Revision 5ab927fd
Added by Benoit Parmentier over 12 years ago
climate/research/oregon/interpolation/fusion_gam_prediction_reg.R | ||
---|---|---|
17 | 17 |
library(gstat) # Kriging and co-kriging by Pebesma et al. |
18 | 18 |
library(fields) # NCAR Spatial Interpolation methods such as kriging, splines |
19 | 19 |
library(raster) # Hijmans et al. package for raster processing |
20 |
library(parallel) # Urbanek S. and Ripley B., package for multi cores & parralel processing |
|
20 | 21 |
|
21 | 22 |
### Parameters and argument |
22 | 23 |
|
23 | 24 |
infile1<- "ghcn_or_tmax_covariates_06262012_OR83M.shp" #GHCN shapefile containing variables for modeling 2010 |
24 | 25 |
#infile2<-"list_10_dates_04212012.txt" #List of 10 dates for the regression |
26 |
#infile2<-"list_2_dates_04212012.txt" |
|
25 | 27 |
infile2<-"list_365_dates_04212012.txt" |
26 | 28 |
infile3<-"LST_dates_var_names.txt" #LST dates name |
27 | 29 |
infile4<-"models_interpolation_05142012.txt" #Interpolation model names |
28 | 30 |
infile5<-"mean_day244_rescaled.rst" #Raster or grid for the locations of predictions |
31 |
#infile6<-"lst_climatology.txt" |
|
29 | 32 |
infile6<-"LST_files_monthly_climatology.txt" |
30 | 33 |
#path<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations" |
31 | 34 |
path<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations" |
... | ... | |
40 | 43 |
prop<-0.3 #Proportion of testing retained for validation |
41 | 44 |
#prop<-0.25 |
42 | 45 |
seed_number<- 100 #Seed number for random sampling |
43 |
out_prefix<-"_07152012_10d_fusion15" #User defined output prefix
|
|
46 |
out_prefix<-"_07152012_10d_fusion17" #User defined output prefix
|
|
44 | 47 |
setwd(path) |
45 | 48 |
bias_val<-0 #if value 1 then training data is used in the bias surface rather than the all monthly stations |
46 | 49 |
|
50 |
#source("fusion_function_07192012.R") |
|
51 |
source("fusion_function_07192012.R") |
|
47 | 52 |
############ START OF THE SCRIPT ################## |
48 | 53 |
# |
49 | 54 |
# |
... | ... | |
70 | 75 |
ghcn$LC3[is.na(ghcn$LC3)]<-0 |
71 | 76 |
ghcn$CANHEIGHT[is.na(ghcn$CANHEIGHT)]<-0 |
72 | 77 |
|
73 |
set.seed(seed_number) #Using a seed number allow results based on random number to be compared... |
|
74 |
|
|
75 | 78 |
dates <-readLines(paste(path,"/",infile2, sep="")) |
76 | 79 |
LST_dates <-readLines(paste(path,"/",infile3, sep="")) |
77 | 80 |
models <-readLines(paste(path,"/",infile4, sep="")) |
78 | 81 |
|
82 |
# #Model assessment: specific diagnostic/metrics for GAM |
|
83 |
# results_AIC<- matrix(1,length(dates),length(models)+3) |
|
84 |
# results_GCV<- matrix(1,length(dates),length(models)+3) |
|
85 |
# results_DEV<- matrix(1,length(dates),length(models)+3) |
|
86 |
# results_RMSE_f<- matrix(1,length(dates),length(models)+3) |
|
87 |
# |
|
88 |
# #Model assessment: general diagnostic/metrics |
|
89 |
# results_RMSE <- matrix(1,length(dates),length(models)+4) |
|
90 |
# results_MAE <- matrix(1,length(dates),length(models)+4) |
|
91 |
# results_ME <- matrix(1,length(dates),length(models)+4) #There are 8+1 models |
|
92 |
# results_R2 <- matrix(1,length(dates),length(models)+4) #Coef. of determination for the validation dataset |
|
93 |
# |
|
94 |
# results_RMSE_f<- matrix(1,length(dates),length(models)+4) #RMSE fit, RMSE for the training dataset |
|
95 |
|
|
79 | 96 |
#Model assessment: specific diagnostic/metrics for GAM |
80 |
results_AIC<- matrix(1,length(dates),length(models)+3)
|
|
81 |
results_GCV<- matrix(1,length(dates),length(models)+3)
|
|
82 |
results_DEV<- matrix(1,length(dates),length(models)+3)
|
|
83 |
results_RMSE_f<- matrix(1,length(dates),length(models)+3)
|
|
97 |
results_AIC<- matrix(1,1,length(models)+3)
|
|
98 |
results_GCV<- matrix(1,1,length(models)+3)
|
|
99 |
results_DEV<- matrix(1,1,length(models)+3)
|
|
100 |
#results_RMSE_f<- matrix(1,length(models)+3)
|
|
84 | 101 |
|
85 | 102 |
#Model assessment: general diagnostic/metrics |
86 |
results_RMSE <- matrix(1,length(dates),length(models)+4) |
|
87 |
results_MAE <- matrix(1,length(dates),length(models)+4) |
|
88 |
results_ME <- matrix(1,length(dates),length(models)+4) #There are 8+1 models |
|
89 |
results_R2 <- matrix(1,length(dates),length(models)+4) #Coef. of determination for the validation dataset |
|
90 |
results_RMSE_f<- matrix(1,length(dates),length(models)+4) #RMSE fit, RMSE for the training dataset |
|
91 |
results_RMSE_f_kr<- matrix(1,length(dates),length(models)+4) |
|
92 |
|
|
93 |
# #Tracking relationship between LST AND LC |
|
94 |
# cor_LST_LC1<-matrix(1,10,1) #correlation LST-LC1 |
|
95 |
# cor_LST_LC3<-matrix(1,10,1) #correlation LST-LC3 |
|
96 |
# cor_LST_tmax<-matrix(1,10,1) #correlation LST-tmax |
|
103 |
results_RMSE <- matrix(1,1,length(models)+4) |
|
104 |
results_MAE <- matrix(1,1,length(models)+4) |
|
105 |
results_ME <- matrix(1,1,length(models)+4) #There are 8+1 models |
|
106 |
results_R2 <- matrix(1,1,length(models)+4) #Coef. of determination for the validation dataset |
|
107 |
|
|
108 |
results_RMSE_f<- matrix(1,1,length(models)+4) #RMSE fit, RMSE for the training dataset |
|
109 |
results_MAE_f <- matrix(1,1,length(models)+4) |
|
97 | 110 |
|
98 | 111 |
#Screening for bad values: value is tmax in this case |
99 | 112 |
#ghcn$value<-as.numeric(ghcn$value) |
... | ... | |
103 | 116 |
ghcn<-ghcn_test2 |
104 | 117 |
#coords<- ghcn[,c('x_OR83M','y_OR83M')] |
105 | 118 |
|
119 |
set.seed(seed_number) #Using a seed number allow results based on random number to be compared... |
|
106 | 120 |
ghcn.subsets <-lapply(dates, function(d) subset(ghcn, date==d)) #this creates a list of 10 or 365 subsets dataset based on dates |
121 |
sampling<-vector("list",length(dates)) |
|
122 |
|
|
123 |
for(i in 1:length(dates)){ |
|
124 |
n<-nrow(ghcn.subsets[[i]]) |
|
125 |
ns<-n-round(n*prop) #Create a sample from the data frame with 70% of the rows |
|
126 |
nv<-n-ns #create a sample for validation with prop of the rows |
|
127 |
ind.training <- sample(nrow(ghcn.subsets[[i]]), size=ns, replace=FALSE) #This selects the index position for 70% of the rows taken randomly |
|
128 |
ind.testing <- setdiff(1:nrow(ghcn.subsets[[i]]), ind.training) |
|
129 |
sampling[[i]]<-ind.training |
|
130 |
} |
|
107 | 131 |
|
108 | 132 |
#Start loop here... |
109 | 133 |
|
110 | 134 |
## looping through the dates...this is the main part of the code |
111 | 135 |
#i=1 #for debugging |
112 | 136 |
#j=1 #for debugging |
113 |
for(i in 1:length(dates)){ # start of the for loop #1 |
|
114 |
|
|
115 |
date<-strptime(dates[i], "%Y%m%d") # interpolation date being processed |
|
116 |
month<-strftime(date, "%m") # current month of the date being processed |
|
117 |
LST_month<-paste("mm_",month,sep="") # name of LST month to be matched |
|
118 |
|
|
119 |
###Regression part 1: Creating a validation dataset by creating training and testing datasets |
|
120 |
|
|
121 |
mod_LST <-ghcn.subsets[[i]][,match(LST_month, names(ghcn.subsets[[i]]))] #Match interpolation date and monthly LST average |
|
122 |
ghcn.subsets[[i]] = transform(ghcn.subsets[[i]],LST = mod_LST) #Add the variable LST to the subset dataset |
|
123 |
n<-nrow(ghcn.subsets[[i]]) |
|
124 |
ns<-n-round(n*prop) #Create a sample from the data frame with 70% of the rows |
|
125 |
nv<-n-ns #create a sample for validation with prop of the rows |
|
126 |
ind.training <- sample(nrow(ghcn.subsets[[i]]), size=ns, replace=FALSE) #This selects the index position for 70% of the rows taken randomly |
|
127 |
ind.testing <- setdiff(1:nrow(ghcn.subsets[[i]]), ind.training) |
|
128 |
data_s <- ghcn.subsets[[i]][ind.training, ] #Training dataset currently used in the modeling |
|
129 |
data_v <- ghcn.subsets[[i]][ind.testing, ] #Testing/validation dataset |
|
130 |
|
|
131 |
#i=1 |
|
132 |
date_proc<-dates[i] |
|
133 |
date_proc<-strptime(dates[i], "%Y%m%d") # interpolation date being processed |
|
134 |
mo<-as.integer(strftime(date_proc, "%m")) # current month of the date being processed |
|
135 |
day<-as.integer(strftime(date_proc, "%d")) |
|
136 |
year<-as.integer(strftime(date_proc, "%Y")) |
|
137 |
|
|
138 |
#setup |
|
139 |
|
|
140 |
#mo=9 #Commented out by Benoit on June 14 |
|
141 |
#day=2 |
|
142 |
#year=2010 |
|
143 |
datelabel=format(ISOdate(year,mo,day),"%b %d, %Y") |
|
144 |
|
|
145 |
########### |
|
146 |
# STEP 1 - 10 year monthly averages |
|
147 |
########### |
|
148 |
|
|
149 |
#library(raster) |
|
150 |
#old<-getwd() |
|
151 |
#setwd("c:/data/benoit/data_Oregon_stations_Brian_04242012") |
|
152 |
#l=list.files(pattern="mean_month.*rescaled.tif") |
|
153 |
#l=list.files(pattern="mean_month.*rescaled.rst") |
|
154 |
l <-readLines(paste(path,"/",infile6, sep="")) |
|
155 |
|
|
156 |
molst<-stack(l) #Creating a raster stack... |
|
157 |
#setwd(old) |
|
158 |
molst=molst-273.16 #K->C |
|
159 |
idx <- seq(as.Date('2010-01-15'), as.Date('2010-12-15'), 'month') |
|
160 |
molst <- setZ(molst, idx) |
|
161 |
layerNames(molst) <- month.abb |
|
162 |
themolst<-raster(molst,mo) #current month being processed saved in a raster image |
|
163 |
plot(themolst) |
|
164 |
|
|
165 |
########### |
|
166 |
# STEP 2 - Weather station means across same days: Monthly mean calculation |
|
167 |
########### |
|
168 |
|
|
169 |
# ??? which years & what quality flags??? |
|
170 |
#select ghcn.id, lat,lon, elev, month, avg(value/10) as "TMax", count(*) as "NumDays" from ghcn, stations where ghcn.id in (select id from stations where state=='OR') and ghcn.id==stations.id and value<>-9999 and year>=2000 and element=='TMAX' group by stations.id, month;select ghcn.id, lat,lon, elev, month, avg(value/10) as "TMax", count(*) as "NumDays" from ghcn, stations where ghcn.id in (select id from stations where state=='OR') and ghcn.id==stations.id and value<>-9999 and year>=2000 and element=='TMAX' group by stations.id, month; |
|
171 |
#below table from above SQL query |
|
172 |
#dst<-read.csv('/data/benoit/data_oregon_stations_brian_04242012/station_means.csv',h=T) |
|
173 |
|
|
174 |
##Added by Benoit ###### |
|
175 |
date1<-ISOdate(data3$year,data3$month,data3$day) #Creating a date object from 3 separate column |
|
176 |
date2<-as.POSIXlt(as.Date(date1)) |
|
177 |
data3$date<-date2 |
|
178 |
d<-subset(data3,year>=2000 & mflag=="0" ) #Selecting dataset 2000-2010 with good quality: 193 stations |
|
179 |
#May need some screeing??? i.e. range of temp and elevation... |
|
180 |
d1<-aggregate(value~station+month, data=d, mean) #Calculate monthly mean for every station in OR |
|
181 |
id<-as.data.frame(unique(d1$station)) #Unique station in OR for year 2000-2010: 193 but 7 loss of monthly avg |
|
182 |
|
|
183 |
dst<-merge(d1, stat_loc, by.x="station", by.y="STAT_ID") #Inner join all columns are retained |
|
184 |
|
|
185 |
#This allows to change only one name of the data.frame |
|
186 |
pos<-match("value",names(dst)) #Find column with name "value" |
|
187 |
names(dst)[pos]<-c("TMax") |
|
188 |
dst$TMax<-dst$TMax/10 #TMax is the average max temp for months |
|
189 |
#dstjan=dst[dst$month==9,] #dst contains the monthly averages for tmax for every station over 2000-2010 |
|
190 |
############## |
|
191 |
|
|
192 |
modst=dst[dst$month==mo,] #Subsetting dataset for the relevant month of the date being processed |
|
193 |
|
|
194 |
########## |
|
195 |
# STEP 3 - get LST at stations |
|
196 |
########## |
|
197 |
|
|
198 |
sta_lola=modst[,c("lon","lat")] #Extracting locations of stations for the current month... |
|
199 |
library(rgdal) |
|
200 |
proj_str="+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
201 |
lookup<-function(r,lat,lon) { |
|
202 |
xy<-project(cbind(lon,lat),proj_str); |
|
203 |
cidx<-cellFromXY(r,xy); |
|
204 |
return(r[cidx]) |
|
205 |
} |
|
206 |
sta_tmax_from_lst=lookup(themolst,sta_lola$lat,sta_lola$lon) #Extracted values of LST for the stations |
|
207 |
|
|
208 |
######### |
|
209 |
# STEP 4 - bias at stations |
|
210 |
######### |
|
211 |
|
|
212 |
sta_bias=sta_tmax_from_lst-modst$TMax; #That is the difference between the monthly LST mean and monthly station mean |
|
213 |
#Added by Benoit |
|
214 |
modst$LSTD_bias<-sta_bias #Adding bias to data frame modst containning the monthly average for 10 years |
|
215 |
|
|
216 |
bias_xy=project(as.matrix(sta_lola),proj_str) |
|
217 |
# windows() |
|
218 |
X11() |
|
219 |
plot(modst$TMax,sta_tmax_from_lst,xlab="Station mo Tmax",ylab="LST mo Tmax",main=paste("LST vs TMax for",datelabel,sep=" ")) |
|
220 |
abline(0,1) |
|
221 |
savePlot(paste("LST_TMax_scatterplot_",dates[i],out_prefix,".png", sep=""), type="png") |
|
222 |
dev.off() |
|
223 |
|
|
224 |
########## |
|
225 |
# Moved step 6 to allow training and validation selection for bias surface:07/11 |
|
226 |
# STEP 6 - return to daily station data & calcualate delta=daily T-monthly T from stations |
|
227 |
########## |
|
228 |
|
|
229 |
#Commmented out by Benoit 06/14 |
|
230 |
# library(RSQLite) |
|
231 |
# m<-dbDriver("SQLite") |
|
232 |
# con<-dbConnect(m,dbname='c:/data/ghcn_tmintmax.db') |
|
233 |
# querystr=paste("select ghcn.id, value as 'dailyTmax' from ghcn where ghcn.id in (select id from stations where state=='OR') and value<>-9999", |
|
234 |
# "and year==",year,"and month==",mo,"and day==",day, |
|
235 |
# "and element=='TMAX' ") |
|
236 |
# rs<-dbSendQuery(con,querystr) |
|
237 |
# d<-fetch(rs,n=-1) |
|
238 |
# dbClearResult(rs) |
|
239 |
# dbDisconnect(con) |
|
240 |
# |
|
241 |
# d$dailyTmax=d$dailyTmax/10 #stored as 1/10 degree C to allow integer storage |
|
242 |
# dmoday=merge(modst,d,by="id") |
|
243 |
##########################Commented out by Benoit |
|
244 |
|
|
245 |
#added by Benoit |
|
246 |
#x<-ghcn.subsets[[i]] #Holds both training and testing for instance 161 rows for Jan 1 |
|
247 |
x<-data_v |
|
248 |
d<-data_s |
|
249 |
|
|
250 |
pos<-match("value",names(d)) #Find column with name "value" |
|
251 |
names(d)[pos]<-c("dailyTmax") |
|
252 |
names(x)[pos]<-c("dailyTmax") |
|
253 |
d$dailyTmax=(as.numeric(d$dailyTmax))/10 #stored as 1/10 degree C to allow integer storage |
|
254 |
x$dailyTmax=(as.numeric(x$dailyTmax))/10 #stored as 1/10 degree C to allow integer storage |
|
255 |
pos<-match("station",names(d)) #Find column with name "value" |
|
256 |
names(d)[pos]<-c("id") |
|
257 |
names(x)[pos]<-c("id") |
|
258 |
names(modst)[1]<-c("id") #modst contains the average tmax per month for every stations... |
|
259 |
dmoday=merge(modst,d,by="id") #LOOSING DATA HERE!!! from 113 t0 103 |
|
260 |
xmoday=merge(modst,x,by="id") #LOOSING DATA HERE!!! from 48 t0 43 |
|
261 |
names(dmoday)[4]<-c("lat") |
|
262 |
names(dmoday)[5]<-c("lon") #dmoday contains all the the information: BIAS, monn |
|
263 |
names(xmoday)[4]<-c("lat") |
|
264 |
names(xmoday)[5]<-c("lon") #dmoday contains all the the information: BIAS, monn |
|
265 |
|
|
266 |
data_v<-xmoday |
|
267 |
### |
|
268 |
|
|
269 |
#dmoday contains the daily tmax values for training with TMax being the monthly station tmax mean |
|
270 |
#xmoday contains the daily tmax values for validation with TMax being the monthly station tmax mean |
|
271 |
|
|
272 |
# windows() |
|
273 |
X11() |
|
274 |
plot(dailyTmax~TMax,data=dmoday,xlab="Mo Tmax",ylab=paste("Daily for",datelabel),main="across stations in OR") |
|
275 |
savePlot(paste("Daily_tmax_monthly_TMax_scatterplot_",dates[i],out_prefix,".png", sep=""), type="png") |
|
276 |
dev.off() |
|
277 |
|
|
278 |
######## |
|
279 |
# STEP 5 - interpolate bias |
|
280 |
######## |
|
281 |
|
|
282 |
# ?? include covariates like elev, distance to coast, cloud frequency, tree height |
|
283 |
#library(fields) |
|
284 |
#windows() |
|
285 |
quilt.plot(sta_lola,sta_bias,main="Bias at stations",asp=1) |
|
286 |
US(add=T,col="magenta",lwd=2) |
|
287 |
#fitbias<-Tps(bias_xy,sta_bias) #use TPS or krige |
|
288 |
|
|
289 |
#Adding options to use only training stations: 07/11/2012 |
|
290 |
bias_xy=project(as.matrix(sta_lola),proj_str) |
|
291 |
#bias_xy2=project(as.matrix(c(dmoday$lon,dmoday$lat),proj_str) |
|
292 |
if(bias_val==1){ |
|
293 |
sta_bias<-dmoday$LSTD_bias |
|
294 |
bias_xy<-cbind(dmoday$x_OR83M,dmoday$y_OR83M) |
|
295 |
} |
|
296 |
|
|
297 |
fitbias<-Krig(bias_xy,sta_bias,theta=1e5) #use TPS or krige |
|
298 |
#The output is a krig object using fields |
|
299 |
|
|
300 |
# Creating plot of bias surface and saving it |
|
301 |
X11() |
|
302 |
datelabel2=format(ISOdate(year,mo,day),"%B ") #added by Benoit, label |
|
303 |
surface(fitbias,col=rev(terrain.colors(100)),asp=1,main=paste("Interpolated bias for",datelabel2,sep=" ")) |
|
304 |
savePlot(paste("Bias_surface_LST_TMax_",dates[i],out_prefix,".png", sep=""), type="png") |
|
305 |
dev.off() |
|
306 |
|
|
307 |
#US(add=T,col="magenta",lwd=2) |
|
308 |
|
|
309 |
########## |
|
310 |
# STEP 7 - interpolate delta across space |
|
311 |
########## |
|
312 |
|
|
313 |
daily_sta_lola=dmoday[,c("lon","lat")] #could be same as before but why assume merge does this - assume not |
|
314 |
daily_sta_xy=project(as.matrix(daily_sta_lola),proj_str) |
|
315 |
daily_delta=dmoday$dailyTmax-dmoday$TMax |
|
316 |
#windows() |
|
317 |
quilt.plot(daily_sta_lola,daily_delta,asp=1,main="Station delta for Jan 15") |
|
318 |
US(add=T,col="magenta",lwd=2) |
|
319 |
#fitdelta<-Tps(daily_sta_xy,daily_delta) #use TPS or krige |
|
320 |
fitdelta<-Krig(daily_sta_xy,daily_delta,theta=1e5) #use TPS or krige |
|
321 |
#Kriging using fields package |
|
322 |
|
|
323 |
# Creating plot of bias surface and saving it |
|
324 |
X11() |
|
325 |
surface(fitdelta,col=rev(terrain.colors(100)),asp=1,main=paste("Interpolated delta for",datelabel,sep=" ")) |
|
326 |
savePlot(paste("Delta_surface_LST_TMax_",dates[i],out_prefix,".png", sep=""), type="png") |
|
327 |
dev.off() |
|
328 |
#US(add=T,col="magenta",lwd=2) |
|
329 |
# |
|
330 |
|
|
331 |
#### Added by Benoit on 06/19 |
|
332 |
data_s<-dmoday #put the |
|
333 |
data_s$daily_delta<-daily_delta |
|
334 |
|
|
335 |
|
|
336 |
#data_s$y_var<-daily_delta #y_var is the variable currently being modeled, may be better with BIAS!! |
|
337 |
data_s$y_var<-data_s$LSTD_bias |
|
338 |
#data_s$y_var<-(data_s$dailyTmax)*10 |
|
339 |
#Model and response variable can be changed without affecting the script |
|
340 |
|
|
341 |
mod1<- gam(y_var~ s(lat) + s (lon) + s (ELEV_SRTM), data=data_s) |
|
342 |
mod2<- gam(y_var~ s(lat,lon)+ s(ELEV_SRTM), data=data_s) #modified nesting....from 3 to 2 |
|
343 |
mod3<- gam(y_var~ s(lat) + s (lon) + s (ELEV_SRTM) + s (Northness)+ s (Eastness) + s(DISTOC), data=data_s) |
|
344 |
mod4<- gam(y_var~ s(lat) + s (lon) + s(ELEV_SRTM) + s(Northness) + s (Eastness) + s(DISTOC) + s(LST), data=data_s) |
|
345 |
mod5<- gam(y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST), data=data_s) |
|
346 |
mod6<- gam(y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST)+s(LC1), data=data_s) |
|
347 |
mod7<- gam(y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST)+s(LC3), data=data_s) |
|
348 |
mod8<- gam(y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST) + s(LC1), data=data_s) |
|
349 |
|
|
350 |
#Added |
|
351 |
#tmax_predicted=themolst+daily_delta_rast-bias_rast #Final surface?? but daily_rst |
|
352 |
|
|
353 |
#### Added by Benoit ends |
|
354 |
|
|
355 |
######### |
|
356 |
# STEP 8 - assemble final answer - T=LST+Bias(interpolated)+delta(interpolated) |
|
357 |
######### |
|
358 |
|
|
359 |
bias_rast=interpolate(themolst,fitbias) #interpolation using function from raster package |
|
360 |
#themolst is raster layer, fitbias is "Krig" object from bias surface |
|
361 |
plot(bias_rast,main="Raster bias") #This not displaying... |
|
362 |
|
|
363 |
#Saving kriged surface in raster images |
|
364 |
data_name<-paste("bias_LST_",dates[[i]],sep="") |
|
365 |
raster_name<-paste("fusion_",data_name,out_prefix,".rst", sep="") |
|
366 |
writeRaster(bias_rast, filename=raster_name,overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
367 |
|
|
368 |
daily_delta_rast=interpolate(themolst,fitdelta) #Interpolation of the bias surface... |
|
369 |
|
|
370 |
plot(daily_delta_rast,main="Raster Daily Delta") |
|
371 |
|
|
372 |
#Saving kriged surface in raster images |
|
373 |
data_name<-paste("daily_delta_",dates[[i]],sep="") |
|
374 |
raster_name<-paste("fusion_",data_name,out_prefix,".rst", sep="") |
|
375 |
writeRaster(daily_delta_rast, filename=raster_name,overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
376 |
|
|
377 |
tmax_predicted=themolst+daily_delta_rast-bias_rast #Final surface as a raster layer... |
|
378 |
#tmax_predicted=themolst+daily_delta_rast+bias_rast #Added by Benoit, why is it -bias_rast |
|
379 |
plot(tmax_predicted,main="Predicted daily") |
|
380 |
|
|
381 |
#Saving kriged surface in raster images |
|
382 |
data_name<-paste("tmax_predicted_",dates[[i]],sep="") |
|
383 |
raster_name<-paste("fusion_",data_name,out_prefix,".rst", sep="") |
|
384 |
writeRaster(tmax_predicted, filename=raster_name,overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
385 |
|
|
386 |
######## |
|
387 |
# check: assessment of results: validation |
|
388 |
######## |
|
389 |
RMSE<-function(x,y) {return(mean((x-y)^2)^0.5)} |
|
390 |
|
|
391 |
#FIT ASSESSMENT |
|
392 |
sta_pred_data_s=lookup(tmax_predicted,data_s$lat,data_s$lon) |
|
393 |
rmse_fit=RMSE(sta_pred_data_s,data_s$dailyTmax) |
|
394 |
|
|
395 |
sta_pred=lookup(tmax_predicted,data_v$lat,data_v$lon) |
|
396 |
#sta_pred=lookup(tmax_predicted,daily_sta_lola$lat,daily_sta_lola$lon) |
|
397 |
#rmse=RMSE(sta_pred,dmoday$dailyTmax) |
|
398 |
#pos<-match("value",names(data_v)) #Find column with name "value" |
|
399 |
#names(data_v)[pos]<-c("dailyTmax") |
|
400 |
tmax<-data_v$dailyTmax |
|
401 |
#data_v$dailyTmax<-tmax |
|
402 |
rmse=RMSE(sta_pred,tmax) |
|
403 |
#plot(sta_pred~dmoday$dailyTmax,xlab=paste("Actual daily for",datelabel),ylab="Pred daily",main=paste("RMSE=",rmse)) |
|
404 |
X11() |
|
405 |
plot(sta_pred~tmax,xlab=paste("Actual daily for",datelabel),ylab="Pred daily",main=paste("RMSE=",rmse)) |
|
406 |
abline(0,1) |
|
407 |
savePlot(paste("Predicted_tmax_versus_observed_scatterplot_",dates[i],out_prefix,".png", sep=""), type="png") |
|
408 |
dev.off() |
|
409 |
#resid=sta_pred-dmoday$dailyTmax |
|
410 |
resid=sta_pred-tmax |
|
411 |
quilt.plot(daily_sta_lola,resid) |
|
412 |
|
|
413 |
### END OF BRIAN's code |
|
414 |
|
|
415 |
### Added by benoit |
|
416 |
#Store results using TPS |
|
417 |
j=9 |
|
418 |
results_RMSE[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
419 |
results_RMSE[i,2]<- ns #number of stations used in the training stage |
|
420 |
results_RMSE[i,3]<- "RMSE" |
|
421 |
results_RMSE[i,j+3]<- rmse #Storing RMSE for the model j |
|
422 |
|
|
423 |
results_RMSE_f[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
424 |
results_RMSE_f[i,2]<- ns #number of stations used in the training stage |
|
425 |
results_RMSE_f[i,3]<- "RMSE" |
|
426 |
results_RMSE_f[i,j+3]<- rmse_fit #Storing RMSE for the model j |
|
427 |
|
|
428 |
ns<-nrow(data_s) #This is added to because some loss of data might have happened because of the averaging... |
|
429 |
nv<-nrow(data_v) |
|
430 |
|
|
431 |
for (j in 1:length(models)){ |
|
432 |
|
|
433 |
##Model assessment: specific diagnostic/metrics for GAM |
|
434 |
|
|
435 |
name<-paste("mod",j,sep="") #modj is the name of The "j" model (mod1 if j=1) |
|
436 |
mod<-get(name) #accessing GAM model ojbect "j" |
|
437 |
results_AIC[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
438 |
results_AIC[i,2]<- ns #number of stations used in the training stage |
|
439 |
results_AIC[i,3]<- "AIC" |
|
440 |
results_AIC[i,j+3]<- AIC (mod) |
|
441 |
|
|
442 |
results_GCV[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
443 |
results_GCV[i,2]<- ns #number of stations used in the training |
|
444 |
results_GCV[i,3]<- "GCV" |
|
445 |
results_GCV[i,j+3]<- mod$gcv.ubre |
|
446 |
|
|
447 |
results_DEV[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
448 |
results_DEV[i,2]<- ns #number of stations used in the training stage |
|
449 |
results_DEV[i,3]<- "DEV" |
|
450 |
results_DEV[i,j+3]<- mod$deviance |
|
451 |
|
|
452 |
sta_LST_s=lookup(themolst,data_s$lat,data_s$lon) |
|
453 |
sta_delta_s=lookup(daily_delta_rast,data_s$lat,data_s$lon) #delta surface has been calculated before!! |
|
454 |
sta_bias_s= mod$fit |
|
455 |
#Need to extract values from the kriged delta surface... |
|
456 |
#sta_delta= lookup(delta_surface,data_v$lat,data_v$lon) |
|
457 |
#tmax_predicted=sta_LST+sta_bias-y_mod$fit |
|
458 |
tmax_predicted_s= sta_LST_s-sta_bias_s+sta_delta_s |
|
459 |
|
|
460 |
results_RMSE_f[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
461 |
results_RMSE_f[i,2]<- ns #number of stations used in the training stage |
|
462 |
results_RMSE_f[i,3]<- "RSME" |
|
463 |
results_RMSE_f[i,j+3]<- sqrt(sum((tmax_predicted_s-data_s$dailyTmax)^2)/ns) |
|
464 |
|
|
465 |
##Model assessment: general diagnostic/metrics |
|
466 |
##validation: using the testing data |
|
467 |
|
|
468 |
#This was modified on 06192012 |
|
469 |
|
|
470 |
#data_v$y_var<-data_v$LSTD_bias |
|
471 |
#data_v$y_var<-tmax |
|
472 |
y_mod<- predict(mod, newdata=data_v, se.fit = TRUE) #Using the coeff to predict new values. |
|
473 |
|
|
474 |
####ADDED ON JULY 5th |
|
475 |
sta_LST_v=lookup(themolst,data_v$lat,data_v$lon) |
|
476 |
sta_delta_v=lookup(daily_delta_rast,data_v$lat,data_v$lon) #delta surface has been calculated before!! |
|
477 |
sta_bias_v= y_mod$fit |
|
478 |
#Need to extract values from the kriged delta surface... |
|
479 |
#sta_delta= lookup(delta_surface,data_v$lat,data_v$lon) |
|
480 |
#tmax_predicted=sta_LST+sta_bias-y_mod$fit |
|
481 |
tmax_predicted_v= sta_LST_v-sta_bias_v+sta_delta_v |
|
482 |
|
|
483 |
#data_v$tmax<-(data_v$tmax)/10 |
|
484 |
res_mod<- data_v$dailyTmax - tmax_predicted_v #Residuals for the model for fusion |
|
485 |
#res_mod<- data_v$y_var - y_mod$fit #Residuals for the model |
|
486 |
|
|
487 |
RMSE_mod <- sqrt(sum(res_mod^2)/nv) #RMSE FOR REGRESSION STEP 1: GAM |
|
488 |
MAE_mod<- sum(abs(res_mod))/nv #MAE, Mean abs. Error FOR REGRESSION STEP 1: GAM |
|
489 |
ME_mod<- sum(res_mod)/nv #ME, Mean Error or bias FOR REGRESSION STEP 1: GAM |
|
490 |
R2_mod<- cor(data_v$dailyTmax,tmax_predicted_v)^2 #R2, coef. of var FOR REGRESSION STEP 1: GAM |
|
491 |
|
|
492 |
results_RMSE[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
493 |
results_RMSE[i,2]<- ns #number of stations used in the training stage |
|
494 |
results_RMSE[i,3]<- "RMSE" |
|
495 |
results_RMSE[i,j+3]<- RMSE_mod #Storing RMSE for the model j |
|
496 |
results_MAE[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
497 |
results_MAE[i,2]<- ns #number of stations used in the training stage |
|
498 |
results_MAE[i,3]<- "MAE" |
|
499 |
results_MAE[i,j+3]<- MAE_mod #Storing MAE for the model j |
|
500 |
results_ME[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
501 |
results_ME[i,2]<- ns #number of stations used in the training stage |
|
502 |
results_ME[i,3]<- "ME" |
|
503 |
results_ME[i,j+3]<- ME_mod #Storing ME for the model j |
|
504 |
results_R2[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
505 |
results_R2[i,2]<- ns #number of stations used in the training stage |
|
506 |
results_R2[i,3]<- "R2" |
|
507 |
results_R2[i,j+3]<- R2_mod #Storing R2 for the model j |
|
508 |
|
|
509 |
#Saving residuals and prediction in the dataframes: tmax predicted from GAM |
|
510 |
pred<-paste("pred_mod",j,sep="") |
|
511 |
#data_v[[pred]]<-as.numeric(y_mod$fit) |
|
512 |
data_v[[pred]]<-as.numeric(tmax_predicted_v) |
|
513 |
data_s[[pred]]<-as.numeric(tmax_predicted_s) #Storing model fit values (predicted on training sample) |
|
514 |
#data_s[[pred]]<-as.numeric(mod$fit) #Storing model fit values (predicted on training sample) |
|
515 |
|
|
516 |
name2<-paste("res_mod",j,sep="") |
|
517 |
data_v[[name2]]<-as.numeric(res_mod) |
|
518 |
temp<-tmax_predicted_s-data_s$dailyTmax |
|
519 |
data_s[[name2]]<-as.numeric(temp) |
|
520 |
#end of loop calculating RMSE |
|
521 |
|
|
522 |
} |
|
523 |
|
|
524 |
# end of the for loop1 |
|
525 |
|
|
526 |
} |
|
527 |
|
|
528 |
|
|
529 |
## Plotting and saving diagnostic measures |
|
137 |
#for(i in 1:length(dates)){ [[ # start of the for loop #1 |
|
138 |
#i=1 |
|
530 | 139 |
|
531 |
#Specific diagnostic measures related to the testing datasets |
|
532 | 140 |
|
533 |
results_table_RMSE<-as.data.frame(results_RMSE) |
|
534 |
results_table_MAE<-as.data.frame(results_MAE) |
|
535 |
results_table_ME<-as.data.frame(results_ME) |
|
536 |
results_table_R2<-as.data.frame(results_R2) |
|
141 |
#mclapply(1:length(dates), runFusion, mc.cores = 8)#This is the end bracket from mclapply(...) statement |
|
537 | 142 |
|
538 |
results_table_RMSE_f<-as.data.frame(results_RMSE_f) |
|
143 |
fusion_mod<-mclapply(1:length(dates), runFusion, mc.cores = 8)#This is the end bracket from mclapply(...) statement |
|
144 |
#fusion_mod357<-mclapply(357:365,runFusion, mc.cores=8)# for debugging |
|
145 |
#test<-runFusion(362) #date 362 has problems with GAM |
|
146 |
#test<-mclapply(357,runFusion, mc.cores=1)# for debugging |
|
539 | 147 |
|
540 |
cname<-c("dates","ns","metric","mod1", "mod2","mod3", "mod4", "mod5", "mod6", "mod7","mod8","mod9") |
|
541 |
colnames(results_table_RMSE)<-cname |
|
542 |
colnames(results_table_RMSE_f)<-cname |
|
148 |
## Plotting and saving diagnostic measures |
|
149 |
accuracy_tab_fun<-function(i,f_list){ |
|
150 |
tb<-f_list[[i]][[3]] |
|
151 |
return(tb) |
|
152 |
} |
|
543 | 153 |
|
544 |
#tb_diagnostic1<-rbind(results_table_RMSE,results_table_MAE, results_table_ME, results_table_R2) # |
|
545 |
tb_diagnostic1<-results_table_RMSE #measures of validation |
|
546 |
tb_diagnostic2<-results_table_RMSE_f #measures of fit |
|
547 | 154 |
|
548 |
write.table(tb_diagnostic1, file= paste(path,"/","results_fusion_Assessment_measure1",out_prefix,".txt",sep=""), sep=",")
|
|
549 |
write.table(tb_diagnostic2, file= paste(path,"/","results_fusion_Assessment_measure2",out_prefix,".txt",sep=""), sep=",")
|
|
155 |
tb<-fusion_mod[[1]][[3]][0,] #empty data frame with metric table structure that can be used in rbinding...
|
|
156 |
tb_tmp<-fusion_mod #copy
|
|
550 | 157 |
|
551 |
#Calculate mean |
|
158 |
for (i in 1:length(tb_tmp)){ |
|
159 |
tmp<-tb_tmp[[i]][[3]] |
|
160 |
tb<-rbind(tb,tmp) |
|
161 |
} |
|
162 |
rm(tb_tmp) |
|
552 | 163 |
|
553 |
tb<-tb_diagnostic1 |
|
554 | 164 |
for(i in 4:12){ # start of the for loop #1 |
555 | 165 |
tb[,i]<-as.numeric(as.character(tb[,i])) |
556 | 166 |
} |
557 |
|
|
558 |
mean(tb[,4:12]) |
|
559 |
boxplot(tb[,4:12],outline=FALSE) |
|
167 |
|
|
168 |
tb_RMSE<-subset(tb, metric=="RMSE") |
|
169 |
tb_MAE<-subset(tb,metric=="MAE") |
|
170 |
tb_ME<-subset(tb,metric=="ME") |
|
171 |
tb_R2<-subset(tb,metric=="R2") |
|
172 |
tb_RMSE_f<-subset(tb, metric=="RMSE_f") |
|
173 |
tb_MAE_f<-subset(tb,metric=="MAE_f") |
|
174 |
|
|
175 |
|
|
176 |
tb_diagnostic1<-rbind(tb_RMSE,tb_MAE,tb_ME,tb_R2) |
|
177 |
#tb_diagnostic2<-rbind(tb_,tb_MAE,tb_ME,tb_R2) |
|
178 |
|
|
179 |
mean_RMSE<-sapply(tb_RMSE[,4:12],mean) |
|
180 |
mean_MAE<-sapply(tb_MAE[,4:12],mean) |
|
181 |
|
|
182 |
#tb<-sapply(fusion_mod,accuracy_tab_fun) |
|
183 |
|
|
184 |
write.table(tb_diagnostic1, file= paste(path,"/","results2_fusion_Assessment_measure1",out_prefix,".txt",sep=""), sep=",") |
|
185 |
write.table(tb, file= paste(path,"/","results2_fusion_Assessment_measure_all",out_prefix,".txt",sep=""), sep=",") |
|
186 |
|
|
187 |
#tb<-as.data.frame(tb_diagnostic1) |
|
188 |
|
|
189 |
#write.table(tb_1, file= paste(path,"/","results2_fusion_Assessment_measure1",out_prefix,".txt",sep=""), sep=",") |
|
190 |
|
|
191 |
#write.table(tb_diagnostic2, file= paste(path,"/","results_fusion_Assessment_measure2",out_prefix,".txt",sep=""), sep=",") |
|
192 |
|
|
560 | 193 |
#### END OF SCRIPT |
climate/research/oregon/interpolation/fusion_gam_prediction_reg_function.R | ||
---|---|---|
1 |
runFusion <- function(i) { # loop over dates |
|
2 |
|
|
3 |
date<-strptime(dates[i], "%Y%m%d") # interpolation date being processed |
|
4 |
month<-strftime(date, "%m") # current month of the date being processed |
|
5 |
LST_month<-paste("mm_",month,sep="") # name of LST month to be matched |
|
6 |
|
|
7 |
###Regression part 1: Creating a validation dataset by creating training and testing datasets |
|
8 |
|
|
9 |
mod_LST <-ghcn.subsets[[i]][,match(LST_month, names(ghcn.subsets[[i]]))] #Match interpolation date and monthly LST average |
|
10 |
ghcn.subsets[[i]] = transform(ghcn.subsets[[i]],LST = mod_LST) #Add the variable LST to the subset dataset |
|
11 |
#n<-nrow(ghcn.subsets[[i]]) |
|
12 |
#ns<-n-round(n*prop) #Create a sample from the data frame with 70% of the rows |
|
13 |
#nv<-n-ns #create a sample for validation with prop of the rows |
|
14 |
#ind.training <- sample(nrow(ghcn.subsets[[i]]), size=ns, replace=FALSE) #This selects the index position for 70% of the rows taken randomly |
|
15 |
ind.training<-sampling[[i]] |
|
16 |
ind.testing <- setdiff(1:nrow(ghcn.subsets[[i]]), ind.training) |
|
17 |
data_s <- ghcn.subsets[[i]][ind.training, ] #Training dataset currently used in the modeling |
|
18 |
data_v <- ghcn.subsets[[i]][ind.testing, ] #Testing/validation dataset |
|
19 |
|
|
20 |
ns<-nrow(data_s) |
|
21 |
nv<-nrow(data_v) |
|
22 |
#i=1 |
|
23 |
date_proc<-dates[i] |
|
24 |
date_proc<-strptime(dates[i], "%Y%m%d") # interpolation date being processed |
|
25 |
mo<-as.integer(strftime(date_proc, "%m")) # current month of the date being processed |
|
26 |
day<-as.integer(strftime(date_proc, "%d")) |
|
27 |
year<-as.integer(strftime(date_proc, "%Y")) |
|
28 |
|
|
29 |
datelabel=format(ISOdate(year,mo,day),"%b %d, %Y") |
|
30 |
|
|
31 |
########### |
|
32 |
# STEP 1 - 10 year monthly averages |
|
33 |
########### |
|
34 |
|
|
35 |
#l=list.files(pattern="mean_month.*rescaled.rst") |
|
36 |
l <-readLines(paste(path,"/",infile6, sep="")) |
|
37 |
molst<-stack(l) #Creating a raster stack... |
|
38 |
#setwd(old) |
|
39 |
molst=molst-273.16 #K->C |
|
40 |
idx <- seq(as.Date('2010-01-15'), as.Date('2010-12-15'), 'month') |
|
41 |
molst <- setZ(molst, idx) |
|
42 |
layerNames(molst) <- month.abb |
|
43 |
themolst<-raster(molst,mo) #current month being processed saved in a raster image |
|
44 |
plot(themolst) |
|
45 |
|
|
46 |
########### |
|
47 |
# STEP 2 - Weather station means across same days: Monthly mean calculation |
|
48 |
########### |
|
49 |
|
|
50 |
##Added by Benoit ###### |
|
51 |
date1<-ISOdate(data3$year,data3$month,data3$day) #Creating a date object from 3 separate column |
|
52 |
date2<-as.POSIXlt(as.Date(date1)) |
|
53 |
data3$date<-date2 |
|
54 |
d<-subset(data3,year>=2000 & mflag=="0" ) #Selecting dataset 2000-2010 with good quality: 193 stations |
|
55 |
#May need some screeing??? i.e. range of temp and elevation... |
|
56 |
d1<-aggregate(value~station+month, data=d, mean) #Calculate monthly mean for every station in OR |
|
57 |
id<-as.data.frame(unique(d1$station)) #Unique station in OR for year 2000-2010: 193 but 7 loss of monthly avg |
|
58 |
|
|
59 |
dst<-merge(d1, stat_loc, by.x="station", by.y="STAT_ID") #Inner join all columns are retained |
|
60 |
|
|
61 |
#This allows to change only one name of the data.frame |
|
62 |
pos<-match("value",names(dst)) #Find column with name "value" |
|
63 |
names(dst)[pos]<-c("TMax") |
|
64 |
dst$TMax<-dst$TMax/10 #TMax is the average max temp for months |
|
65 |
#dstjan=dst[dst$month==9,] #dst contains the monthly averages for tmax for every station over 2000-2010 |
|
66 |
############## |
|
67 |
|
|
68 |
modst=dst[dst$month==mo,] #Subsetting dataset for the relevant month of the date being processed |
|
69 |
|
|
70 |
########## |
|
71 |
# STEP 3 - get LST at stations |
|
72 |
########## |
|
73 |
|
|
74 |
sta_lola=modst[,c("lon","lat")] #Extracting locations of stations for the current month.. |
|
75 |
|
|
76 |
proj_str="+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
77 |
lookup<-function(r,lat,lon) { |
|
78 |
xy<-project(cbind(lon,lat),proj_str); |
|
79 |
cidx<-cellFromXY(r,xy); |
|
80 |
return(r[cidx]) |
|
81 |
} |
|
82 |
sta_tmax_from_lst=lookup(themolst,sta_lola$lat,sta_lola$lon) #Extracted values of LST for the stations |
|
83 |
|
|
84 |
######### |
|
85 |
# STEP 4 - bias at stations |
|
86 |
######### |
|
87 |
|
|
88 |
sta_bias=sta_tmax_from_lst-modst$TMax; #That is the difference between the monthly LST mean and monthly station mean |
|
89 |
#Added by Benoit |
|
90 |
modst$LSTD_bias<-sta_bias #Adding bias to data frame modst containning the monthly average for 10 years |
|
91 |
|
|
92 |
bias_xy=project(as.matrix(sta_lola),proj_str) |
|
93 |
# windows() |
|
94 |
png(paste("LST_TMax_scatterplot_",dates[i],out_prefix,".png", sep="")) |
|
95 |
plot(modst$TMax,sta_tmax_from_lst,xlab="Station mo Tmax",ylab="LST mo Tmax",main=paste("LST vs TMax for",datelabel,sep=" ")) |
|
96 |
abline(0,1) |
|
97 |
dev.off() |
|
98 |
|
|
99 |
#added by Benoit |
|
100 |
#x<-ghcn.subsets[[i]] #Holds both training and testing for instance 161 rows for Jan 1 |
|
101 |
x<-data_v |
|
102 |
d<-data_s |
|
103 |
|
|
104 |
pos<-match("value",names(d)) #Find column with name "value" |
|
105 |
names(d)[pos]<-c("dailyTmax") |
|
106 |
names(x)[pos]<-c("dailyTmax") |
|
107 |
d$dailyTmax=(as.numeric(d$dailyTmax))/10 #stored as 1/10 degree C to allow integer storage |
|
108 |
x$dailyTmax=(as.numeric(x$dailyTmax))/10 #stored as 1/10 degree C to allow integer storage |
|
109 |
pos<-match("station",names(d)) #Find column with name "value" |
|
110 |
names(d)[pos]<-c("id") |
|
111 |
names(x)[pos]<-c("id") |
|
112 |
names(modst)[1]<-c("id") #modst contains the average tmax per month for every stations... |
|
113 |
dmoday=merge(modst,d,by="id") #LOOSING DATA HERE!!! from 113 t0 103 |
|
114 |
xmoday=merge(modst,x,by="id") #LOOSING DATA HERE!!! from 48 t0 43 |
|
115 |
names(dmoday)[4]<-c("lat") |
|
116 |
names(dmoday)[5]<-c("lon") #dmoday contains all the the information: BIAS, monn |
|
117 |
names(xmoday)[4]<-c("lat") |
|
118 |
names(xmoday)[5]<-c("lon") #dmoday contains all the the information: BIAS, monn |
|
119 |
|
|
120 |
data_v<-xmoday |
|
121 |
### |
|
122 |
|
|
123 |
#dmoday contains the daily tmax values for training with TMax being the monthly station tmax mean |
|
124 |
#xmoday contains the daily tmax values for validation with TMax being the monthly station tmax mean |
|
125 |
|
|
126 |
# windows() |
|
127 |
#png(paste("LST_TMax_scatterplot_",dates[i],out_prefix,".png", sep="")) |
|
128 |
png(paste("Daily_tmax_monthly_TMax_scatterplot_",dates[i],out_prefix,".png", sep="")) |
|
129 |
plot(dailyTmax~TMax,data=dmoday,xlab="Mo Tmax",ylab=paste("Daily for",datelabel),main="across stations in OR") |
|
130 |
#savePlot(paste("Daily_tmax_monthly_TMax_scatterplot_",dates[i],out_prefix,".png", sep=""), type="png") |
|
131 |
#png(paste("LST_TMax_scatterplot_",dates[i],out_prefix,".png", sep="")) |
|
132 |
dev.off() |
|
133 |
|
|
134 |
######## |
|
135 |
# STEP 5 - interpolate bias |
|
136 |
######## |
|
137 |
|
|
138 |
# ?? include covariates like elev, distance to coast, cloud frequency, tree height |
|
139 |
#library(fields) |
|
140 |
#windows() |
|
141 |
quilt.plot(sta_lola,sta_bias,main="Bias at stations",asp=1) |
|
142 |
US(add=T,col="magenta",lwd=2) |
|
143 |
#fitbias<-Tps(bias_xy,sta_bias) #use TPS or krige |
|
144 |
|
|
145 |
#Adding options to use only training stations: 07/11/2012 |
|
146 |
bias_xy=project(as.matrix(sta_lola),proj_str) |
|
147 |
#bias_xy2=project(as.matrix(c(dmoday$lon,dmoday$lat),proj_str) |
|
148 |
if(bias_val==1){ |
|
149 |
sta_bias<-dmoday$LSTD_bias |
|
150 |
bias_xy<-cbind(dmoday$x_OR83M,dmoday$y_OR83M) |
|
151 |
} |
|
152 |
|
|
153 |
fitbias<-Krig(bias_xy,sta_bias,theta=1e5) #use TPS or krige |
|
154 |
#The output is a krig object using fields |
|
155 |
mod9a<-fitbias |
|
156 |
# Creating plot of bias surface and saving it |
|
157 |
#X11() |
|
158 |
png(paste("Bias_surface_LST_TMax_",dates[i],out_prefix,".png", sep="")) #Create file to write a plot |
|
159 |
datelabel2=format(ISOdate(year,mo,day),"%B ") #added by Benoit, label |
|
160 |
surface(fitbias,col=rev(terrain.colors(100)),asp=1,main=paste("Interpolated bias for",datelabel2,sep=" ")) #Plot to file |
|
161 |
#savePlot(paste("Bias_surface_LST_TMax_",dates[i],out_prefix,".png", sep=""), type="png") |
|
162 |
dev.off() #Release the hold to the file |
|
163 |
|
|
164 |
#US(add=T,col="magenta",lwd=2) |
|
165 |
|
|
166 |
########## |
|
167 |
# STEP 7 - interpolate delta across space |
|
168 |
########## |
|
169 |
|
|
170 |
daily_sta_lola=dmoday[,c("lon","lat")] #could be same as before but why assume merge does this - assume not |
|
171 |
daily_sta_xy=project(as.matrix(daily_sta_lola),proj_str) |
|
172 |
daily_delta=dmoday$dailyTmax-dmoday$TMax |
|
173 |
#windows() |
|
174 |
quilt.plot(daily_sta_lola,daily_delta,asp=1,main="Station delta for Jan 15") |
|
175 |
US(add=T,col="magenta",lwd=2) |
|
176 |
#fitdelta<-Tps(daily_sta_xy,daily_delta) #use TPS or krige |
|
177 |
fitdelta<-Krig(daily_sta_xy,daily_delta,theta=1e5) #use TPS or krige |
|
178 |
#Kriging using fields package |
|
179 |
mod9b<-fitdelta |
|
180 |
# Creating plot of bias surface and saving it |
|
181 |
#X11() |
|
182 |
png(paste("Delta_surface_LST_TMax_",dates[i],out_prefix,".png", sep="")) |
|
183 |
surface(fitdelta,col=rev(terrain.colors(100)),asp=1,main=paste("Interpolated delta for",datelabel,sep=" ")) |
|
184 |
#savePlot(paste("Delta_surface_LST_TMax_",dates[i],out_prefix,".png", sep=""), type="png") |
|
185 |
dev.off() |
|
186 |
#US(add=T,col="magenta",lwd=2) |
|
187 |
# |
|
188 |
|
|
189 |
#### Added by Benoit on 06/19 |
|
190 |
data_s<-dmoday #put the |
|
191 |
data_s$daily_delta<-daily_delta |
|
192 |
|
|
193 |
|
|
194 |
#data_s$y_var<-daily_delta #y_var is the variable currently being modeled, may be better with BIAS!! |
|
195 |
data_s$y_var<-data_s$LSTD_bias |
|
196 |
#data_s$y_var<-(data_s$dailyTmax)*10 |
|
197 |
#Model and response variable can be changed without affecting the script |
|
198 |
|
|
199 |
mod1<- try(gam(y_var~ s(lat) + s (lon) + s (ELEV_SRTM), data=data_s)) |
|
200 |
mod2<- try(gam(y_var~ s(lat,lon)+ s(ELEV_SRTM), data=data_s)) #modified nesting....from 3 to 2 |
|
201 |
mod3<- try(gam(y_var~ s(lat) + s (lon) + s (ELEV_SRTM) + s (Northness)+ s (Eastness) + s(DISTOC), data=data_s)) |
|
202 |
mod4<- try(gam(y_var~ s(lat) + s (lon) + s(ELEV_SRTM) + s(Northness) + s (Eastness) + s(DISTOC) + s(LST), data=data_s)) |
|
203 |
mod5<- try(gam(y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST), data=data_s)) |
|
204 |
mod6<- try(gam(y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST)+s(LC1), data=data_s)) |
|
205 |
mod7<- try(gam(y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST)+s(LC3), data=data_s)) |
|
206 |
mod8<- try(gam(y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST) + s(LC1), data=data_s)) |
|
207 |
|
|
208 |
#Added |
|
209 |
#tmax_predicted=themolst+daily_delta_rast-bias_rast #Final surface?? but daily_rst |
|
210 |
|
|
211 |
#### Added by Benoit ends |
|
212 |
|
|
213 |
######### |
|
214 |
# STEP 8 - assemble final answer - T=LST+Bias(interpolated)+delta(interpolated) |
|
215 |
######### |
|
216 |
|
|
217 |
|
|
218 |
bias_rast=interpolate(themolst,fitbias) #interpolation using function from raster package |
|
219 |
#themolst is raster layer, fitbias is "Krig" object from bias surface |
|
220 |
#plot(bias_rast,main="Raster bias") #This not displaying... |
|
221 |
|
|
222 |
#Saving kriged surface in raster images |
|
223 |
data_name<-paste("bias_LST_",dates[[i]],sep="") |
|
224 |
raster_name<-paste("fusion_",data_name,out_prefix,".rst", sep="") |
|
225 |
writeRaster(bias_rast, filename=raster_name,overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
226 |
|
|
227 |
daily_delta_rast=interpolate(themolst,fitdelta) #Interpolation of the bias surface... |
|
228 |
|
|
229 |
#plot(daily_delta_rast,main="Raster Daily Delta") |
|
230 |
|
|
231 |
#Saving kriged surface in raster images |
|
232 |
data_name<-paste("daily_delta_",dates[[i]],sep="") |
|
233 |
raster_name<-paste("fusion_",data_name,out_prefix,".rst", sep="") |
|
234 |
writeRaster(daily_delta_rast, filename=raster_name,overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
235 |
|
|
236 |
tmax_predicted=themolst+daily_delta_rast-bias_rast #Final surface as a raster layer... |
|
237 |
#tmax_predicted=themolst+daily_delta_rast+bias_rast #Added by Benoit, why is it -bias_rast |
|
238 |
#plot(tmax_predicted,main="Predicted daily") |
|
239 |
|
|
240 |
#Saving kriged surface in raster images |
|
241 |
data_name<-paste("tmax_predicted_",dates[[i]],sep="") |
|
242 |
raster_name<-paste("fusion_",data_name,out_prefix,".rst", sep="") |
|
243 |
writeRaster(tmax_predicted, filename=raster_name,overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
244 |
|
|
245 |
######## |
|
246 |
# check: assessment of results: validation |
|
247 |
######## |
|
248 |
RMSE<-function(x,y) {return(mean((x-y)^2)^0.5)} |
|
249 |
MAE_fun<-function(x,y) {return(mean(abs(x-y)))} |
|
250 |
#ME_fun<-function(x,y){return(mean(abs(y)))} |
|
251 |
#FIT ASSESSMENT |
|
252 |
sta_pred_data_s=lookup(tmax_predicted,data_s$lat,data_s$lon) |
|
253 |
rmse_fit=RMSE(sta_pred_data_s,data_s$dailyTmax) |
|
254 |
mae_fit=MAE_fun(sta_pred_data_s,data_s$dailyTmax) |
|
255 |
|
|
256 |
sta_pred=lookup(tmax_predicted,data_v$lat,data_v$lon) |
|
257 |
#sta_pred=lookup(tmax_predicted,daily_sta_lola$lat,daily_sta_lola$lon) |
|
258 |
#rmse=RMSE(sta_pred,dmoday$dailyTmax) |
|
259 |
#pos<-match("value",names(data_v)) #Find column with name "value" |
|
260 |
#names(data_v)[pos]<-c("dailyTmax") |
|
261 |
tmax<-data_v$dailyTmax |
|
262 |
#data_v$dailyTmax<-tmax |
|
263 |
rmse=RMSE(sta_pred,tmax) |
|
264 |
mae<-MAE_fun(sta_pred,tmax) |
|
265 |
r2<-cor(sta_pred,tmax)^2 #R2, coef. of var |
|
266 |
me<-mean(sta_pred-tmax) |
|
267 |
|
|
268 |
#plot(sta_pred~dmoday$dailyTmax,xlab=paste("Actual daily for",datelabel),ylab="Pred daily",main=paste("RMSE=",rmse)) |
|
269 |
|
|
270 |
png(paste("Predicted_tmax_versus_observed_scatterplot_",dates[i],out_prefix,".png", sep="")) |
|
271 |
plot(sta_pred~tmax,xlab=paste("Actual daily for",datelabel),ylab="Pred daily",main=paste("RMSE=",rmse)) |
|
272 |
abline(0,1) |
|
273 |
#savePlot(paste("Predicted_tmax_versus_observed_scatterplot_",dates[i],out_prefix,".png", sep=""), type="png") |
|
274 |
dev.off() |
|
275 |
#resid=sta_pred-dmoday$dailyTmax |
|
276 |
resid=sta_pred-tmax |
|
277 |
quilt.plot(daily_sta_lola,resid) |
|
278 |
|
|
279 |
### END OF BRIAN's code |
|
280 |
|
|
281 |
### Added by benoit |
|
282 |
#Store results using TPS |
|
283 |
# j=9 |
|
284 |
# results_RMSE[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
285 |
# results_RMSE[i,2]<- ns #number of stations used in the training stage |
|
286 |
# results_RMSE[i,3]<- "RMSE" |
|
287 |
# results_RMSE[i,j+3]<- rmse #Storing RMSE for the model j |
|
288 |
# |
|
289 |
# results_RMSE_f[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
290 |
# results_RMSE_f[i,2]<- ns #number of stations used in the training stage |
|
291 |
# results_RMSE_f[i,3]<- "RMSE" |
|
292 |
# results_RMSE_f[i,j+3]<- rmse_fit #Storing RMSE for the model j |
|
293 |
# |
|
294 |
ns<-nrow(data_s) #This is added to because some loss of data might have happened because of the averaging... |
|
295 |
nv<-nrow(data_v) |
|
296 |
|
|
297 |
### Added by benoit |
|
298 |
#Store results using TPS |
|
299 |
j=9 |
|
300 |
results_RMSE[1]<- dates[i] #storing the interpolation dates in the first column |
|
301 |
results_RMSE[2]<- ns #number of stations used in the training stage |
|
302 |
results_RMSE[3]<- "RMSE" |
|
303 |
results_RMSE[j+3]<- rmse #Storing RMSE for the model j |
|
304 |
|
|
305 |
results_RMSE_f[1]<- dates[i] #storing the interpolation dates in the first column |
|
306 |
results_RMSE_f[2]<- ns #number of stations used in the training stage |
|
307 |
results_RMSE_f[3]<- "RMSE_f" |
|
308 |
results_RMSE_f[j+3]<- rmse_fit #Storing RMSE for the model j |
|
309 |
|
|
310 |
results_MAE_f[1]<- dates[i] #storing the interpolation dates in the first column |
|
311 |
results_MAE_f[2]<- ns #number of stations used in the training stage |
|
312 |
results_MAE_f[3]<- "RMSE_f" |
|
313 |
results_MAE_f[j+3]<- mae_fit #Storing RMSE for the model j |
|
314 |
|
|
315 |
results_MAE[1]<- dates[i] #storing the interpolation dates in the first column |
|
316 |
results_MAE[2]<- ns #number of stations used in the training stage |
|
317 |
results_MAE[3]<- "MAE" |
|
318 |
results_MAE[j+3]<- mae #Storing RMSE for the model j |
|
319 |
|
|
320 |
results_ME[1]<- dates[i] #storing the interpolation dates in the first column |
|
321 |
results_ME[2]<- ns #number of stations used in the training stage |
|
322 |
results_ME[3]<- "ME" |
|
323 |
results_ME[j+3]<- me #Storing RMSE for the model j |
|
324 |
|
|
325 |
results_R2[1]<- dates[i] #storing the interpolation dates in the first column |
|
326 |
results_R2[2]<- ns #number of stations used in the training stage |
|
327 |
results_R2[3]<- "R2" |
|
328 |
results_R2[j+3]<- r2 #Storing RMSE for the model j |
|
329 |
|
|
330 |
#ns<-nrow(data_s) #This is added to because some loss of data might have happened because of the averaging... |
|
331 |
#nv<-nrow(data_v) |
|
332 |
|
|
333 |
for (j in 1:length(models)){ |
|
334 |
|
|
335 |
##Model assessment: specific diagnostic/metrics for GAM |
|
336 |
|
|
337 |
name<-paste("mod",j,sep="") #modj is the name of The "j" model (mod1 if j=1) |
|
338 |
mod<-get(name) #accessing GAM model ojbect "j" |
|
339 |
|
|
340 |
#If mod "j" is not a model object |
|
341 |
if (inherits(mod,"try-error")) { |
|
342 |
results_AIC[1]<- dates[i] #storing the interpolation dates in the first column |
|
343 |
results_AIC[2]<- ns #number of stations used in the training stage |
|
344 |
results_AIC[3]<- "AIC" |
|
345 |
results_AIC[j+3]<- NA |
|
346 |
|
|
347 |
results_GCV[1]<- dates[i] #storing the interpolation dates in the first column |
|
348 |
results_GCV[2]<- ns #number of stations used in the training |
|
349 |
results_GCV[3]<- "GCV" |
|
350 |
results_GCV[j+3]<- NA |
|
351 |
|
|
352 |
results_DEV[1]<- dates[i] #storing the interpolation dates in the first column |
|
353 |
results_DEV[2]<- ns #number of stations used in the training stage |
|
354 |
results_DEV[3]<- "DEV" |
|
355 |
results_DEV[j+3]<- NA |
|
356 |
|
|
357 |
results_RMSE_f[1]<- dates[i] #storing the interpolation dates in the first column |
|
358 |
results_RMSE_f[2]<- ns #number of stations used in the training stage |
|
359 |
results_RMSE_f[3]<- "RSME_f" |
|
360 |
results_RMSE_f[j+3]<- NA |
|
361 |
|
|
362 |
results_MAE_f[1]<- dates[i] #storing the interpolation dates in the first column |
|
363 |
results_MAE_f[2]<- ns #number of stations used in the training stage |
|
364 |
results_MAE_f[3]<- "MAE_f" |
|
365 |
results_MAE_f[j+3]<-NA |
|
366 |
|
|
367 |
results_RMSE[1]<- dates[i] #storing the interpolation dates in the first column |
|
368 |
results_RMSE[2]<- ns #number of stations used in the training stage |
|
369 |
results_RMSE[3]<- "RMSE" |
|
370 |
results_RMSE[j+3]<- NA #Storing RMSE for the model j |
|
371 |
results_MAE[1]<- dates[i] #storing the interpolation dates in the first column |
|
372 |
results_MAE[2]<- ns #number of stations used in the training stage |
|
373 |
results_MAE[3]<- "MAE" |
|
374 |
results_MAE[j+3]<- NA #Storing MAE for the model j |
|
375 |
results_ME[1]<- dates[i] #storing the interpolation dates in the first column |
|
376 |
results_ME[2]<- ns #number of stations used in the training stage |
|
377 |
results_ME[3]<- "ME" |
|
378 |
results_ME[j+3]<- NA #Storing ME for the model j |
|
379 |
results_R2[1]<- dates[i] #storing the interpolation dates in the first column |
|
380 |
results_R2[2]<- ns #number of stations used in the training stage |
|
381 |
results_R2[3]<- "R2" |
|
382 |
results_R2[j+3]<- NA #Storing R2 for the model j |
|
383 |
|
|
384 |
} |
|
385 |
|
|
386 |
#If mod is a modelobject |
|
387 |
|
|
388 |
#If mod "j" is not a model object |
|
389 |
if (inherits(mod,"gam")) { |
|
390 |
|
|
391 |
results_AIC[1]<- dates[i] #storing the interpolation dates in the first column |
|
392 |
results_AIC[2]<- ns #number of stations used in the training stage |
|
393 |
results_AIC[3]<- "AIC" |
|
394 |
results_AIC[j+3]<- AIC (mod) |
|
395 |
|
|
396 |
results_GCV[1]<- dates[i] #storing the interpolation dates in the first column |
|
397 |
results_GCV[2]<- ns #number of stations used in the training |
|
398 |
results_GCV[3]<- "GCV" |
|
399 |
results_GCV[j+3]<- mod$gcv.ubre |
|
400 |
|
|
401 |
results_DEV[1]<- dates[i] #storing the interpolation dates in the first column |
|
402 |
results_DEV[2]<- ns #number of stations used in the training stage |
|
403 |
results_DEV[3]<- "DEV" |
|
404 |
results_DEV[j+3]<- mod$deviance |
|
405 |
|
|
406 |
sta_LST_s=lookup(themolst,data_s$lat,data_s$lon) |
|
407 |
sta_delta_s=lookup(daily_delta_rast,data_s$lat,data_s$lon) #delta surface has been calculated before!! |
|
408 |
sta_bias_s= mod$fit |
|
409 |
#Need to extract values from the kriged delta surface... |
|
410 |
#sta_delta= lookup(delta_surface,data_v$lat,data_v$lon) |
|
411 |
#tmax_predicted=sta_LST+sta_bias-y_mod$fit |
|
412 |
tmax_predicted_s= sta_LST_s-sta_bias_s+sta_delta_s |
|
413 |
|
|
414 |
results_RMSE_f[1]<- dates[i] #storing the interpolation dates in the first column |
|
415 |
results_RMSE_f[2]<- ns #number of stations used in the training stage |
|
416 |
results_RMSE_f[3]<- "RSME_f" |
|
417 |
results_RMSE_f[j+3]<- sqrt(sum((tmax_predicted_s-data_s$dailyTmax)^2)/ns) |
|
418 |
|
|
419 |
results_MAE_f[1]<- dates[i] #storing the interpolation dates in the first column |
|
420 |
results_MAE_f[2]<- ns #number of stations used in the training stage |
|
421 |
results_MAE_f[3]<- "MAE_f" |
|
422 |
results_MAE_f[j+3]<-sum(abs(tmax_predicted_s-data_s$dailyTmax))/ns |
|
423 |
|
|
424 |
##Model assessment: general diagnostic/metrics |
|
425 |
##validation: using the testing data |
|
426 |
|
|
427 |
#data_v$y_var<-data_v$LSTD_bias |
|
428 |
#data_v$y_var<-tmax |
|
429 |
y_mod<- predict(mod, newdata=data_v, se.fit = TRUE) #Using the coeff to predict new values. |
|
430 |
|
|
431 |
####ADDED ON JULY 5th |
|
432 |
sta_LST_v=lookup(themolst,data_v$lat,data_v$lon) |
|
433 |
sta_delta_v=lookup(daily_delta_rast,data_v$lat,data_v$lon) #delta surface has been calculated before!! |
|
434 |
sta_bias_v= y_mod$fit |
|
435 |
#Need to extract values from the kriged delta surface... |
|
436 |
#sta_delta= lookup(delta_surface,data_v$lat,data_v$lon) |
|
437 |
#tmax_predicted=sta_LST+sta_bias-y_mod$fit |
|
438 |
tmax_predicted_v= sta_LST_v-sta_bias_v+sta_delta_v |
|
439 |
|
|
440 |
#data_v$tmax<-(data_v$tmax)/10 |
|
441 |
res_mod<- data_v$dailyTmax - tmax_predicted_v #Residuals for the model for fusion |
|
442 |
#res_mod<- data_v$y_var - y_mod$fit #Residuals for the model |
|
443 |
|
|
444 |
RMSE_mod <- sqrt(sum(res_mod^2)/nv) #RMSE FOR REGRESSION STEP 1: GAM |
|
445 |
MAE_mod<- sum(abs(res_mod))/nv #MAE, Mean abs. Error FOR REGRESSION STEP 1: GAM |
|
446 |
ME_mod<- sum(res_mod)/nv #ME, Mean Error or bias FOR REGRESSION STEP 1: GAM |
|
447 |
R2_mod<- cor(data_v$dailyTmax,tmax_predicted_v)^2 #R2, coef. of var FOR REGRESSION STEP 1: GAM |
|
448 |
|
|
449 |
results_RMSE[1]<- dates[i] #storing the interpolation dates in the first column |
|
450 |
results_RMSE[2]<- ns #number of stations used in the training stage |
|
451 |
results_RMSE[3]<- "RMSE" |
|
452 |
results_RMSE[j+3]<- RMSE_mod #Storing RMSE for the model j |
|
453 |
results_MAE[1]<- dates[i] #storing the interpolation dates in the first column |
|
454 |
results_MAE[2]<- ns #number of stations used in the training stage |
|
455 |
results_MAE[3]<- "MAE" |
|
456 |
results_MAE[j+3]<- MAE_mod #Storing MAE for the model j |
|
457 |
results_ME[1]<- dates[i] #storing the interpolation dates in the first column |
|
458 |
results_ME[2]<- ns #number of stations used in the training stage |
|
459 |
results_ME[3]<- "ME" |
|
460 |
results_ME[j+3]<- ME_mod #Storing ME for the model j |
|
461 |
results_R2[1]<- dates[i] #storing the interpolation dates in the first column |
|
462 |
results_R2[2]<- ns #number of stations used in the training stage |
|
463 |
results_R2[3]<- "R2" |
|
464 |
results_R2[j+3]<- R2_mod #Storing R2 for the model j |
|
465 |
|
|
466 |
#Saving residuals and prediction in the dataframes: tmax predicted from GAM |
|
467 |
pred<-paste("pred_mod",j,sep="") |
|
468 |
#data_v[[pred]]<-as.numeric(y_mod$fit) |
|
469 |
data_v[[pred]]<-as.numeric(tmax_predicted_v) |
|
470 |
data_s[[pred]]<-as.numeric(tmax_predicted_s) #Storing model fit values (predicted on training sample) |
|
471 |
#data_s[[pred]]<-as.numeric(mod$fit) #Storing model fit values (predicted on training sample) |
|
472 |
|
|
473 |
name2<-paste("res_mod",j,sep="") |
|
474 |
data_v[[name2]]<-as.numeric(res_mod) |
|
475 |
temp<-tmax_predicted_s-data_s$dailyTmax |
|
476 |
data_s[[name2]]<-as.numeric(temp) |
|
477 |
#end of loop calculating RMSE |
|
478 |
} |
|
479 |
} |
|
480 |
|
|
481 |
#if (i==length(dates)){ |
|
482 |
|
|
483 |
#Specific diagnostic measures related to the testing datasets |
|
484 |
|
|
485 |
results_table_RMSE<-as.data.frame(results_RMSE) |
|
486 |
results_table_MAE<-as.data.frame(results_MAE) |
|
487 |
results_table_ME<-as.data.frame(results_ME) |
|
488 |
results_table_R2<-as.data.frame(results_R2) |
|
489 |
results_table_RMSE_f<-as.data.frame(results_RMSE_f) |
|
490 |
results_table_MAE_f<-as.data.frame(results_MAE_f) |
|
491 |
|
|
492 |
results_table_AIC<-as.data.frame(results_AIC) |
|
493 |
results_table_GCV<-as.data.frame(results_GCV) |
|
494 |
results_table_DEV<-as.data.frame(results_DEV) |
|
495 |
|
|
496 |
tb_metrics1<-rbind(results_table_RMSE,results_table_MAE, results_table_ME, results_table_R2,results_table_RMSE_f,results_table_MAE_f) # |
|
497 |
tb_metrics2<-rbind(results_table_AIC,results_table_GCV, results_table_DEV) |
|
498 |
cname<-c("dates","ns","metric","mod1", "mod2","mod3", "mod4", "mod5", "mod6", "mod7","mod8","mod9") |
|
499 |
colnames(tb_metrics1)<-cname |
|
500 |
cname<-c("dates","ns","metric","mod1", "mod2","mod3", "mod4", "mod5", "mod6", "mod7","mod8") |
|
501 |
colnames(tb_metrics2)<-cname |
|
502 |
#colnames(results_table_RMSE)<-cname |
|
503 |
#colnames(results_table_RMSE_f)<-cname |
|
504 |
#tb_diagnostic1<-results_table_RMSE #measures of validation |
|
505 |
#tb_diagnostic2<-results_table_RMSE_f #measures of fit |
|
506 |
|
|
507 |
#write.table(tb_diagnostic1, file= paste(path,"/","results_fusion_Assessment_measure1",out_prefix,".txt",sep=""), sep=",") |
|
508 |
|
|
509 |
#} |
|
510 |
print(paste(dates[i],"processed")) |
|
511 |
mod_obj<-list(mod1,mod2,mod3,mod4,mod5,mod6,mod7,mod8,mod9a,mod9b) |
|
512 |
# end of the for loop1 |
|
513 |
#results_list<-list(data_s,data_v,tb_metrics1,tb_metrics2) |
|
514 |
results_list<-list(data_s,data_v,tb_metrics1,tb_metrics2,mod_obj) |
|
515 |
return(results_list) |
|
516 |
#return(tb_diagnostic1) |
|
517 |
} |
Also available in: Unified diff
FUSION, using parallel for raster prediction with function