Revision 5c03e335
Added by Benoit Parmentier almost 10 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part1.R | ||
---|---|---|
5 | 5 |
#Part 1 create summary tables and inputs for figure in part 2 and part 3. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 03/23/2014 |
8 |
#MODIFIED ON: 12/23/2014
|
|
9 |
#Version: 3
|
|
8 |
#MODIFIED ON: 01/28/2015
|
|
9 |
#Version: 4
|
|
10 | 10 |
#PROJECT: Environmental Layers project |
11 | 11 |
#TO DO: |
12 | 12 |
# - generate delta and clim mosaic |
13 |
# - generate monthly inputs data_month |
|
14 |
# - generate table of number of observations per tile for use in map part 2 |
|
15 |
# - generate data_s and data_v inputs as giant table |
|
16 |
# - generate accuracy for mosaic (part 2 and part3) |
|
17 | 13 |
# - clean up |
18 | 14 |
|
19 | 15 |
#First source file: |
... | ... | |
468 | 464 |
|
469 | 465 |
#reg1 (North Am), reg2(Europe),reg3(Asia), reg4 (South Am), reg5 (Africa), reg6 (Australia-Asia) |
470 | 466 |
#master directory containing the definition of tile size and tiles predicted |
471 |
in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output1000x3000_km/"
|
|
467 |
in_dir1 <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/"
|
|
472 | 468 |
|
473 |
region_names <- c("reg2","reg6") #selected region names
|
|
469 |
region_names <- c("reg1") #selected region names
|
|
474 | 470 |
|
475 | 471 |
in_dir_list <- list.dirs(path=in_dir1,recursive=FALSE) #get the list regions processed for this run |
476 | 472 |
#basename(in_dir_list) |
... | ... | |
499 | 495 |
|
500 | 496 |
y_var_name <- "dailyTmax" |
501 | 497 |
interpolation_method <- c("gam_CAI") |
502 |
out_prefix<-"run10_global_analyses_12232014"
|
|
498 |
out_prefix<-"run10_global_analyses_01282015"
|
|
503 | 499 |
|
504 | 500 |
#out_dir<-"/data/project/layers/commons/NEX_data/" #On NCEAS Atlas |
505 | 501 |
out_dir <- "/nobackup/bparmen1/" #on NEX |
502 |
#out_dir <- "/nobackupp8/bparmen1/" # |
|
506 | 503 |
#out_dir <-paste(out_dir,"_",out_prefix,sep="") |
507 | 504 |
create_out_dir_param <- TRUE |
508 | 505 |
|
... | ... | |
743 | 740 |
y_var_name <- "dailyTmax" #set up in parameters of this script |
744 | 741 |
interpolation_method <- c("gam_CAI") #set up in parameters of the script |
745 | 742 |
name_method <- paste(interpolation_method,"_",y_var_name,"_",sep="") |
746 |
#make it general using nb_mod!! |
|
747 |
#could be set up at the begining? |
|
748 |
|
|
749 |
mod_id <- c(1:(nb_mod-1),"_kr") |
|
750 |
pred_pattern_str <- paste(".*predicted_mod",mod_id,"_0_1.*",sep="") |
|
751 |
#,".*predicted_mod2_0_1.*",".*predicted_mod3_0_1.*",".*predicted_mod_kr_0_1.*") |
|
752 |
#l_pattern_models <- lapply(c(".*predicted_mod1_0_1.*",".*predicted_mod2_0_1.*",".*predicted_mod3_0_1.*",".*predicted_mod_kr_0_1.*"), |
|
753 |
# FUN=function(x){paste(x,dates_l,".*.tif",sep="")}) |
|
754 |
l_pattern_models <- lapply(pred_pattern_str, |
|
755 |
FUN=function(x){paste(x,dates_l,".*.tif",sep="")}) |
|
756 |
#gam_CAI_dailyTmax_predicted_mod_kr_0_1_20101231_30_145.0_-120.0.tif |
|
757 |
#gam_CAI_dailyTmax_predicted_mod_kr_0_1_20101231_30_145.0_-120.0.tif |
|
758 |
|
|
759 |
##Get list of predicted tif across all tiles, models and dates... |
|
760 |
#this takes time, use mclapply!! |
|
761 |
lf_pred_tif <- vector("list",length=length(l_pattern_models)) #number of models is 3 |
|
762 |
for (i in 1:length(l_pattern_models)){ |
|
763 |
l_pattern_mod <- l_pattern_models[[i]] #365 dates |
|
764 |
#list_tif_files_dates <-lapply(1:length(l_pattern_mod),FUN=list_tif_fun, |
|
765 |
# in_dir_list=in_dir_list,pattern_str=l_pattern_models[[i]]) |
|
766 |
list_tif_files_dates <-mclapply(1:length(l_pattern_mod),FUN=list_tif_fun, |
|
767 |
in_dir_list=in_dir_list,pattern_str=l_pattern_models[[i]],mc.preschedule=FALSE,mc.cores = 6) |
|
768 |
|
|
769 |
lf_pred_tif[[i]] <- list_tif_files_dates |
|
770 |
} |
|
771 |
|
|
772 |
#Need to check how many dates were predicted (have tif) !!! make a table with that!! |
|
773 |
|
|
774 |
#Now get the clim surfaces: |
|
775 |
month_l <- paste("clim_month_",1:12,sep="") |
|
776 |
#l_pattern_models <- lapply(c("_mod1_0_1.*","_mod2_0_1.*","_mod3_0_1.*","_mod_kr_0_1.*"), |
|
777 |
# FUN=function(x){paste("*.",month_l,x,".*.tif",sep="")}) |
|
778 |
#generate this automatically!!! |
|
779 |
l_pattern_models <- lapply(c("_mod1_0_1.*","_mod2_0_1.*","_mod_kr_0_1.*"), |
|
780 |
FUN=function(x){paste("*.",month_l,x,".*.tif",sep="")}) |
|
781 |
|
|
782 |
|
|
783 |
#"CAI_TMAX_clim_month_11_mod2_0_145.0_-120.0.tif" |
|
784 |
lf_clim_tif <- vector("list",length=nb_mod) #number of models is 3 |
|
785 |
for (i in 1:length(l_pattern_models)){ |
|
786 |
l_pattern_mod <- l_pattern_models[[i]] #12 dates |
|
787 |
list_tif_files_dates <- mclapply(1:length(l_pattern_mod),FUN=list_tif_fun, |
|
788 |
in_dir_list=in_dir_list,pattern_str=l_pattern_models[[i]],mc.preschedule=FALSE,mc.cores = 6) |
|
789 |
lf_clim_tif[[i]] <- list_tif_files_dates |
|
790 |
} |
|
791 |
|
|
792 |
#Now get delta surfaces: |
|
793 |
|
|
794 |
#mod_id <- c(1:(nb_mod-1),"_kr") |
|
795 |
#pred_pattern_str <- paste(".*predicted_mod",mod_id,"_0_1.*",sep="") |
|
796 |
#,".*predicted_mod2_0_1.*",".*predicted_mod3_0_1.*",".*predicted_mod_kr_0_1.*") |
|
797 |
#l_pattern_models <- lapply(c(".*predicted_mod1_0_1.*",".*predicted_mod2_0_1.*",".*predicted_mod3_0_1.*",".*predicted_mod_kr_0_1.*"), |
|
798 |
# FUN=function(x){paste(x,dates_l,".*.tif",sep="")}) |
|
799 |
#l_pattern_models <- lapply(pred_pattern_str, |
|
800 |
# FUN=function(x){paste(x,dates_l,".*.tif",sep="")}) |
|
801 |
|
|
802 |
#date_l# <- paste("clim_month_",1:12,sep="") |
|
803 |
#l_pattern_models <- lapply(c("_mod1_0_1.*","_mod2_0_1.*","_mod3_0_1.*","_mod_kr_0_1.*"), |
|
804 |
# FUN=function(x){paste("*.",month_l,x,".*.tif",sep="")}) |
|
805 |
#l_pattern_models <- lapply(c(".*delta_dailyTmax_mod1_del_0_1.*",".*delta_dailyTmax_mod2_del_0_1.*",".*delta_dailyTmax_mod3_del_0_1.*",".*delta_dailyTmax_mod_kr_del_0_1.*"), |
|
806 |
# FUN=function(x){paste(x,dates_l,".*.tif",sep="")}) |
|
807 |
l_pattern_models <- lapply(c(".*delta_dailyTmax_mod1_del_0_1.*",".*delta_dailyTmax_mod2_del_0_1.*",".*delta_dailyTmax_mod_kr_del_0_1.*"), |
|
808 |
FUN=function(x){paste(x,dates_l,".*.tif",sep="")}) |
|
809 |
|
|
810 |
lf_delta_tif <- vector("list",length=nb_mod) #number of models is 3 |
|
811 |
for (i in 1:length(l_pattern_models)){ |
|
812 |
l_pattern_mod <- l_pattern_models[[i]] |
|
813 |
list_tif_files_dates <- mclapply(1:length(l_pattern_mod),FUN=list_tif_fun, |
|
814 |
in_dir_list=in_dir_list,pattern_str=l_pattern_models[[i]],mc.preschedule=FALSE,mc.cores = 6) |
|
815 |
lf_delta_tif[[i]] <- list_tif_files_dates |
|
816 |
} |
|
817 |
|
|
743 |
##Use python code written by Alberto Guzman |
|
818 | 744 |
|
819 |
#### NOW create mosaic images for daily prediction |
|
745 |
#system("MODULEPATH=$MODULEPATH:/nex/modules/files") |
|
746 |
#system("module load /nex/modules/files/pythonkits/gdal_1.10.0_python_2.7.3_nex") |
|
820 | 747 |
|
821 |
#out_prefix_s <- paste(name_method,c("predicted_mod1_0_01","predicted_mod2_0_01","predicted_mod3_0_01","predicted_mod_kr_0_1"),sep="")
|
|
822 |
out_prefix_s <- paste(name_method,c("predicted_mod1_0_01","predicted_mod2_0_01","predicted_mod_kr_0_1"),sep="")
|
|
748 |
module_path <- ""
|
|
749 |
module_path <- "/nobackupp6/aguzman4/climateLayers/sharedCode/"
|
|
823 | 750 |
|
824 |
dates_l #list of predicted dates |
|
825 |
#l_out_rastnames_var <- paste(name_method,"predicted_mod1_0_01_",dates_l,sep="") |
|
826 |
l_out_rastnames_var <- lapply(out_prefix_s, |
|
827 |
FUN=function(x){paste(x,"_",dates_l,sep="")}) |
|
751 |
#l_dates <- paste(day_to_mosaic,collapse=",",sep=" ") |
|
752 |
l_dates <- paste(day_to_mosaic,collapse=",") |
|
753 |
## use region 2 first |
|
828 | 754 |
|
829 |
#nb_mod <- 4 #this is set up earlier |
|
830 |
##Add option to specify wich dates to mosaic?? |
|
831 |
day_to_mosaic <- c("20100101","20100901") |
|
832 |
if (!is.null(day_to_mosaic)){ |
|
833 |
list_days <-match(day_to_mosaic,dates_l) |
|
834 |
}else{ |
|
835 |
list_days <- 1:365 #should check for year in case it has 366, add later!! |
|
836 |
} |
|
755 |
#make this a function later...with following param |
|
756 |
#input: |
|
757 |
#region_names |
|
758 |
#in_dir1 |
|
759 |
##out_dir , not ehta out_dir moasic s can be created in rhe future function |
|
760 |
#mod_str |
|
761 |
#For the time being use mean,median from python function by Alberto... |
|
837 | 762 |
|
838 |
##Use python code written by Alberto Guzman |
|
763 |
for (i in 1:length(region_names)){ |
|
764 |
in_dir_mosaics <- file.path(in_dir1,region_names[i]) |
|
765 |
#out_dir_mosaics <- "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg5/mosaicsMean" |
|
766 |
#Can be changed to have mosaics in different dir.. |
|
767 |
out_dir_mosaics <- out_dir |
|
768 |
#prefix_str <- "reg4_1500x4500" |
|
769 |
#tile_size <- basename(dirname(in_dir[[i]])) |
|
770 |
tile_size <- basename(in_dir1) |
|
839 | 771 |
|
840 |
system("MODULEPATH=$MODULEPATH:/nex/modules/files") |
|
841 |
system("module load /nex/modules/files/pythonkits/gdal_1.10.0_python_2.7.3_nex") |
|
772 |
prefix_str <- paste(region_names[i],"_",tile_size,sep="") |
|
842 | 773 |
|
843 |
module_path <- "" |
|
844 |
module_path <- "/nobackupp6/aguzman4/climateLayers/sharedCode/" |
|
845 |
in_dir_mosaics <- "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg2/" |
|
846 |
out_dir_mosaics <- "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg2/mosaics" |
|
774 |
mod_str <- "mod1" #use mod2 which corresponds to model with LST and elev |
|
847 | 775 |
|
848 |
l_dates <- "20100101,20100102" |
|
849 |
cmd_str <- paste("python", file.path(module_path,"mosaicUsingGdalMerge.py"), |
|
776 |
cmd_str <- paste("python", file.path(module_path,"mosaicUsingGdalMerge.py"), |
|
850 | 777 |
in_dir_mosaics, |
851 | 778 |
out_dir_mosaics, |
779 |
prefix_str, |
|
780 |
"--mods", mod_str, |
|
852 | 781 |
"--date", l_dates,sep=" ") |
853 |
system(cmd_str) |
|
782 |
system(cmd_str) |
|
783 |
|
|
784 |
} |
|
854 | 785 |
|
855 | 786 |
### Now find out how many files were predicted |
856 | 787 |
# will be useful later on |
... | ... | |
871 | 802 |
|
872 | 803 |
names(data_month) #this contains LST means (mm_1, mm_2 etc.) as well as TMax and other info |
873 | 804 |
|
874 |
#problem with tile 12...the raster ojbect has missing sub object |
|
875 |
#data_month_list <- lapply(1:length(list_raster_obj_files),x=list_raster_obj_files, |
|
876 |
# FUN=function(i,x){x<-load_obj(x[[i]]); |
|
877 |
# extract_from_list_obj(x$validation_mod_month_obj,"data_s")}) |
|
878 |
|
|
879 |
### make this part a function: |
|
880 |
|
|
881 |
#create a table for every month, day and tiles... |
|
882 |
# data_month_list <- lapply(1:length(list_raster_obj_files),x=list_raster_obj_files, |
|
883 |
# FUN=function(i,x){x<-load_obj(x[[i]]); |
|
884 |
# extract_from_list_obj(x$clim_method_mod_obj,"data_month")}) |
|
885 |
# |
|
886 |
# names(data_month_list) <- paste("tile","_",1:length(data_month_list),sep="") |
|
887 |
# |
|
888 |
# #names(data_month_list) <- basename(in_dir_list) #use folder id instead |
|
889 |
# |
|
890 |
# list_names_tile_id <- paste("tile",1:length(list_raster_obj_files),sep="_") |
|
891 |
# |
|
892 |
# #tile_id <- lapply(1:length(data_month_list), |
|
893 |
# # FUN=function(i,x){rep(names(x)[i],nrow(x[[i]]))},x=data_month_list) |
|
894 |
# |
|
895 |
# data_month_NAM <- do.call(rbind.fill,data_month_list) #combined data_month for "NAM" North America |
|
896 |
# data_month_NAM$tile_id <- unlist(tile_id) |
|
897 |
# |
|
898 |
# names(robj1$validation_mod_day_obj[[1]]$data_s) # daily for January with predictions |
|
899 |
# dim(robj1$validation_mod_month_obj[[1]]$data_s) # daily for January with predictions |
|
900 |
# |
|
901 |
|
|
902 | 805 |
use_day=TRUE |
903 | 806 |
use_month=TRUE |
904 | 807 |
|
... | ... | |
937 | 840 |
#for i in 1:length(df_tiled_processed$tile_coord) |
938 | 841 |
#output_atlas_dir <- "/data/project/layers/commons/NEX_data/output_run3_global_analyses_06192014/output10Deg/reg1" |
939 | 842 |
#output_atlas_dir <- "/data/project/layers/commons/NEX_data/output_run5_global_analyses_08252014/output20Deg" |
940 |
output_atlas_dir <- "/data/project/layers/commons/NEX_data/output_run10_global_analyses_12152014"
|
|
843 |
output_atlas_dir <- file.path("/data/project/layers/commons/NEX_data/",out_dir)
|
|
941 | 844 |
#Make directories on ATLAS |
942 | 845 |
#for (i in 1:length(df_tile_processed$tile_coord)){ |
943 | 846 |
# create_dir_fun(file.path(output_atlas_dir,as.character(df_tile_processed$tile_coord[i])),out_suffix=NULL) |
... | ... | |
948 | 851 |
# create_dir_fun(file.path(output_atlas_dir,as.character(df_tile_processed$tile_coord[i]),"/shapefiles"),out_suffix=NULL) |
949 | 852 |
#} |
950 | 853 |
|
951 |
|
|
952 |
#Copy summary textfiles and mosaic back to atlas |
|
854 |
#Copy summary textfiles back to atlas |
|
953 | 855 |
|
954 | 856 |
Atlas_dir <- file.path("/data/project/layers/commons/NEX_data/",basename(out_dir))#,"output/subset/shapefiles") |
955 | 857 |
Atlas_hostname <- "parmentier@atlas.nceas.ucsb.edu" |
956 |
lf_cp_f <- list.files(out_dir,full.names=T)#copy all files can filter later |
|
858 |
lf_cp_f <- list.files(out_dir,full.names=T,pattern="*.txt")#copy all files can filter later
|
|
957 | 859 |
filenames_NEX <- paste(lf_cp_f,collapse=" ") #copy raster prediction object |
958 | 860 |
cmd_str <- paste("scp -p",filenames_NEX,paste(Atlas_hostname,Atlas_dir,sep=":"), sep=" ") |
959 | 861 |
system(cmd_str) |
... | ... | |
979 | 881 |
|
980 | 882 |
###### COPY MOSAIC files |
981 | 883 |
|
982 |
#> system("ls -ltr /nobackupp6/aguzman4/climateLayers/output1500x4500_km/reg5") |
|
983 |
#Copy all mosaics related files in one unique directory called mosaics on Atlas |
|
884 |
#Copy region mosaics back to atlas |
|
984 | 885 |
|
985 | 886 |
Atlas_dir <- file.path("/data/project/layers/commons/NEX_data/",basename(out_dir),"mosaics") |
986 | 887 |
Atlas_hostname <- "parmentier@atlas.nceas.ucsb.edu" |
987 |
#lf_reg4 <- list.files(path=file.path(dirname(in_dir_list[[2]]),"mosaics"),full.names=T) |
|
988 |
#lf_reg5 <- list.files(path=file.path(dirname(in_dir_list[[20]]),"mosaics"),full.names=T) |
|
989 |
lf_reg2 <- list.files(path=file.path("/nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg2","mosaics"), |
|
990 |
full.names=T) |
|
991 |
|
|
992 |
#lf_cp_mosaics <- c(lf_reg4,lf_reg5) |
|
993 |
#filenames_NEX <- paste(lf_cp_mosaics,collapse=" ") #copy raster prediction object |
|
994 |
#cmd_str <- paste("scp -p",filenames_NEX,paste(Atlas_hostname,Atlas_dir,sep=":"), sep=" ") |
|
995 |
#system(cmd_str) |
|
996 |
|
|
997 |
#since they have the same name, must place them in separate dir... |
|
998 |
filenames_NEX <- paste(lf_reg2,collapse=" ") #copy raster prediction object |
|
999 |
cmd_str <- paste("scp -p",filenames_NEX,paste(Atlas_hostname,file.path(Atlas_dir,"reg2"),sep=":"), sep=" ") |
|
1000 |
system(cmd_str) |
|
1001 |
|
|
1002 |
############# COPY FILES USED FOR DIFFERENCES OF IMAGES |
|
1003 |
#copy mosaics from other tiles of 1,500x4,500 |
|
1004 |
|
|
1005 |
|
|
1006 |
lf_reg4_1500x4500 <- list.files(path="/nobackup/bparmen1//output_run10_global_analyses_12152014/mosaics/reg4_1500x4500/",full.names=T) |
|
1007 |
lf_reg5_1500x4500 <- list.files(path="/nobackup/bparmen1//output_run10_global_analyses_12152014/mosaics/reg5_1500x4500/",full.names=T) |
|
1008 |
lf_reg4_1000x3000 <- list.files(path="/nobackup/bparmen1//output_run10_global_analyses_12152014/mosaics/reg4_1000x3000/",full.names=T) |
|
1009 |
lf_reg5_1000x3000 <- list.files(path="/nobackup/bparmen1//output_run10_global_analyses_12152014/mosaics/reg5_1000x3000/",full.names=T) |
|
1010 |
|
|
1011 |
Atlas_dir <- file.path("/data/project/layers/commons/NEX_data/",basename(out_dir),"mosaics") |
|
1012 |
Atlas_hostname <- "parmentier@atlas.nceas.ucsb.edu" |
|
1013 |
#lf_reg4 <- list.files(path=file.path(dirname(in_dir_list[[2]]),"mosaics"),full.names=T) |
|
1014 |
|
|
1015 |
#copy reg5_1000x3000 |
|
1016 |
filenames_NEX <- paste(lf_reg5_1000x3000,collapse=" ") #copy raster prediction object |
|
1017 |
cmd_str <- paste("scp -p",filenames_NEX,paste(Atlas_hostname,file.path(Atlas_dir,"reg5_1000x3000"),sep=":"), sep=" ") |
|
1018 |
system(cmd_str) |
|
1019 |
|
|
1020 |
#copy reg4_1000x3000 |
|
1021 |
filenames_NEX <- paste(lf_reg4_1000x3000,collapse=" ") #copy raster prediction object |
|
1022 |
cmd_str <- paste("scp -p",filenames_NEX,paste(Atlas_hostname,file.path(Atlas_dir,"reg4_1000x3000"),sep=":"), sep=" ") |
|
1023 |
system(cmd_str) |
|
1024 |
|
|
1025 |
#copy reg4_1500x4500 |
|
1026 |
filenames_NEX <- paste(lf_reg4_1500x4500,collapse=" ") #copy raster prediction object |
|
1027 |
cmd_str <- paste("scp -p",filenames_NEX,paste(Atlas_hostname,file.path(Atlas_dir,"reg4_1500x4500"),sep=":"), sep=" ") |
|
1028 |
system(cmd_str) |
|
1029 |
|
|
1030 |
#copy reg5_1500x4500 |
|
1031 |
filenames_NEX <- paste(lf_reg5_1500x4500,collapse=" ") #copy raster prediction object |
|
1032 |
cmd_str <- paste("scp -p",filenames_NEX,paste(Atlas_hostname,file.path(Atlas_dir,"reg5_1500x4500"),sep=":"), sep=" ") |
|
888 |
lf_cp_f <- list.files(out_dir,full.names=T,pattern="*.tif")#copy all files can filter later |
|
889 |
filenames_NEX <- paste(lf_cp_f,collapse=" ") #copy raster prediction object |
|
890 |
cmd_str <- paste("scp -p",filenames_NEX,paste(Atlas_hostname,Atlas_dir,sep=":"), sep=" ") |
|
1033 | 891 |
system(cmd_str) |
1034 | 892 |
|
1035 |
|
|
1036 | 893 |
##################### END OF SCRIPT ###################### |
1037 | 894 |
|
1038 |
|
|
1039 | 895 |
###Mosaic ... |
1040 | 896 |
#python mosaicUsingGdalMerge.py /nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg5/ /nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg5/mosaics/ |
1041 | 897 |
#specify which month you want to process with the '-m' option. |
... | ... | |
1046 | 902 |
#python /nobackupp6/aguzman4/climateLayers/sharedCode/mosaicUsingGdalMerge.py /nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg2/ /nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg2/mosaics/ --date 20100101,20100102,20100103,20100104 |
1047 | 903 |
#python /nobackupp6/aguzman4/climateLayers/sharedCode/mosaicUsingGdalMerge.py /nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg2/ /nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg2/mosaics/ --m 1" |
1048 | 904 |
|
1049 |
# cmd_str <- paste("python", module_path,"mosaicUsingGdalMerge.py", |
|
1050 |
# "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg5/" |
|
1051 |
# "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg5/mosaics/" |
|
1052 |
# "--date 20100101,20100102,20100103,20100104",sep=" ") |
|
1053 |
# cmd_str <- paste("python", module_path,"mosaicUsingGdalMerge.py", |
|
1054 |
# "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg5/" |
|
1055 |
# "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg5/mosaics/" |
|
1056 |
# "--date 20100101,20100102,20100103,20100104",sep=" ") |
|
1057 |
# |
|
1058 |
# system("MODULEPATH=$MODULEPATH:/nex/modules/files") |
|
1059 |
# system("module load /nex/modules/files/pythonkits/gdal_1.10.0_python_2.7.3_nex") |
|
1060 |
# |
|
1061 |
# module_path <- "" |
|
1062 |
#module_path <- "/nobackupp6/aguzman4/climateLayers/sharedCode/" |
|
1063 |
#in_dir_mosaics <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/reg5/" |
|
1064 |
#out_dir_mosaics <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/reg5/mosaics" |
|
1065 |
#l_dates <- "20100101,20100102,20100103,20100104,20100901,20100902,20100903,20100904" |
|
1066 |
#cmd_str <- paste("python", file.path(module_path,"mosaicUsingGdalMerge.py"), |
|
1067 |
# in_dir_mosaics, |
|
1068 |
# out_dir_mosaics, |
|
1069 |
# "--date", l_dates,sep=" ") |
|
1070 |
#system(cmd_str) |
|
1071 |
|
|
1072 |
#module_path <- "/nobackupp6/aguzman4/climateLayers/sharedCode/" |
|
1073 |
#in_dir_mosaics <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/reg4/" |
|
1074 |
#out_dir_mosaics <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/reg4/mosaics" |
|
1075 |
#l_dates <- "20100101,20100102,20100103,20100104,20100901,20100902,20100903,20100904" |
|
1076 |
#cmd_str <- paste("python", file.path(module_path,"mosaicUsingGdalMerge.py"), |
|
1077 |
# in_dir_mosaics, |
|
1078 |
# out_dir_mosaics, |
|
1079 |
# "--date", l_dates,sep=" ") |
|
1080 |
|
|
1081 |
system("MODULEPATH=$MODULEPATH:/nex/modules/files") |
|
1082 |
system("module load /nex/modules/files/pythonkits/gdal_1.10.0_python_2.7.3_nex") |
|
1083 |
|
|
1084 |
module_path <- "" |
|
1085 |
module_path <- "/nobackupp6/aguzman4/climateLayers/sharedCode/" |
|
1086 |
in_dir_mosaics <- "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg4/" |
|
1087 |
out_dir_mosaics <- "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg4/mosaicsMean" |
|
1088 |
out_dir_mosaics <- "/nobackup/bparmen1//output_run10_global_analyses_12152014/mosaics/reg4_1000x3000" |
|
1089 |
#/nobackup/bparmen1//output_run10_global_analyses_12152014 |
|
1090 |
prefix_str <- "reg4_1000x300" |
|
1091 |
|
|
1092 |
#l_dates <- "20100101,20100102" |
|
1093 |
l_dates <- "20100101,20100102,20100103,20100104,20100301,20100501,20100701,20100901,20100902,20100903,20100904" |
|
1094 |
cmd_str <- paste("python", file.path(module_path,"mosaicUsingGdalMerge.py"), |
|
1095 |
in_dir_mosaics, |
|
1096 |
out_dir_mosaics, |
|
1097 |
prefix_str, |
|
1098 |
"--date", l_dates,sep=" ") |
|
1099 |
system(cmd_str) |
|
1100 |
|
|
1101 |
#reg5 100x3000 |
|
1102 |
|
|
1103 |
system("MODULEPATH=$MODULEPATH:/nex/modules/files") |
|
1104 |
system("module load /nex/modules/files/pythonkits/gdal_1.10.0_python_2.7.3_nex") |
|
1105 |
|
|
1106 |
module_path <- "" |
|
1107 |
module_path <- "/nobackupp6/aguzman4/climateLayers/sharedCode/" |
|
1108 |
in_dir_mosaics <- "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg5/" |
|
1109 |
#out_dir_mosaics <- "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg5/mosaicsMean" |
|
1110 |
out_dir_mosaics <- "/nobackup/bparmen1//output_run10_global_analyses_12152014/mosaics/reg5_1000x3000" |
|
1111 |
#/nobackup/bparmen1//output_run10_global_analyses_12152014 |
|
1112 |
prefix_str <- "reg5_1000x300" |
|
1113 |
|
|
1114 |
#l_dates <- "20100101,20100102" |
|
1115 |
l_dates <- "20100101,20100102,20100103,20100104,20100301,20100501,20100701,20100901,20100902,20100903,20100904" |
|
1116 |
cmd_str <- paste("python", file.path(module_path,"mosaicUsingGdalMerge.py"), |
|
1117 |
in_dir_mosaics, |
|
1118 |
out_dir_mosaics, |
|
1119 |
prefix_str, |
|
1120 |
"--date", l_dates,sep=" ") |
|
1121 |
system(cmd_str) |
|
1122 |
|
|
1123 |
#reg5 1500x4500 |
|
1124 |
|
|
1125 |
#system("MODULEPATH=$MODULEPATH:/nex/modules/files") |
|
1126 |
#system("module load /nex/modules/files/pythonkits/gdal_1.10.0_python_2.7.3_nex") |
|
1127 |
|
|
1128 |
module_path <- "" |
|
1129 |
module_path <- "/nobackupp6/aguzman4/climateLayers/sharedCode/" |
|
1130 |
in_dir_mosaics <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/reg5/" |
|
1131 |
#out_dir_mosaics <- "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg5/mosaicsMean" |
|
1132 |
out_dir_mosaics <- "/nobackup/bparmen1//output_run10_global_analyses_12152014/mosaics/reg5_1500x4500" |
|
1133 |
#/nobackup/bparmen1//output_run10_global_analyses_12152014 |
|
1134 |
prefix_str <- "reg5_1500x4500" |
|
1135 |
|
|
1136 |
#l_dates <- "20100101,20100102" |
|
1137 |
l_dates <- "20100101,20100102,20100103,20100104,20100301,20100501,20100701,20100901,20100902,20100903,20100904" |
|
1138 |
cmd_str <- paste("python", file.path(module_path,"mosaicUsingGdalMerge.py"), |
|
1139 |
in_dir_mosaics, |
|
1140 |
out_dir_mosaics, |
|
1141 |
prefix_str, |
|
1142 |
"--date", l_dates,sep=" ") |
|
1143 |
system(cmd_str) |
|
1144 |
|
|
1145 |
##### |
|
1146 |
#reg4 1500x4500: NEED TO USE MOD2!!! in this specific case... |
|
1147 |
|
|
1148 |
#system("MODULEPATH=$MODULEPATH:/nex/modules/files") |
|
1149 |
#system("module load /nex/modules/files/pythonkits/gdal_1.10.0_python_2.7.3_nex") |
|
1150 |
|
|
1151 |
module_path <- "" |
|
1152 |
module_path <- "/nobackupp6/aguzman4/climateLayers/sharedCode/" |
|
1153 |
in_dir_mosaics <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/reg4/" |
|
1154 |
#out_dir_mosaics <- "/nobackupp6/aguzman4/climateLayers/output1000x3000_km/reg5/mosaicsMean" |
|
1155 |
out_dir_mosaics <- "/nobackup/bparmen1//output_run10_global_analyses_12152014/mosaics/reg4_1500x4500" |
|
1156 |
#/nobackup/bparmen1//output_run10_global_analyses_12152014 |
|
1157 |
prefix_str <- "reg4_1500x4500" |
|
1158 |
mod_str <- "mod2" #use mod2 which corresponds to model with LST and elev |
|
1159 |
|
|
1160 |
#l_dates <- "20100101,20100102" |
|
1161 |
l_dates <- "20100101,20100102,20100103,20100104,20100301,20100501,20100701,20100901,20100902,20100903,20100904" |
|
1162 |
cmd_str <- paste("python", file.path(module_path,"mosaicUsingGdalMerge.py"), |
|
1163 |
in_dir_mosaics, |
|
1164 |
out_dir_mosaics, |
|
1165 |
prefix_str, |
|
1166 |
"--mods", mod_str, |
|
1167 |
"--date", l_dates,sep=" ") |
|
1168 |
system(cmd_str) |
|
1169 |
|
|
1170 |
###copy folder in mosaics... |
Also available in: Unified diff
NEX global assessment run 10 1000x3000km tiles part1