by the total number of layers
56
i2_c=ee.Image(i2_n).float()
57
// 3 Add -1 and multiply by -1 to invert to % cloudy
58
// 4 Rename to "Percent_Cloudy"
59
// 5 multiply by 100 and convert to 8-bit integer to decrease file size
60
i2_miss=i2.reduce(COUNT).divide(i2_c).add(c1).multiply(c1).multiply(c100).int8();
61
return (i2_miss);
62
};
63

    
64
// run the function
65
mod11a=getMiss(mod11).select([0], ['MOD11_LST_PMiss']);
66

    
67
// get long-term mean
68
mod11b=mod11.reduce(MEAN).multiply(c02).subtract(c272).int8().select([0], ['MOD11_LST_MEAN']);
69

    
70
// summary object with all layers
71
summary=mod11a.addBands(mod11b).addBands(mod35a).addBands(mod09a)
72

    
73
var region='[[-180, -60], [-180, 90], [180, 90], [180, -60]]'  //global
74

    
75
// get download link
76
print("All")
77
var path = summary.getDownloadURL({
78
  'scale': 1000,
79
  'crs': 'EPSG:4326',
80
  'region': region
81
});
82
print('https://earthengine.sandbox.google.com' + path);
83
```
84

    
85

    
86
# Data Processing
87

    
88

    
89
```r
90
setwd("~/acrobates/adamw/projects/MOD35C5")
91
library(raster)
92
```
93

    
94
```
95
## Loading required package: sp
96
```
97

    
98
```r
99
beginCluster(10)
100
```
101

    
102
```
103
## Loading required package: snow
104
```
105

    
106
```r
107
library(rasterVis)
108
```
109

    
110
```
111
## Loading required package: lattice Loading required package: latticeExtra
112
## Loading required package: RColorBrewer Loading required package: hexbin
113
## Loading required package: grid
114
```
115

    
116
```r
117
library(rgdal)
118
```
119

    
120
```
121
## rgdal: version: 0.8-10, (SVN revision 478) Geospatial Data Abstraction
122
## Library extensions to R successfully loaded Loaded GDAL runtime: GDAL
123
## 1.9.2, released 2012/10/08 but rgdal build and GDAL runtime not in sync:
124
## ... consider re-installing rgdal!! Path to GDAL shared files:
125
## /usr/share/gdal/1.9 Loaded PROJ.4 runtime: Rel. 4.8.0, 6 March 2012,
126
## [PJ_VERSION: 480] Path to PROJ.4 shared files: (autodetected)
127
```
128

    
129
```r
130
library(plotKML)
131
```
132

    
133
```
134
## plotKML version 0.3-5 (2013-05-16) URL:
135
## http://plotkml.r-forge.r-project.org/
136
## 
137
## Attaching package: 'plotKML'
138
## 
139
## The following object is masked from 'package:raster':
140
## 
141
## count
142
```
143

    
144
```r
145
library(Cairo)
146
library(reshape)
147
```
148

    
149
```
150
## Loading required package: plyr
151
## 
152
## Attaching package: 'plyr'
153
## 
154
## The following object is masked from 'package:plotKML':
155
## 
156
## count
157
## 
158
## The following object is masked from 'package:raster':
159
## 
160
## count
161
## 
162
## Attaching package: 'reshape'
163
## 
164
## The following object is masked from 'package:plyr':
165
## 
166
## rename, round_any
167
## 
168
## The following object is masked from 'package:raster':
169
## 
170
## expand
171
```
172

    
173
```r
174
library(rgeos)
175
```
176

    
177
```
178
## rgeos version: 0.2-19, (SVN revision 394) GEOS runtime version:
179
## 3.3.3-CAPI-1.7.4 Polygon checking: TRUE
180
```
181

    
182
```r
183
library(splancs)
184
```
185

    
186
```
187
## Spatial Point Pattern Analysis Code in S-Plus
188
## 
189
## Version 2 - Spatial and Space-Time analysis
190
## 
191
## Attaching package: 'splancs'
192
## 
193
## The following object is masked from 'package:raster':
194
## 
195
## zoom
196
```
197

    
198
```r
199

    
200
## get % cloudy
201
mod09 = raster("data/MOD09_2009.tif")
202
names(mod09) = "C5MOD09CF"
203
NAvalue(mod09) = 0
204

    
205
mod35c5 = raster("data/MOD35_2009.tif")
206
names(mod35c5) = "C5MOD35CF"
207
NAvalue(mod35c5) = 0
208

    
209
## mod35C6 annual
210
mod35c6 = raster("data/MOD35C6_2009.tif")
211
names(mod35c6) = "C6MOD35CF"
212
NAvalue(mod35c6) = 255
213

    
214
## landcover
215
lulc = raster("data/MCD12Q1_IGBP_2009_051_wgs84_1km.tif")
216

    
217
# lulc=ratify(lulc)
218
data(worldgrids_pal)  #load palette
219
IGBP = data.frame(ID = 0:16, col = worldgrids_pal$IGBP[-c(18, 19)], lulc_levels2 = c("Water", 
220
    "Forest", "Forest", "Forest", "Forest", "Forest", "Shrublands", "Shrublands", 
221
    "Savannas", "Savannas", "Grasslands", "Permanent wetlands", "Croplands", 
222
    "Urban and built-up", "Cropland/Natural vegetation mosaic", "Snow and ice", 
223
    "Barren or sparsely vegetated"), stringsAsFactors = F)
224
IGBP$class = rownames(IGBP)
225
rownames(IGBP) = 1:nrow(IGBP)
226
levels(lulc) = list(IGBP)
227
names(lulc) = "MCD12Q1"
228

    
229
## MOD17
230
mod17 = raster("data/MOD17.tif", format = "GTiff")
231
NAvalue(mod17) = 65535
232
names(mod17) = "MOD17_unscaled"
233

    
234
mod17qc = raster("data/MOD17qc.tif", format = "GTiff")
235
NAvalue(mod17qc) = 255
236
names(mod17qc) = "MOD17CF"
237

    
238
## MOD11 via earth engine
239
mod11 = raster("data/MOD11_2009.tif", format = "GTiff")
240
names(mod11) = "MOD11_unscaled"
241
NAvalue(mod11) = 0
242

    
243
mod11qc = raster("data/MOD11qc_2009.tif", format = "GTiff")
244
names(mod11qc) = "MOD11CF"
245
```
246

    
247

    
248
Import the Collection 5 MOD35 processing path:
249

    
250
```r
251
pp = raster("data/MOD35pp.tif")
252
NAvalue(pp) = 255
253
names(pp) = "MOD35pp"
254
```
255

    
256

    
257
Define transects to illustrate the fine-grain relationship between MOD35 cloud frequency and both landcover and processing path.
258

    
259
```r
260
r1 = Lines(list(Line(matrix(c(-61.688, 4.098, -59.251, 3.43), ncol = 2, byrow = T))), 
261
    "Venezuela")
262
r2 = Lines(list(Line(matrix(c(133.746, -31.834, 134.226, -32.143), ncol = 2, 
263
    byrow = T))), "Australia")
264
r3 = Lines(list(Line(matrix(c(73.943, 27.419, 74.369, 26.877), ncol = 2, byrow = T))), 
265
    "India")
266
r4 = Lines(list(Line(matrix(c(33.195, 12.512, 33.802, 12.894), ncol = 2, byrow = T))), 
267
    "Sudan")
268

    
269
trans = SpatialLines(list(r1, r2, r3, r4), CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs "))
270
### write out shapefiles of transects
271
writeOGR(SpatialLinesDataFrame(trans, data = data.frame(ID = names(trans)), 
272
    match.ID = F), "output", layer = "transects", driver = "ESRI Shapefile", 
273
    overwrite = T)
274
```
275

    
276

    
277
Buffer transects to identify a small region around each transect for comparison and plotting
278

    
279
```r
280
transb = gBuffer(trans, byid = T, width = 0.4)
281
## make polygons of bounding boxes
282
bb0 <- lapply(slot(transb, "polygons"), bbox)
283
bb1 <- lapply(bb0, bboxx)
284
# turn these into matrices using a helper function in splancs
285
bb2 <- lapply(bb1, function(x) rbind(x, x[1, ]))
286
# close the matrix rings by appending the first coordinate
287
rn <- row.names(transb)
288
# get the IDs
289
bb3 <- vector(mode = "list", length = length(bb2))
290
# make somewhere to keep the output
291
for (i in seq(along = bb3)) bb3[[i]] <- Polygons(list(Polygon(bb2[[i]])), ID = rn[i])
292
# loop over the closed matrix rings, adding the IDs
293
bbs <- SpatialPolygons(bb3, proj4string = CRS(proj4string(transb)))
294
```
295

    
296

    
297
Extract the CF and mean values from each raster of interest.
298

    
299
```r
300
trd1 = lapply(1:length(transb), function(x) {
301
    td = crop(mod11, transb[x])
302
    tdd = lapply(list(mod35c5, mod35c6, mod09, mod17, mod17qc, mod11, mod11qc, 
303
        lulc, pp), function(l) resample(crop(l, transb[x]), td, method = "ngb"))
304
    ## normalize MOD11 and MOD17
305
    for (j in which(do.call(c, lapply(tdd, function(i) names(i))) %in% c("MOD11_unscaled", 
306
        "MOD17_unscaled"))) {
307
        trange = cellStats(tdd[[j]], range)
308
        tscaled = 100 * (tdd[[j]] - trange[1])/(trange[2] - trange[1])
309
        tscaled@history = list(range = trange)
310
        names(tscaled) = sub("_unscaled", "", names(tdd[[j]]))
311
        tdd = c(tdd, tscaled)
312
    }
313
    return(brick(tdd))
314
})
315
## bind all subregions into single dataframe for plotting
316
trd = do.call(rbind.data.frame, lapply(1:length(trd1), function(i) {
317
    d = as.data.frame(as.matrix(trd1[[i]]))
318
    d[, c("x", "y")] = coordinates(trd1[[i]])
319
    d$trans = names(trans)[i]
320
    d = melt(d, id.vars = c("trans", "x", "y"))
321
    return(d)
322
}))
323
transd = do.call(rbind.data.frame, lapply(1:length(trans), function(l) {
324
    td = as.data.frame(extract(trd1[[l]], trans[l], along = T, cellnumbers = F)[[1]])
325
    td$loc = extract(trd1[[l]], trans[l], along = T, cellnumbers = T)[[1]][, 
326
        1]
327
    td[, c("x", "y")] = xyFromCell(trd1[[l]], td$loc)
328
    td$dist = spDistsN1(as.matrix(td[, c("x", "y")]), as.matrix(td[1, c("x", 
329
        "y")]), longlat = T)
330
    td$transect = names(trans[l])
331
    td2 = melt(td, id.vars = c("loc", "x", "y", "dist", "transect"))
332
    td2 = td2[order(td2$variable, td2$dist), ]
333
    # get per variable ranges to normalize
334
    tr = cast(melt.list(tapply(td2$value, td2$variable, function(x) data.frame(min = min(x, 
335
        na.rm = T), max = max(x, na.rm = T)))), L1 ~ variable)
336
    td2$min = tr$min[match(td2$variable, tr$L1)]
337
    td2$max = tr$max[match(td2$variable, tr$L1)]
338
    print(paste("Finished ", names(trans[l])))
339
    return(td2)
340
}))
341

    
342
transd$type = ifelse(grepl("MOD35|MOD09|CF", transd$variable), "CF", "Data")
343
```
344

    
345

    
346
Compute difference between MOD09 and MOD35 cloud masks
347

    
348
```r
349
## comparison of % cloudy days
350
dif_c5_09 = raster("data/dif_c5_09.tif", format = "GTiff")
351
```
352

    
353

    
354
Define a color scheme
355

    
356
```r
357
n = 100
358
at = seq(0, 100, len = n)
359
bgyr = colorRampPalette(c("purple", "blue", "green", "yellow", "orange", "red", 
360
    "red"))
361
bgrayr = colorRampPalette(c("purple", "blue", "grey", "red", "red"))
362
cols = bgyr(n)
363
```
364

    
365

    
366
Import a global coastline map for overlay
367

    
368
```r
369
library(maptools)
370
coast = map2SpatialLines(map("world", interior = FALSE, plot = FALSE), proj4string = CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"))
371
```
372

    
373

    
374
Draw the global cloud frequencies
375

    
376
```r
377
g1 = levelplot(stack(mod35c5, mod09), xlab = " ", scales = list(x = list(draw = F), 
378
    y = list(alternating = 1)), col.regions = cols, at = at) + layer(sp.polygons(bbs[1:4], 
379
    lwd = 2)) + layer(sp.lines(coast, lwd = 0.5))
380

    
381
g2 = levelplot(dif_c5_09, col.regions = bgrayr(100), at = seq(-70, 70, len = 100), 
382
    margin = F, ylab = " ", colorkey = list("right")) + layer(sp.polygons(bbs[1:4], 
383
    lwd = 2)) + layer(sp.lines(coast, lwd = 0.5))
384
g2$strip = strip.custom(var.name = "Difference (C5MOD35-C5MOD09)", style = 1, 
385
    strip.names = T, strip.levels = F)
386
```
387

    
388

    
389
Now illustrate the fine-grain regions
390

    
391
```r
392
p1=useOuterStrips(levelplot(value~x*y|variable+trans,data=trd[!trd$variable%in%c("MOD17_unscaled","MOD11_unscaled","MCD12Q1","MOD35pp"),],asp=1,scales=list(draw=F,rot=0,relation="free"),
393
                                       at=at,col.regions=cols,maxpixels=7e6,
394
                                       ylab="Latitude",xlab="Longitude"),strip = strip.custom(par.strip.text=list(cex=.7)))+layer(sp.lines(trans,lwd=2))
395

    
396
p2=useOuterStrips(
397
  levelplot(value~x*y|variable+trans,data=trd[trd$variable%in%c("MCD12Q1"),],
398
            asp=1,scales=list(draw=F,rot=0,relation="free"),colorkey=F,
399
            at=c(-1,IGBP$ID),col.regions=IGBP$col,maxpixels=7e7,
400
            legend=list(
401
              right=list(fun=draw.key(list(columns=1,#title="MCD12Q1 \n IGBP Land \n Cover",
402
                           rectangles=list(col=IGBP$col,size=1),
403
                           text=list(as.character(IGBP$ID),at=IGBP$ID-.5))))),
404
            ylab="",xlab=" "),strip = strip.custom(par.strip.text=list(cex=.7)),strip.left=F)+layer(sp.lines(trans,lwd=2))
405
p3=useOuterStrips(
406
  levelplot(value~x*y|variable+trans,data=trd[trd$variable%in%c("MOD35pp"),],
407
            asp=1,scales=list(draw=F,rot=0,relation="free"),colorkey=F,
408
            at=c(-1:4),col.regions=c("blue","cyan","tan","darkgreen"),maxpixels=7e7,
409
            legend=list(
410
              right=list(fun=draw.key(list(columns=1,#title="MOD35 \n Processing \n Path",
411
                           rectangles=list(col=c("blue","cyan","tan","darkgreen"),size=1),
412
                           text=list(c("Water","Coast","Desert","Land")))))),
413
            ylab="",xlab=" "),strip = strip.custom(par.strip.text=list(cex=.7)),strip.left=F)+layer(sp.lines(trans,lwd=2))
414
```
415

    
416

    
417
Now draw the profile plots for each transect.
418

    
419
```r
420
## transects
421
p4=xyplot(value~dist|transect,groups=variable,type=c("smooth","p"),
422
       data=transd,panel=function(...,subscripts=subscripts) {
423
         td=transd[subscripts,]
424
         ## mod09
425
         imod09=td$variable=="C5MOD09CF"
426
         panel.xyplot(td$dist[imod09],td$value[imod09],type=c("p","smooth"),span=0.2,subscripts=1:sum(imod09),col="red",pch=16,cex=.25)
427
         ## mod35C5
428
         imod35=td$variable=="C5MOD35CF"
429
         panel.xyplot(td$dist[imod35],td$value[imod35],type=c("p","smooth"),span=0.09,subscripts=1:sum(imod35),col="blue",pch=16,cex=.25)
430
         ## mod35C6
431
         imod35c6=td$variable=="C6MOD35CF"
432
         panel.xyplot(td$dist[imod35c6],td$value[imod35c6],type=c("p","smooth"),span=0.09,subscripts=1:sum(imod35c6),col="black",pch=16,cex=.25)
433
         ## mod17
434
         imod17=td$variable=="MOD17"
435
         panel.xyplot(td$dist[imod17],100*((td$value[imod17]-td$min[imod17][1])/(td$max[imod17][1]-td$min[imod17][1])),
436
                      type=c("smooth"),span=0.09,subscripts=1:sum(imod17),col="darkgreen",lty=5,pch=1,cex=.25)
437
         imod17qc=td$variable=="MOD17CF"
438
         panel.xyplot(td$dist[imod17qc],td$value[imod17qc],type=c("p","smooth"),span=0.09,subscripts=1:sum(imod17qc),col="darkgreen",pch=16,cex=.25)
439
         ## mod11
440
         imod11=td$variable=="MOD11"
441
         panel.xyplot(td$dist[imod11],100*((td$value[imod11]-td$min[imod11][1])/(td$max[imod11][1]-td$min[imod11][1])),
442
                      type=c("smooth"),span=0.09,subscripts=1:sum(imod17),col="orange",lty="dashed",pch=1,cex=.25)
443
         imod11qc=td$variable=="MOD11CF"
444
         qcspan=ifelse(td$transect[1]=="Australia",0.2,0.05)
445
         panel.xyplot(td$dist[imod11qc],td$value[imod11qc],type=c("p","smooth"),npoints=100,span=qcspan,subscripts=1:sum(imod11qc),col="orange",pch=16,cex=.25)
446
         ## land
447
         path=td[td$variable=="MOD35pp",]
448
         panel.segments(path$dist,-10,c(path$dist[-1],max(path$dist,na.rm=T)),-10,col=c("blue","cyan","tan","darkgreen")[path$value+1],subscripts=1:nrow(path),lwd=10,type="l")
449
         land=td[td$variable=="MCD12Q1",]
450
         panel.segments(land$dist,-20,c(land$dist[-1],max(land$dist,na.rm=T)),-20,col=IGBP$col[land$value+1],subscripts=1:nrow(land),lwd=10,type="l")
451
        },subscripts=T,par.settings = list(grid.pars = list(lineend = "butt")),
452
       scales=list(
453
         x=list(alternating=1,relation="free"),#, lim=c(0,70)),
454
         y=list(at=c(-18,-10,seq(0,100,len=5)),
455
           labels=c("MCD12Q1 IGBP","MOD35 path",seq(0,100,len=5)),
456
           lim=c(-25,100)),
457
         alternating=F),
458
       xlab="Distance Along Transect (km)", ylab="% Missing Data / % of Maximum Value",
459
       legend=list(
460
         bottom=list(fun=draw.key(list( rep=FALSE,columns=1,title=" ",
461
                      lines=list(type=c("b","b","b","b","b","l","b","l"),pch=16,cex=.5,
462
                        lty=c(0,1,1,1,1,5,1,5),
463
                        col=c("transparent","red","blue","black","darkgreen","darkgreen","orange","orange")),
464
                       text=list(
465
                         c("MODIS Products","C5 MOD09 % Cloudy","C5 MOD35 % Cloudy","C6 MOD35 % Cloudy","MOD17 % Missing","MOD17 (scaled)","MOD11 % Missing","MOD11 (scaled)")),
466
                       rectangles=list(border=NA,col=c(NA,"tan","darkgreen")),
467
                       text=list(c("C5 MOD35 Processing Path","Desert","Land")),
468
                       rectangles=list(border=NA,col=c(NA,IGBP$col[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])),
469
                       text=list(c("MCD12Q1 IGBP Land Cover",IGBP$class[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])))))),
470
  strip = strip.custom(par.strip.text=list(cex=.75)))
471
print(p4)
472
```
473

    
474

    
475
Compile the PDF:
476

    
477
```r
478
CairoPDF("output/mod35compare.pdf", width = 11, height = 7)
479
### Global Comparison
480
print(g1, position = c(0, 0.35, 1, 1), more = T)
481
print(g2, position = c(0, 0, 1, 0.415), more = F)
482

    
483
### MOD35 Desert Processing path
484
levelplot(pp, asp = 1, scales = list(draw = T, rot = 0), maxpixels = 1e+06, 
485
    at = c(-1:3), col.regions = c("blue", "cyan", "tan", "darkgreen"), margin = F, 
486
    colorkey = list(space = "bottom", title = "MOD35 Processing Path", labels = list(labels = c("Water", 
487
        "Coast", "Desert", "Land"), at = 0:4 - 0.5))) + layer(sp.polygons(bbs, 
488
    lwd = 2)) + layer(sp.lines(coast, lwd = 0.5))
489
### levelplot of regions
490
print(p1, position = c(0, 0, 0.62, 1), more = T)
491
print(p2, position = c(0.6, 0.21, 0.78, 0.79), more = T)
492
print(p3, position = c(0.76, 0.21, 1, 0.79))
493
### profile plots
494
print(p4)
495
dev.off()
496
```
497

    
498

    
499
Derive summary statistics for manuscript
500

    
501
```r
502
td = cast(transect + loc + dist ~ variable, value = "value", data = transd)
503
td2 = melt.data.frame(td, id.vars = c("transect", "dist", "loc", "MOD35pp", 
504
    "MCD12Q1"))
505

    
506
## function to prettyprint mean/sd's
507
msd = function(x) paste(round(mean(x, na.rm = T), 1), "% ±", round(sd(x, na.rm = T), 
508
    1), sep = "")
509

    
510
cast(td2, transect + variable ~ MOD35pp, value = "value", fun = msd)
511
cast(td2, transect + variable ~ MOD35pp + MCD12Q1, value = "value", fun = msd)
512
cast(td2, transect + variable ~ ., value = "value", fun = msd)
513

    
514
cast(td2, transect + variable ~ ., value = "value", fun = msd)
515

    
516
cast(td2, variable ~ MOD35pp, value = "value", fun = msd)
517
cast(td2, variable ~ ., value = "value", fun = msd)
518

    
519
td[td$transect == "Venezuela", ]
520
```
521

    
522

    
523
Export regional areas as KML for inclusion on website
524

    
525
```r
526
library(plotKML)
527

    
528
kml_open("output/modiscloud.kml")
529

    
530
readAll(mod35c5)
531

    
532
kml_layer.Raster(mod35c5,
533
     plot.legend = TRUE,raster_name="Collection 5 MOD35 Cloud Frequency",
534
    z.lim = c(0,100),colour_scale = get("colour_scale_numeric", envir = plotKML.opts),
535
#    home_url = get("home_url", envir = plotKML.opts),
536
#    metadata = NULL, html.table = NULL,
537
    altitudeMode = "clampToGround", balloon = FALSE
538
)
539

    
540
system(paste("gdal_translate -of KMLSUPEROVERLAY ",mod35c5@file@name," output/mod35c5.kmz -co FORMAT=JPEG"))
541

    
542
logo = "http://static.tumblr.com/t0afs9f/KWTm94tpm/yale_logo.png"
543
kml_screen(image.file = logo, position = "UL", sname = "YALE logo",size=c(.1,.1))
544
kml_close("modiscloud.kml")
545
kml_compress("modiscloud.kml",files=c(paste(month.name,".png",sep=""),"obj_legend.png"),zip="/usr/bin/zip")
546
```
547

    
(37-37/43)