Revision 5ea4761b
Added by Benoit Parmentier almost 9 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part2_test.R | ||
---|---|---|
1 |
############################## INTERPOLATION OF TEMPERATURES ####################################### |
|
2 |
####################### Script for assessment of scaling up on NEX : part2 ############################## |
|
3 |
#This script uses the worklfow code applied to the globe. Results currently reside on NEX/PLEIADES NASA. |
|
4 |
#Accuracy methods are added in the the function scripts to evaluate results. |
|
5 |
#Analyses, figures, tables and data are also produced in the script. |
|
6 |
#AUTHOR: Benoit Parmentier |
|
7 |
#CREATED ON: 03/23/2014 |
|
8 |
#MODIFIED ON: 02/03/2016 |
|
9 |
#Version: 5 |
|
10 |
#PROJECT: Environmental Layers project |
|
11 |
#COMMENTS: analyses for run 10 global analyses,all regions 1500x4500km with additional tiles to increase overlap |
|
12 |
#TODO: |
|
13 |
#1) Add plot broken down by year and region |
|
14 |
#2) Modify code for overall assessment accross all regions and year |
|
15 |
#3) Clean up |
|
16 |
|
|
17 |
#First source these files: |
|
18 |
#Resolved call issues from R. |
|
19 |
#source /nobackupp6/aguzman4/climateLayers/sharedModules2/etc/environ.sh |
|
20 |
# |
|
21 |
#setfacl -Rmd user:aguzman4:rwx /nobackupp8/bparmen1/output_run10_1500x4500_global_analyses_pred_1992_10052015 |
|
22 |
#setfacl -Rm user:aguzman4:rwx /nobackupp8/bparmen1/output_run_global_analyses_pred_12282015 |
|
23 |
|
|
24 |
################################################################################################# |
|
25 |
|
|
26 |
#### FUNCTION USED IN SCRIPT |
|
27 |
|
|
28 |
#function_analyses_paper1 <-"contribution_of_covariates_paper_interpolation_functions_07182014.R" #first interp paper |
|
29 |
#function_analyses_paper2 <-"multi_timescales_paper_interpolation_functions_08132014.R" |
|
30 |
#function_global_run_assessment_part2 <- "global_run_scalingup_assessment_part2_functions_0923015.R" |
|
31 |
|
|
32 |
############################################ |
|
33 |
#### Parameters and constants |
|
34 |
|
|
35 |
#on ATLAS |
|
36 |
#in_dir1 <- "/data/project/layers/commons/NEX_data/test_run1_03232014/output" #On Atlas |
|
37 |
#parent output dir : contains subset of the data produced on NEX |
|
38 |
#in_dir1 <- "/data/project/layers/commons/NEX_data/output_run6_global_analyses_09162014/output20Deg2" |
|
39 |
# parent output dir for the curent script analyes |
|
40 |
#out_dir <-"/data/project/layers/commons/NEX_data/output_run3_global_analyses_06192014/" #On NCEAS Atlas |
|
41 |
# input dir containing shapefiles defining tiles |
|
42 |
#in_dir_shp <- "/data/project/layers/commons/NEX_data/output_run5_global_analyses_08252014/output/subset/shapefiles" |
|
43 |
|
|
44 |
#On NEX |
|
45 |
#contains all data from the run by Alberto |
|
46 |
#in_dir1 <- " /nobackupp6/aguzman4/climateLayers/out_15x45/" #On NEX |
|
47 |
#parent output dir for the current script analyes |
|
48 |
#out_dir <- "/nobackup/bparmen1/" #on NEX |
|
49 |
#in_dir_shp <- "/nobackupp4/aguzman4/climateLayers/output4/subset/shapefiles/" |
|
50 |
#in_dir <- "" #PARAM 0 |
|
51 |
#y_var_name <- "dailyTmax" #PARAM1 |
|
52 |
#interpolation_method <- c("gam_CAI") #PARAM2 |
|
53 |
#out_suffix<-"run10_global_analyses_01282015" |
|
54 |
#out_suffix <- "output_run10_1000x3000_global_analyses_02102015" |
|
55 |
#out_suffix <- "run10_1500x4500_global_analyses_pred_1992_10052015" #PARAM3 |
|
56 |
#out_dir <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_1992_10052015" #PARAM4 |
|
57 |
#create_out_dir_param <- FALSE #PARAM 5 |
|
58 |
#mosaic_plot <- FALSE #PARAM6 |
|
59 |
#if daily mosaics NULL then mosaicas all days of the year |
|
60 |
#day_to_mosaic <- c("19920101","19920102","19920103") #PARAM7 |
|
61 |
#CRS_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 #CONSTANT1 |
|
62 |
#CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
63 |
#proj_str<- CRS_WGS84 #PARAM 8 #check this parameter |
|
64 |
#file_format <- ".rst" #PARAM 9 |
|
65 |
#NA_value <- -9999 #PARAM10 |
|
66 |
#NA_flag_val <- NA_value |
|
67 |
#multiple_region <- TRUE #PARAM 12 |
|
68 |
#region_name <- "world" #PARAM 13 |
|
69 |
#countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #PARAM 13, copy this on NEX too |
|
70 |
#plot_region <- TRUE |
|
71 |
#num_cores <- 6 #PARAM 14 |
|
72 |
#region_name <- c("reg4") #reference region to merge if necessary, if world all the regions are together #PARAM 16 |
|
73 |
#use previous files produced in step 1a and stored in a data.frame |
|
74 |
#df_assessment_files <- "df_assessment_files_reg4_1984_run_global_analyses_pred_12282015.txt" #PARAM 17 |
|
75 |
#threshold_missing_day <- c(367,365,300,200) #PARM18 |
|
76 |
|
|
77 |
#list_param_run_assessment_plottingin_dir <- list(in_dir,y_var_name, interpolation_method, out_suffix, |
|
78 |
# out_dir, create_out_dir_param, mosaic_plot, proj_str, file_format, NA_value, |
|
79 |
# multiple_region, countries_shp, plot_region, num_cores, |
|
80 |
# region_name, df_assessment_files, threshold_missing_day) |
|
81 |
|
|
82 |
#names(list_param_run_assessment_plottingin_dir) <- c("in_dir","y_var_name","interpolation_method","out_suffix", |
|
83 |
# "out_dir","create_out_dir_param","mosaic_plot","proj_str","file_format","NA_value", |
|
84 |
# "multiple_region","countries_shp","plot_region","num_cores", |
|
85 |
# "region_name","df_assessment_files","threshold_missing_day") |
|
86 |
|
|
87 |
#run_assessment_plotting_prediction_fun(list_param_run_assessment_plottingin_dir) |
|
88 |
|
|
89 |
run_assessment_plotting_prediction_fun <-function(list_param_run_assessment_plotting){ |
|
90 |
|
|
91 |
#### |
|
92 |
#1) in_dir: input directory containing data tables and shapefiles for plotting #PARAM 0 |
|
93 |
#2) y_var_name : variables being predicted e.g. dailyTmax #PARAM1 |
|
94 |
#3) interpolation_method: method used #c("gam_CAI") #PARAM2 |
|
95 |
#4) out_suffix: output suffix #PARAM3 |
|
96 |
#5) out_dir # |
|
97 |
#6) create_out_dir_param # FALSE #PARAM 5 |
|
98 |
#7) mosaic_plot #FALSE #PARAM6 |
|
99 |
#8) proj_str # projection/coordinates system e.g. CRS_WGS84 #PARAM 8 #check this parameter |
|
100 |
#9) file_format #".rst" #PARAM 9 |
|
101 |
#10) NA_value #-9999 #PARAM10 |
|
102 |
#11) multiple_region # <- TRUE #PARAM 12 |
|
103 |
#12) countries_shp #<- "world" #PARAM 13 |
|
104 |
#13) plot_region #<- TRUE |
|
105 |
#14) num_cores <- number of cores used # 6 #PARAM 14 |
|
106 |
#15) region_name #<- c("reg4"), world if full assessment #reference region to merge if necessary #PARAM 16 |
|
107 |
#16) df_assessment_files #PARAM 16 |
|
108 |
#17) threshold_missing_day #PARM18 |
|
109 |
#18) year_predicted |
|
110 |
|
|
111 |
### Loading R library and packages |
|
112 |
#library used in the workflow production: |
|
113 |
library(gtools) # loading some useful tools |
|
114 |
library(mgcv) # GAM package by Simon Wood |
|
115 |
library(sp) # Spatial pacakge with class definition by Bivand et al. |
|
116 |
library(spdep) # Spatial pacakge with methods and spatial stat. by Bivand et al. |
|
117 |
library(rgdal) # GDAL wrapper for R, spatial utilities |
|
118 |
library(gstat) # Kriging and co-kriging by Pebesma et al. |
|
119 |
library(fields) # NCAR Spatial Interpolation methods such as kriging, splines |
|
120 |
library(raster) # Hijmans et al. package for raster processing |
|
121 |
library(gdata) # various tools with xls reading, cbindX |
|
122 |
library(rasterVis) # Raster plotting functions |
|
123 |
library(parallel) # Parallelization of processes with multiple cores |
|
124 |
library(maptools) # Tools and functions for sp and other spatial objects e.g. spCbind |
|
125 |
library(maps) # Tools and data for spatial/geographic objects |
|
126 |
library(reshape) # Change shape of object, summarize results |
|
127 |
library(plotrix) # Additional plotting functions |
|
128 |
library(plyr) # Various tools including rbind.fill |
|
129 |
library(spgwr) # GWR method |
|
130 |
library(automap) # Kriging automatic fitting of variogram using gstat |
|
131 |
library(rgeos) # Geometric, topologic library of functions |
|
132 |
#RPostgreSQL # Interface R and Postgres, not used in this script |
|
133 |
library(gridExtra) |
|
134 |
#Additional libraries not used in workflow |
|
135 |
library(pgirmess) # Krusall Wallis test with mulitple options, Kruskalmc {pgirmess} |
|
136 |
library(colorRamps) |
|
137 |
library(zoo) |
|
138 |
library(xts) |
|
139 |
|
|
140 |
####### Function used in the script ####### |
|
141 |
|
|
142 |
#function_assessment_part2_functions <- "global_run_scalingup_assessment_part2_functions_0923015.R" |
|
143 |
#source(file.path(script_path,function_assessment_part2_functions)) #source all functions used in this script |
|
144 |
|
|
145 |
####### PARSE INPUT ARGUMENTS/PARAMETERS ##### |
|
146 |
|
|
147 |
in_dir <- list_param_run_assessment_plotting$in_dir #PARAM 1 |
|
148 |
y_var_name <- list_param_run_assessment_plotting$y_var_name #PARAM2 |
|
149 |
interpolation_method <- list_param_run_assessment_plotting$interpolation_method #c("gam_CAI") #PARAM3 |
|
150 |
out_suffix <- list_param_run_assessment_plotting$out_suffix #PARAM4 |
|
151 |
out_dir <- list_param_run_assessment_plotting$out_dir # PARAM5 |
|
152 |
create_out_dir_param <- list_param_run_assessment_plotting$create_out_dir_param # FALSE #PARAM 6 |
|
153 |
mosaic_plot <- list_param_run_assessment_plotting$mosaic_plot #FALSE #PARAM7 |
|
154 |
proj_str<- list_param_run_assessment_plotting$proj_str #CRS_WGS84 #PARAM 8 #check this parameter |
|
155 |
file_format <- list_param_run_assessment_plotting$file_format #".rst" #PARAM 9 |
|
156 |
NA_flag_val <- list_param_run_assessment_plotting$NA_flag_val #-9999 #PARAM10 |
|
157 |
multiple_region <- list_param_run_assessment_plotting$multiple_region # <- TRUE #PARAM 11 |
|
158 |
countries_shp <- list_param_run_assessment_plotting$countries_shp #<- "world" #PARAM 12 |
|
159 |
plot_region <- list_param_run_assessment_plotting$plot_region # PARAM13 |
|
160 |
num_cores <- list_param_run_assessment_plotting$num_cores # 6 #PARAM 14 |
|
161 |
region_name <- list_param_run_assessment_plotting$region_name #<- "world" #PARAM 15 |
|
162 |
df_assessment_files_name <- list_param_run_assessment_plotting$df_assessment_files_name #PARAM 16 |
|
163 |
threshold_missing_day <- list_param_run_assessment_plotting$threshold_missing_day #PARM17 |
|
164 |
year_predicted <- list_param_run_assessment_plotting$year_predicted |
|
165 |
|
|
166 |
NA_value <- NA_flag_val |
|
167 |
metric_name <- "rmse" #to be added to the code later... |
|
168 |
|
|
169 |
##################### START SCRIPT ################# |
|
170 |
|
|
171 |
####### PART 1: Read in data ######## |
|
172 |
|
|
173 |
if(create_out_dir_param==TRUE){ |
|
174 |
out_dir <- create_dir_fun(out_dir,out_suffix) |
|
175 |
setwd(out_dir) |
|
176 |
}else{ |
|
177 |
setwd(out_dir) #use previoulsy defined directory |
|
178 |
} |
|
179 |
|
|
180 |
setwd(out_dir) |
|
181 |
|
|
182 |
list_outfiles <- vector("list", length=25) #collect names of output files |
|
183 |
list_outfiles_names <- vector("list", length=25) #collect names of output files |
|
184 |
counter_fig <- 0 #index of figure to collect outputs |
|
185 |
|
|
186 |
#i <- year_predicted |
|
187 |
###Table 1: Average accuracy metrics |
|
188 |
###Table 2: daily accuracy metrics for all tiles |
|
189 |
|
|
190 |
df_assessment_files <- read.table(df_assessment_files_name,stringsAsFactors=F,sep=",") |
|
191 |
#df_assessment_files, note that in_dir indicate the path of the textfiles |
|
192 |
summary_metrics_v <- read.table(file.path(in_dir,basename(df_assessment_files$files[1])),sep=",") |
|
193 |
tb <- read.table(file.path(in_dir, basename(df_assessment_files$files[2])),sep=",") |
|
194 |
tb_s <- read.table(file.path(in_dir, basename(df_assessment_files$files[4])),sep=",") |
|
195 |
|
|
196 |
tb_month_s <- read.table(file.path(in_dir,basename(df_assessment_files$files[3])),sep=",") |
|
197 |
pred_data_month_info <- read.table(file.path(in_dir, basename(df_assessment_files$files[10])),sep=",") |
|
198 |
pred_data_day_info <- read.table(file.path(in_dir, basename(df_assessment_files$files[11])),sep=",") |
|
199 |
df_tile_processed <- read.table(file.path(in_dir, basename(df_assessment_files$files[12])),sep=",") |
|
200 |
|
|
201 |
#add column for tile size later on!!! |
|
202 |
|
|
203 |
tb$pred_mod <- as.character(tb$pred_mod) |
|
204 |
summary_metrics_v$pred_mod <- as.character(summary_metrics_v$pred_mod) |
|
205 |
summary_metrics_v$tile_id <- as.character(summary_metrics_v$tile_id) |
|
206 |
df_tile_processed$tile_id <- as.character(df_tile_processed$tile_id) |
|
207 |
|
|
208 |
tb_month_s$pred_mod <- as.character(tb_month_s$pred_mod) |
|
209 |
tb_month_s$tile_id<- as.character(tb_month_s$tile_id) |
|
210 |
tb_s$pred_mod <- as.character(tb_s$pred_mod) |
|
211 |
tb_s$tile_id <- as.character(tb_s$tile_id) |
|
212 |
|
|
213 |
#multiple regions? #this needs to be included in the previous script!!! |
|
214 |
#if(multiple_region==TRUE){ |
|
215 |
df_tile_processed$reg <- as.character(df_tile_processed$reg) |
|
216 |
tb <- merge(tb,df_tile_processed,by="tile_id") |
|
217 |
tb_s <- merge(tb_s,df_tile_processed,by="tile_id") |
|
218 |
tb_month_s<- merge(tb_month_s,df_tile_processed,by="tile_id") |
|
219 |
summary_metrics_v <- merge(summary_metrics_v,df_tile_processed,by="tile_id") |
|
220 |
#test <- merge(summary_metrics_v,df_tile_processed,by="tile_id",all=F) |
|
221 |
#duplicate columns...need to be cleaned up later |
|
222 |
try(tb$year_predicted <- tb$year_predicted.x) |
|
223 |
try(tb$reg <- tb$reg.x) |
|
224 |
try(summary_metrics_v$year_predicted <- summary_metrics_v$year_predicted.x) |
|
225 |
try(summary_metrics_v$reg <- summary_metrics_v$reg.x) |
|
226 |
try(summary_metrics_v$lat <- summary_metrics_v$lat.x) |
|
227 |
try(summary_metrics_v$lon <- summary_metrics_v$lon.x) |
|
228 |
#tb_all <- tb |
|
229 |
#summary_metrics_v_all <- summary_metrics_v |
|
230 |
|
|
231 |
#table(summary_metrics_v_all$reg) |
|
232 |
#table(summary_metrics_v$reg) |
|
233 |
#table(tb_all$reg) |
|
234 |
#table(tb$reg) |
|
235 |
|
|
236 |
############ PART 2: PRODUCE FIGURES ################ |
|
237 |
|
|
238 |
########################### |
|
239 |
### Figure 1: plot location of the study area with tiles processed |
|
240 |
|
|
241 |
#df_tiled_processed <- na.omit(df_tile_processed) #remove other list of folders irrelevant |
|
242 |
#list_shp_reg_files <- df_tiled_processed$shp_files |
|
243 |
list_shp_reg_files<- as.character(df_tile_processed$shp_files) |
|
244 |
#list_shp_reg_files <- file.path("/data/project/layers/commons/NEX_data/",out_dir, |
|
245 |
# as.character(df_tile_processed$tile_coord),"shapefiles",basename(list_shp_reg_files)) |
|
246 |
#list_shp_reg_files <- file.path("/data/project/layers/commons/NEX_data/",out_dir, |
|
247 |
#"shapefiles",basename(list_shp_reg_files)) |
|
248 |
|
|
249 |
### Potential function starts here: |
|
250 |
#function(in_dir,out_dir,list_shp_reg_files,title_str,region_name,num_cores,out_suffix,out_suffix) |
|
251 |
|
|
252 |
### First get background map to display where study area is located |
|
253 |
#can make this more general later on..should have this already in a local directory on Atlas or NEX!!!! |
|
254 |
|
|
255 |
#http://www.diva-gis.org/Data |
|
256 |
#countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" |
|
257 |
path_to_shp <- dirname(countries_shp) |
|
258 |
layer_name <- sub(".shp","",basename(countries_shp)) |
|
259 |
reg_layer <- readOGR(path_to_shp, layer_name) |
|
260 |
#proj4string(reg_layer) <- CRS_locs_WGS84 |
|
261 |
#reg_shp<-readOGR(dirname(list_shp_reg_files[[i]]),sub(".shp","",basename(list_shp_reg_files[[i]]))) |
|
262 |
|
|
263 |
centroids_pts <- vector("list",length(list_shp_reg_files)) |
|
264 |
shps_tiles <- vector("list",length(list_shp_reg_files)) |
|
265 |
#collect info: read in all shapfiles |
|
266 |
#This is slow...make a function and use mclapply?? |
|
267 |
#/data/project/layers/commons/NEX_data/output_run6_global_analyses_09162014/shapefiles |
|
268 |
|
|
269 |
for(i in 1:length(list_shp_reg_files)){ |
|
270 |
#path_to_shp <- dirname(list_shp_reg_files[[i]]) |
|
271 |
path_to_shp <- file.path(out_dir,"/shapefiles") |
|
272 |
layer_name <- sub(".shp","",basename(list_shp_reg_files[[i]])) |
|
273 |
shp1 <- try(readOGR(path_to_shp, layer_name)) #use try to resolve error below |
|
274 |
#shp_61.0_-160.0 |
|
275 |
#Geographical CRS given to non-conformant data: -186.331747678 |
|
276 |
|
|
277 |
#shp1<-readOGR(dirname(list_shp_reg_files[[i]]),sub(".shp","",basename(list_shp_reg_files[[i]]))) |
|
278 |
if (!inherits(shp1,"try-error")) { |
|
279 |
pt <- gCentroid(shp1) |
|
280 |
centroids_pts[[i]] <- pt |
|
281 |
}else{ |
|
282 |
pt <- shp1 |
|
283 |
centroids_pts[[i]] <- pt |
|
284 |
} |
|
285 |
shps_tiles[[i]] <- shp1 |
|
286 |
#centroids_pts[[i]] <- centroids |
|
287 |
} |
|
288 |
|
|
289 |
#fun <- function(i,list_shp_files) |
|
290 |
#coord_names <- c("lon","lat") |
|
291 |
#l_ras#t <- rasterize_df_fun(test,coord_names,proj_str,out_suffix=out_suffix,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005) |
|
292 |
|
|
293 |
#remove try-error polygons...we loose three tiles because they extend beyond -180 deg |
|
294 |
tmp <- shps_tiles |
|
295 |
shps_tiles <- remove_errors_list(shps_tiles) #[[!inherits(shps_tiles,"try-error")]] |
|
296 |
#shps_tiles <- tmp |
|
297 |
length(tmp)-length(shps_tiles) #number of tiles with error message |
|
298 |
|
|
299 |
tmp_pts <- centroids_pts |
|
300 |
centroids_pts <- remove_errors_list(centroids_pts) #[[!inherits(shps_tiles,"try-error")]] |
|
301 |
#centroids_pts <- tmp_pts |
|
302 |
|
|
303 |
#plot info: with labels |
|
304 |
res_pix <-1200 |
|
305 |
col_mfrow <- 1 |
|
306 |
row_mfrow <- 1 |
|
307 |
|
|
308 |
png(filename=paste("Figure1_tile_processed_region_",region_name,"_",out_suffix,".png",sep=""), |
|
309 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
310 |
|
|
311 |
plot(reg_layer) |
|
312 |
#Add polygon tiles... |
|
313 |
for(i in 1:length(shps_tiles)){ |
|
314 |
shp1 <- shps_tiles[[i]] |
|
315 |
pt <- centroids_pts[[i]] |
|
316 |
if(!inherits(shp1,"try-error")){ |
|
317 |
plot(shp1,add=T,border="blue",usePolypath = FALSE) #added usePolypath following error on brige and NEX |
|
318 |
#plot(pt,add=T,cex=2,pch=5) |
|
319 |
label_id <- df_tile_processed$tile_id[i] |
|
320 |
text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red"),family="HersheySerif") |
|
321 |
} |
|
322 |
} |
|
323 |
#title(paste("Tiles ", tile_size,region_name,sep="")) |
|
324 |
#plot(shp1,add=T,border="blue",usePolypath = FALSE) #,add=T, |
|
325 |
#plot(pt,add=T,cex=2,pch=5) |
|
326 |
#label_id <- df_tile_processed$tile_id[i] |
|
327 |
#text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red"),family="HersheySerif") |
|
328 |
dev.off() |
|
329 |
|
|
330 |
#unique(summaty_metrics$tile_id) |
|
331 |
#text(lat-shp,) |
|
332 |
#union(list_shp_reg_files[[1]],list_shp_reg_files[[2]]) |
|
333 |
#Row used in constructing output table... |
|
334 |
|
|
335 |
list_outfiles[[counter_fig+1]] <- paste("Figure1_tile_processed_region_",region_name,"_",out_suffix,".png",sep="") |
|
336 |
counter_fig <- counter_fig+1 |
|
337 |
#this will be changed to be added to data.frame on the fly |
|
338 |
r1 <-c("figure_1","Tiles processed for the region",NA,NA,region_name,year_predicted,list_outfiles[[1]]) |
|
339 |
|
|
340 |
############### |
|
341 |
### Figure 2: boxplot of average accuracy by model and by tiles |
|
342 |
|
|
343 |
tb$tile_id <- factor(tb$tile_id, levels=unique(tb$tile_id)) |
|
344 |
model_name <- as.character(unique(tb$pred_mod)) |
|
345 |
|
|
346 |
## Figure 2a |
|
347 |
for(i in 1:length(model_name)){ |
|
348 |
|
|
349 |
res_pix <- 480 |
|
350 |
col_mfrow <- 1 |
|
351 |
row_mfrow <- 1 |
|
352 |
fig_filename <- paste("Figure2a_boxplot_with_oultiers_by_tiles_",model_name[i],"_",out_suffix,".png",sep="") |
|
353 |
png(filename=paste("Figure2a_boxplot_with_oultiers_by_tiles_",model_name[i],"_",out_suffix,".png",sep=""), |
|
354 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
355 |
|
|
356 |
boxplot(rmse~tile_id,data=subset(tb,tb$pred_mod==model_name[i])) |
|
357 |
title(paste("RMSE per ",model_name[i])) |
|
358 |
|
|
359 |
dev.off() |
|
360 |
list_outfiles[[counter_fig+i]] <- fig_filename |
|
361 |
} |
|
362 |
counter_fig <- counter_fig + length(model_name) |
|
363 |
|
|
364 |
r2 <-c("figure_2a","Boxplot of accuracy with outliers by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[2]]) |
|
365 |
r3 <-c("figure_2a","boxplot of accuracy with outliers by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[3]]) |
|
366 |
|
|
367 |
## Figure 2b |
|
368 |
#with ylim and removing trailing... |
|
369 |
for(i in 1:length(model_name)){ #there are two models!! |
|
370 |
|
|
371 |
res_pix <- 480 |
|
372 |
col_mfrow <- 1 |
|
373 |
row_mfrow <- 1 |
|
374 |
fig_filename <- paste("Figure2b_boxplot_scaling_by_tiles","_",model_name[i],"_",out_suffix,".png",sep="") |
|
375 |
png(filename=paste("Figure2b_boxplot_scaling_by_tiles","_",model_name[i],"_",out_suffix,".png",sep=""), |
|
376 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
377 |
|
|
378 |
model_name <- unique(tb$pred_mod) |
|
379 |
boxplot(rmse~tile_id,data=subset(tb,tb$pred_mod==model_name[i]) |
|
380 |
,ylim=c(0,4),outline=FALSE) |
|
381 |
title(paste("RMSE per ",model_name[i])) |
|
382 |
dev.off() |
|
383 |
#we already stored one figure |
|
384 |
list_outfiles[[counter_fig+i]] <- fig_filename |
|
385 |
} |
|
386 |
counter_fig <- counter_fig + length(model_name) |
|
387 |
#bwplot(rmse~tile_id, data=subset(tb,tb$pred_mod=="mod1")) |
|
388 |
r4 <-c("figure_2b","Boxplot of accuracy with scaling by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[4]]) |
|
389 |
r5 <-c("figure_2b","Boxplot of accuracy with scaling by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[5]]) |
|
390 |
|
|
391 |
############### |
|
392 |
### Figure 3: boxplot of average RMSE by model acrosss all tiles |
|
393 |
|
|
394 |
#Ok fixed..now selection of model but should also offer an option for using both models!! so make this a function!! |
|
395 |
for(i in 1:length(model_name)){ #there are two models!! |
|
396 |
## Figure 3a |
|
397 |
res_pix <- 480 |
|
398 |
col_mfrow <- 1 |
|
399 |
row_mfrow <- 1 |
|
400 |
|
|
401 |
png(filename=paste("Figure3a_boxplot_overall_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""), |
|
402 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
403 |
|
|
404 |
#boxplot(rmse~pred_mod,data=tb)#,names=tb$pred_mod) |
|
405 |
boxplot(rmse~pred_mod,data=subset(tb,tb$pred_mod==model_name[i]))#,names=tb$pred_mod) |
|
406 |
title(paste("RMSE with outliers for all tiles: ",model_name[i],sep="")) |
|
407 |
dev.off() |
|
408 |
list_outfiles[[counter_fig+1]] <- paste("Figure3a_boxplot_overall_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="") |
|
409 |
|
|
410 |
## Figure 3b |
|
411 |
png(filename=paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep=""), |
|
412 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
413 |
#boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
|
414 |
boxplot(rmse~pred_mod,data=subset(tb,tb$pred_mod==model_name[i]),ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
|
415 |
#title("RMSE per model over all tiles") |
|
416 |
title(paste("RMSE with scaling for all tiles: ",model_name[i],sep="")) |
|
417 |
dev.off() |
|
418 |
list_outfiles[[counter_fig+2]] <- paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep="") |
|
419 |
} |
|
420 |
counter_fig <- counter_fig + length(model_name) |
|
421 |
r6 <-c("figure_3a","Boxplot overall accuracy with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[6]]) |
|
422 |
r7 <-c("figure_3b","Boxplot overall accuracy with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[7]]) |
|
423 |
r8 <-c("figure_3a","Boxplot overall accuracy with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
424 |
r9 <-c("figure_3b","Boxplot overall accuracy with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
425 |
|
|
426 |
################ |
|
427 |
### Figure 4: plot predicted tiff for specific date per model |
|
428 |
|
|
429 |
#y_var_name <-"dailyTmax" |
|
430 |
#index <-244 #index corresponding to Sept 1 |
|
431 |
|
|
432 |
# if (mosaic_plot==TRUE){ |
|
433 |
# index <- 1 #index corresponding to Jan 1 |
|
434 |
# date_selected <- "20100901" |
|
435 |
# name_method_var <- paste(interpolation_method,"_",y_var_name,"_",sep="") |
|
436 |
# |
|
437 |
# pattern_str <- paste("mosaiced","_",name_method_var,"predicted",".*.",date_selected,".*.tif",sep="") |
|
438 |
# lf_pred_list <- list.files(pattern=pattern_str) |
|
439 |
# |
|
440 |
# for(i in 1:length(lf_pred_list)){ |
|
441 |
# |
|
442 |
# |
|
443 |
# r_pred <- raster(lf_pred_list[i]) |
|
444 |
# |
|
445 |
# res_pix <- 480 |
|
446 |
# col_mfrow <- 1 |
|
447 |
# row_mfrow <- 1 |
|
448 |
# |
|
449 |
# png(filename=paste("Figure4_models_predicted_surfaces_",model_name[i],"_",name_method_var,"_",data_selected,"_",out_suffix,".png",sep=""), |
|
450 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
451 |
# |
|
452 |
# plot(r_pred) |
|
453 |
# title(paste("Mosaiced",model_name[i],name_method_var,date_selected,sep=" ")) |
|
454 |
# dev.off() |
|
455 |
# } |
|
456 |
# #Plot Delta and clim... |
|
457 |
# |
|
458 |
# ## plotting of delta and clim for later scripts... |
|
459 |
# |
|
460 |
# } |
|
461 |
|
|
462 |
|
|
463 |
###################### |
|
464 |
### Figure 5: plot accuracy ranked |
|
465 |
|
|
466 |
#Turn summary table to a point shp |
|
467 |
|
|
468 |
list_df_ac_mod <- vector("list",length=length(model_name)) |
|
469 |
for (i in 1:length(model_name)){ |
|
470 |
|
|
471 |
ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],] |
|
472 |
### Ranking by tile... |
|
473 |
df_ac_mod <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("pred_mod","rmse","mae","tile_id")] |
|
474 |
list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")] |
|
475 |
|
|
476 |
res_pix <- 480 |
|
477 |
col_mfrow <- 1 |
|
478 |
row_mfrow <- 1 |
|
479 |
fig_filename <- paste("Figure5_ac_metrics_ranked_",model_name[i],"_",out_suffix,".png",sep="") |
|
480 |
|
|
481 |
png(filename=paste("Figure5_ac_metrics_ranked_",model_name[i],"_",out_suffix,".png",sep=""), |
|
482 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
483 |
x<- as.character(df_ac_mod$tile_id) |
|
484 |
barplot(df_ac_mod$rmse, names.arg=x) |
|
485 |
#plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T) |
|
486 |
#plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T) |
|
487 |
title(paste("RMSE ranked by tile for ",model_name[i],sep="")) |
|
488 |
|
|
489 |
dev.off() |
|
490 |
list_outfiles[[counter_fig+i]] <- fig_filename |
|
491 |
} |
|
492 |
|
|
493 |
counter_fig <- counter_fig + length(model_name) |
|
494 |
|
|
495 |
r10 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
496 |
r11 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
497 |
|
|
498 |
###################### |
|
499 |
### Figure 6: plot map of average RMSE per tile at centroids |
|
500 |
|
|
501 |
### Without |
|
502 |
|
|
503 |
#list_df_ac_mod <- vector("list",length=length(lf_pred_list)) |
|
504 |
list_df_ac_mod <- vector("list",length=length(model_name)) |
|
505 |
|
|
506 |
for (i in 1:length(model_name)){ |
|
507 |
|
|
508 |
ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],] |
|
509 |
#r_pred <- raster(lf_list[i]) |
|
510 |
|
|
511 |
res_pix <- 1200 |
|
512 |
#res_pix <- 480 |
|
513 |
|
|
514 |
col_mfrow <- 1 |
|
515 |
row_mfrow <- 1 |
|
516 |
fig_filename <- paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_suffix,".png",sep="") |
|
517 |
png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_suffix,".png",sep=""), |
|
518 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
519 |
|
|
520 |
coordinates(ac_mod) <- ac_mod[,c("lon","lat")] |
|
521 |
#coordinates(ac_mod) <- ac_mod[,c("lon.x","lat.x")] #solve this later |
|
522 |
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black')) |
|
523 |
#title("(a) Mean for 1 January") |
|
524 |
p <- bubble(ac_mod,"rmse",main=paste("Average RMSE per tile and by ",model_name[i])) |
|
525 |
p1 <- p+p_shp |
|
526 |
print(p1) |
|
527 |
#plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T) |
|
528 |
#title(paste("Averrage RMSE per tile and by ",model_name[i])) |
|
529 |
|
|
530 |
dev.off() |
|
531 |
|
|
532 |
### Ranking by tile... |
|
533 |
#df_ac_mod <- |
|
534 |
list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")] |
|
535 |
list_outfiles[[counter_fig+i]] <- fig_filename |
|
536 |
} |
|
537 |
counter_fig <- counter_fig+length(model_name) |
|
538 |
|
|
539 |
r12 <-c("figure_6","Average accuracy metrics map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
540 |
r13 <-c("figure_6","Average accuracy metrics map at centroids","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
541 |
|
|
542 |
###################### |
|
543 |
### Figure 7: Number of predictions: daily and monthly |
|
544 |
|
|
545 |
## Figure 7a |
|
546 |
|
|
547 |
## Number of tiles with information: |
|
548 |
sum(df_tile_processed$metrics_v) #26,number of tiles with raster object |
|
549 |
length(df_tile_processed$metrics_v) #26,number of tiles in the region |
|
550 |
sum(df_tile_processed$metrics_v)/length(df_tile_processed$metrics_v) #80 of tiles with info |
|
551 |
|
|
552 |
#coordinates |
|
553 |
try(coordinates(summary_metrics_v) <- c("lon","lat")) |
|
554 |
#try(coordinates(summary_metrics_v) <- c("lon.y","lat.y")) |
|
555 |
|
|
556 |
#threshold_missing_day <- c(367,365,300,200) |
|
557 |
|
|
558 |
nb<-nrow(subset(summary_metrics_v,model_name=="mod1")) |
|
559 |
sum(subset(summary_metrics_v,model_name=="mod1")$n_missing)/nb #33/35 |
|
560 |
|
|
561 |
## Make this a figure... |
|
562 |
|
|
563 |
#plot(summary_metrics_v) |
|
564 |
#Make this a function later so that we can explore many thresholds... |
|
565 |
#Problem here |
|
566 |
#Browse[3]> c |
|
567 |
#Error in grid.Call.graphics(L_setviewport, pvp, TRUE) : |
|
568 |
#non-finite location and/or size for viewport |
|
569 |
|
|
570 |
j<-1 #for model name 1,mod1 |
|
571 |
for(i in 1:length(threshold_missing_day)){ |
|
572 |
|
|
573 |
#summary_metrics_v$n_missing <- summary_metrics_v$n == 365 |
|
574 |
#summary_metrics_v$n_missing <- summary_metrics_v$n < 365 |
|
575 |
summary_metrics_v$n_missing <- as.numeric(summary_metrics_v$n < threshold_missing_day[i]) |
|
576 |
summary_metrics_v_subset <- subset(summary_metrics_v,model_name=="mod1") |
|
577 |
|
|
578 |
fig_filename <- paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_", |
|
579 |
threshold_missing_day[i], |
|
580 |
"_",out_suffix,".png",sep="") |
|
581 |
|
|
582 |
if(sum(summary_metrics_v_subset$n_missing) > 0){#then there are centroids to plot!!! |
|
583 |
|
|
584 |
#res_pix <- 1200 |
|
585 |
res_pix <- 960 |
|
586 |
col_mfrow <- 1 |
|
587 |
row_mfrow <- 1 |
|
588 |
#only mod1 right now |
|
589 |
png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_", |
|
590 |
threshold_missing_day[i], |
|
591 |
"_",out_suffix,".png",sep=""), |
|
592 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
593 |
|
|
594 |
model_name[j] |
|
595 |
|
|
596 |
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black')) |
|
597 |
#title("(a) Mean for 1 January") |
|
598 |
p <- bubble(summary_metrics_v_subset,"n_missing",main=paste("Missing per tile and by ",model_name[j]," for ", |
|
599 |
threshold_missing_day[i])) |
|
600 |
p1 <- p+p_shp |
|
601 |
try(print(p1)) #error raised if number of missing values below a threshold does not exist |
|
602 |
dev.off() |
|
603 |
|
|
604 |
} |
|
605 |
|
|
606 |
list_outfiles[[counter_fig+i]] <- fig_filename |
|
607 |
} |
|
608 |
counter_fig <- counter_fig+length(threshold_missing_day) #currently 4 days... |
|
609 |
|
|
610 |
r14 <-c("figure_7","Number of missing days threshold1 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
611 |
r15 <-c("figure_7","Number of missing days threshold2 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
612 |
r16 <-c("figure_7","Number of missing days threshold3 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
613 |
r17 <-c("figure_7","Number of missing days threshold4 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
614 |
|
|
615 |
### Potential |
|
616 |
png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""), |
|
617 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
618 |
|
|
619 |
xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v), |
|
620 |
pred_mod!="mod_kr"),type="h") |
|
621 |
dev.off() |
|
622 |
|
|
623 |
list_outfiles[[counter_fig+1]] <- paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep="") |
|
624 |
counter_fig <- counter_fig + 1 |
|
625 |
r18 <-c("figure_7b","Number of daily predictions per_models","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
626 |
|
|
627 |
table(tb$pred_mod) |
|
628 |
table(tb$index_d) |
|
629 |
#table(subset(tb,pred_mod!="mod_kr")) |
|
630 |
table(subset(tb,pred_mod=="mod1")$index_d) |
|
631 |
#aggregate() |
|
632 |
tb$predicted <- 1 |
|
633 |
test <- aggregate(predicted~pred_mod+tile_id,data=tb,sum) |
|
634 |
#xyplot(predicted~pred_mod | tile_id,data=subset(as.data.frame(test), |
|
635 |
# pred_mod!="mod_kr"),type="h") |
|
636 |
|
|
637 |
as.character(unique(test$tile_id)) #141 tiles |
|
638 |
|
|
639 |
dim(subset(test,test$predicted==365 & test$pred_mod=="mod1")) |
|
640 |
#histogram(subset(test, test$pred_mod=="mod1")$predicted) |
|
641 |
unique(subset(test, test$pred_mod=="mod1")$predicted) |
|
642 |
table((subset(test, test$pred_mod=="mod1")$predicted)) |
|
643 |
|
|
644 |
#LST_avgm_min <- aggregate(LST~month,data=data_month_all,min) |
|
645 |
png(filename=paste("Figure7c_histogram_number_daily_predictions_per_models","_",out_suffix,".png",sep=""), |
|
646 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
647 |
|
|
648 |
histogram(test$predicted~test$tile_id) |
|
649 |
dev.off() |
|
650 |
|
|
651 |
list_outfiles[[counter_fig+1]] <- paste("Figure7c_histogram_number_daily_predictions_per_models","_",out_suffix,".png",sep="") |
|
652 |
counter_fig <- counter_fig + 1 |
|
653 |
r19 <-c("figure_7c","Histogram number daily predictions per models","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
654 |
|
|
655 |
|
|
656 |
#table(tb) |
|
657 |
## Figure 7b |
|
658 |
#png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""), |
|
659 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
660 |
|
|
661 |
#xyplot(n~month | tile_id + pred_mod,data=subset(as.data.frame(tb_month_s), |
|
662 |
# pred_mod!="mod_kr"),type="h") |
|
663 |
#xyplot(n~month | tile_id,data=subset(as.data.frame(tb_month_s), |
|
664 |
# pred_mod="mod_1"),type="h") |
|
665 |
#test=subset(as.data.frame(tb_month_s),pred_mod="mod_1") |
|
666 |
#table(tb_month_s$month) |
|
667 |
#dev.off() |
|
668 |
# |
|
669 |
|
|
670 |
########################################################## |
|
671 |
##### Figure 8: Breaking down accuracy by regions!! ##### |
|
672 |
|
|
673 |
#summary_metrics_v <- merge(summary_metrics_v,df_tile_processed,by="tile_id") |
|
674 |
|
|
675 |
################## |
|
676 |
##First plot with all models together |
|
677 |
|
|
678 |
## Figure 8a |
|
679 |
res_pix <- 480 |
|
680 |
col_mfrow <- 1 |
|
681 |
row_mfrow <- 1 |
|
682 |
|
|
683 |
png(filename=paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_",out_suffix,".png",sep=""), |
|
684 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
685 |
|
|
686 |
p<- bwplot(rmse~pred_mod | reg, data=tb, |
|
687 |
main="RMSE per model and region over all tiles with outliers") |
|
688 |
print(p) |
|
689 |
dev.off() |
|
690 |
|
|
691 |
list_outfiles[[counter_fig+1]] <- paste("Figure8a_boxplot_overall_accuracy_by_model_separated_by_region_with_oultiers_",out_suffix,".png",sep="") |
|
692 |
counter_fig <- counter_fig + 1 |
|
693 |
|
|
694 |
## Figure 8b |
|
695 |
png(filename=paste("Figure8b_boxplot_overall_separated_by_region_scaling_",out_suffix,".png",sep=""), |
|
696 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
697 |
|
|
698 |
#boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
|
699 |
#title("RMSE per model over all tiles") |
|
700 |
p<- bwplot(rmse~pred_mod | reg, data=tb,ylim=c(0,5), |
|
701 |
main="RMSE per model and region over all tiles with scaling") |
|
702 |
print(p) |
|
703 |
dev.off() |
|
704 |
|
|
705 |
list_outfiles[[counter_fig+1]] <- paste("Figure8b_boxplot_overall_accuracy_by_model_separated_by_region_scaling_",out_suffix,".png",sep="") |
|
706 |
counter_fig <- counter_fig + 1 |
|
707 |
|
|
708 |
|
|
709 |
r20 <-c("figure 8a","Boxplot overall accuracy by model separated by region with outliers",NA,metric_name,region_name,year_predicted,list_outfiles[[20]]) |
|
710 |
r21 <-c("figure 8b","Boxplot overall accuracy by model separated by region with scaling",NA,metric_name,region_name,year_predicted,list_outfiles[[21]]) |
|
711 |
|
|
712 |
####### |
|
713 |
##Second, plot for each model separately |
|
714 |
|
|
715 |
for(i in 1:length(model_name)){ |
|
716 |
|
|
717 |
tb_subset <- subset(tb,pred_mod==model_name[i])#mod1 is i=1, mod_kr is last |
|
718 |
## Figure 8c |
|
719 |
|
|
720 |
res_pix <- 480 |
|
721 |
col_mfrow <- 1 |
|
722 |
row_mfrow <- 1 |
|
723 |
|
|
724 |
fig_filename <- paste("Figure8c_boxplot_overall_accuracy_separated_by_region_with_outliers_",model_name[i],"_",out_suffix,".png",sep="") |
|
725 |
png(filename=fig_filename, |
|
726 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
727 |
|
|
728 |
p<- bwplot(rmse~pred_mod | reg, data=tb_subset, |
|
729 |
main="RMSE per model and region over all tiles with outliers") |
|
730 |
print(p) |
|
731 |
dev.off() |
|
732 |
|
|
733 |
list_outfiles[[counter_fig+1]] <- fig_filename |
|
734 |
counter_fig <- counter_fig + 1 |
|
735 |
|
|
736 |
## Figure 8d |
|
737 |
fig_filename <- paste("Figure8d_boxplot_overall_accuracy_separated_by_region_scaling_",model_name[i],"_",out_suffix,".png",sep="") |
|
738 |
png(filename=fig_filename, |
|
739 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
740 |
|
|
741 |
#boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
|
742 |
#title("RMSE per model over all tiles") |
|
743 |
p<- bwplot(rmse~pred_mod | reg, data=tb_subset,ylim=c(0,5), |
|
744 |
main="RMSE per model and region over all tiles with scaling") |
|
745 |
print(p) |
|
746 |
dev.off() |
|
747 |
|
|
748 |
list_outfiles[[counter_fig+1]] <- fig_filename |
|
749 |
counter_fig <- counter_fig + 1 |
|
750 |
|
|
751 |
} |
|
752 |
|
|
753 |
r22 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[20]]) |
|
754 |
r23 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[21]]) |
|
755 |
r24 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[20]]) |
|
756 |
r25 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[21]]) |
|
757 |
|
|
758 |
##################################################### |
|
759 |
#### Figure 9: plotting boxplot by year and regions ########### |
|
760 |
|
|
761 |
# ## Figure 9a |
|
762 |
# res_pix <- 480 |
|
763 |
# col_mfrow <- 1 |
|
764 |
# row_mfrow <- 1 |
|
765 |
# |
|
766 |
# png(filename=paste("Figure9a_boxplot_overall_separated_by_region_year_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""), |
|
767 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
768 |
# |
|
769 |
# p<- bwplot(rmse~pred_mod | reg + year_predicted, data=tb, |
|
770 |
# main="RMSE per model and region over all tiles") |
|
771 |
# print(p) |
|
772 |
# dev.off() |
|
773 |
# |
|
774 |
# ## Figure 9b |
|
775 |
# png(filename=paste("Figure8b_boxplot_overall_separated_by_region_year_scaling_",model_name[i],"_",out_suffix,".png",sep=""), |
|
776 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
777 |
# |
|
778 |
# boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
|
779 |
# title("RMSE per model over all tiles") |
|
780 |
# p<- bwplot(rmse~pred_mod | reg + year_predicted, data=tb,ylim=c(0,5), |
|
781 |
# main="RMSE per model and region over all tiles") |
|
782 |
# print(p) |
|
783 |
# dev.off() |
|
784 |
# |
|
785 |
# list_outfiles[[counter_fig+1]] <- paste("Figure9a_boxplot_overall_separated_by_region_year_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="") |
|
786 |
# counter_fig <- counter_fig + 1 |
|
787 |
|
|
788 |
############################################################## |
|
789 |
############## Prepare object to return |
|
790 |
############## Collect information from assessment ########## |
|
791 |
|
|
792 |
# This is hard coded and can be improved later on for flexibility. It works for now... |
|
793 |
#This data.frame contains all the files from the assessment |
|
794 |
|
|
795 |
#Should have this at the location of the figures!!! will be done later? |
|
796 |
#r1 <-c("figure_1","Tiles processed for the region",NA,NA,region_name,year_predicted,list_outfiles[[1]]) |
|
797 |
#r2 <-c("figure_2a","Boxplot of accuracy with outliers by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[2]]) |
|
798 |
#r3 <-c("figure_2a","boxplot of accuracy with outliers by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[3]]) |
|
799 |
#r4 <-c("figure_2b","Boxplot of accuracy with scaling by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[4]]) |
|
800 |
#r5 <-c("figure_2b","Boxplot of accuracy with scaling by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[5]]) |
|
801 |
#r6 <-c("figure_3a","Boxplot overall accuracy with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[6]]) |
|
802 |
#r7 <-c("figure_3b","Boxplot overall accuracy with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[7]]) |
|
803 |
#r8 <-c("figure_3a","Boxplot overall accuracy with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
804 |
#r9 <-c("figure_3b","Boxplot overall accuracy with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
805 |
#r10 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[10]]) |
|
806 |
#r11 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[11]]) |
|
807 |
#r12 <-c("figure_6","Average accuracy metrics map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[12]]) |
|
808 |
#r13 <-c("figure_6","Average accuracy metrics map at centroids","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[13]]) |
|
809 |
#r14 <-c("figure_7","Number of missing days threshold1 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[14]]) |
|
810 |
#r15 <-c("figure_7","Number of missing days threshold2 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[15]]) |
|
811 |
#r16 <-c("figure_7","Number of missing days threshold3 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[16]]) |
|
812 |
#r17 <-c("figure_7","Number of missing days threshold4 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[17]]) |
|
813 |
#r18 <-c("figure_7b","Number of daily predictions per_models","mod1",metric_name,region_name,year_predicted,list_outfiles[[18]]) |
|
814 |
#r19 <-c("figure_7c","Histogram number daily predictions per models","mod1",metric_name,region_name,year_predicted,list_outfiles[[19]]) |
|
815 |
#r20 <-c("figure 8a","Boxplot overall accuracy by model separated by region with outliers",NA,metric_name,region_name,year_predicted,list_outfiles[[20]]) |
|
816 |
#r21 <-c("figure 8b","Boxplot overall accuracy by model separated by region with scaling",NA,metric_name,region_name,year_predicted,list_outfiles[[21]]) |
|
817 |
#r22 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[22]]) |
|
818 |
#r23 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[23]]) |
|
819 |
#r24 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[24]]) |
|
820 |
#r25 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[25]]) |
|
821 |
|
|
822 |
#Assemble all the figures description and information in a data.frame for later use |
|
823 |
list_rows <-list(r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15,r16,r17,r18,r19,r20,r21,r22,r23,r24,r25) |
|
824 |
df_assessment_figures_files <- as.data.frame(do.call(rbind,list_rows)) |
|
825 |
names(df_assessment_figures_files) <- c("figure_no","comment","model_name","reg","metric_name","year_predicted","filename") |
|
826 |
|
|
827 |
###Prepare files for copying back? |
|
828 |
df_assessment_figures_files_names <- file.path(out_dir,paste("df_assessment_figures_files_",region_name,"_",year_predicted,"_",out_suffix,".txt",sep="")) |
|
829 |
write.table(df_assessment_figures_files, |
|
830 |
file=df_assessment_figures_files_names ,sep=",") |
|
831 |
|
|
832 |
#df_assessment_figures_files_names |
|
833 |
|
|
834 |
###################################################### |
|
835 |
##### Prepare objet to return #### |
|
836 |
|
|
837 |
assessment_obj <- list(df_assessment_files, df_assessment_figures_files) |
|
838 |
names(assessment_obj) <- c("df_assessment_files", "df_assessment_figures_files") |
|
839 |
## Prepare list of files to return... |
|
840 |
return(assessment_obj) |
|
841 |
|
|
842 |
} |
|
843 |
|
|
844 |
##################### END OF SCRIPT ###################### |
|
845 |
|
|
846 |
#### Run on the bridge: |
|
847 |
|
|
848 |
#args<-commandArgs(TRUE) |
|
849 |
#script_path<-"/nobackupp6/aguzman4/climateLayers/finalCode/environmental-layers/climate/research/oregon/interpolation" |
|
850 |
#dataHome<-"/nobackupp6/aguzman4/climateLayers/interp/testdata/" |
|
851 |
#script_path2<-"/nobackupp6/aguzman4/climateLayers/finalCode/environmental-layers/climate/research/world/interpolation" |
|
852 |
|
|
853 |
#CALLED FROM MASTER SCRIPT: |
|
854 |
|
|
855 |
script_path <- "/nobackupp8/bparmen1/env_layers_scripts" #path to script |
|
856 |
function_assessment_part1_functions <- "global_run_scalingup_assessment_part1_functions_02112015.R" #PARAM12 |
|
857 |
function_assessment_part1a <-"global_run_scalingup_assessment_part1a_01042016.R" |
|
858 |
function_assessment_part2 <- "global_run_scalingup_assessment_part2_02032016.R" |
|
859 |
function_assessment_part2_functions <- "global_run_scalingup_assessment_part2_functions_01032016.R" |
|
860 |
source(file.path(script_path,function_assessment_part1_functions)) #source all functions used in this script |
|
861 |
source(file.path(script_path,function_assessment_part1a)) #source all functions used in this script |
|
862 |
source(file.path(script_path,function_assessment_part2)) #source all functions used in this script |
|
863 |
source(file.path(script_path,function_assessment_part2_functions)) #source all functions used in this script |
|
864 |
|
|
865 |
### Parameters and arguments ### |
|
866 |
|
|
867 |
var<-"TMAX" # variable being interpolated |
|
868 |
if (var == "TMAX") { |
|
869 |
y_var_name <- "dailyTmax" |
|
870 |
y_var_month <- "TMax" |
|
871 |
} |
|
872 |
if (var == "TMIN") { |
|
873 |
y_var_name <- "dailyTmin" |
|
874 |
y_var_month <- "TMin" |
|
875 |
} |
|
876 |
|
|
877 |
#interpolation_method<-c("gam_fusion") #other otpions to be added later |
|
878 |
interpolation_method<-c("gam_CAI") |
|
879 |
CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs"; |
|
880 |
#CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
881 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
882 |
|
|
883 |
out_region_name<-"" |
|
884 |
list_models<-c("y_var ~ s(lat,lon,k=5) + s(elev_s,k=3) + s(LST,k=3)") |
|
885 |
|
|
886 |
#reg1 (North Am), reg2(Europe),reg3(Asia), reg4 (South Am), reg5 (Africa), reg6 (Australia-Asia) |
|
887 |
#master directory containing the definition of tile size and tiles predicted |
|
888 |
in_dir1 <- "/nobackupp6/aguzman4/climateLayers/out/" |
|
889 |
#/nobackupp6/aguzman4/climateLayers/out_15x45/1982 |
|
890 |
|
|
891 |
#region_names <- c("reg23","reg4") #selected region names, #PARAM2 |
|
892 |
region_name <- c("reg4") #run assessment by region, this is a unique region only |
|
893 |
#region_names <- c("reg1","reg2","reg3","reg4","reg5","reg6") #selected region names, #PARAM2 |
|
894 |
interpolation_method <- c("gam_CAI") #PARAM4 |
|
895 |
out_prefix <- "run_global_analyses_pred_12282015" #PARAM5 |
|
896 |
#out_dir <- "/nobackupp8/bparmen1/" #PARAM6 |
|
897 |
out_dir <- "/nobackupp8/bparmen1/output_run_global_analyses_pred_12282015" |
|
898 |
#out_dir <-paste(out_dir,"_",out_prefix,sep="") |
|
899 |
create_out_dir_param <- FALSE #PARAM7 |
|
900 |
|
|
901 |
#CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs"; |
|
902 |
#CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
903 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
904 |
|
|
905 |
#list_year_predicted <- 1984:2004 |
|
906 |
list_year_predicted <- c("2014") |
|
907 |
#year_predicted <- list_year_predicted[1] |
|
908 |
|
|
909 |
file_format <- ".tif" #format for mosaiced files #PARAM10 |
|
910 |
NA_flag_val <- -9999 #No data value, #PARAM11 |
|
911 |
num_cores <- 6 #number of cores used #PARAM13 |
|
912 |
plotting_figures <- TRUE #running part2 of assessment to generate figures... |
|
913 |
|
|
914 |
##Additional parameters used in part 2, some these may be removed as code is simplified |
|
915 |
mosaic_plot <- FALSE #PARAM14 |
|
916 |
day_to_mosaic <- c("19920102","19920103","19920103") #PARAM15 |
|
917 |
multiple_region <- TRUE #PARAM16 |
|
918 |
countries_shp <- "/nobackupp8/bparmen1/NEX_data/countries.shp" #PARAM17 |
|
919 |
#countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #Atlas |
|
920 |
plot_region <- TRUE #PARAM18 |
|
921 |
threshold_missing_day <- c(367,365,300,200)#PARAM19 |
|
922 |
|
|
923 |
year_predicted <- list_year_predicted[1] |
|
924 |
in_dir <- out_dir #PARAM 0 |
|
925 |
#y_var_name <- "dailyTmax" #PARAM1 , already set |
|
926 |
#interpolation_method <- c("gam_CAI") #PARAM2, already set |
|
927 |
out_suffix <- out_prefix #PARAM3 |
|
928 |
#out_dir <- #PARAM4, already set |
|
929 |
create_out_dir_param <- FALSE #PARAM 5, already created and set |
|
930 |
#mosaic_plot <- FALSE #PARAM6 |
|
931 |
#if daily mosaics NULL then mosaicas all days of the year |
|
932 |
#day_to_mosaic <- c("19920101","19920102","19920103") #PARAM7 |
|
933 |
#CRS_locs_WGS84 already set |
|
934 |
proj_str <- CRS_locs_WGS84 #PARAM 8 #check this parameter |
|
935 |
#file_format <- ".rst" #PARAM 9, already set |
|
936 |
#NA_flag_val <- -9999 #PARAM 11, already set |
|
937 |
#multiple_region <- TRUE #PARAM 12 |
|
938 |
#countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #PARAM 13, copy this on NEX too |
|
939 |
#plot_region <- TRUE |
|
940 |
#num_cores <- 6 #PARAM 14, already set |
|
941 |
#region_name <- c("reg4") #reference region to merge if necessary, if world all the regions are together #PARAM 16 |
|
942 |
#use previous files produced in step 1a and stored in a data.frame |
|
943 |
df_assessment_files_name <- file.path("/nobackupp8/bparmen1/output_run_global_analyses_pred_12282015","df_assessment_files_reg4_2014_run_global_analyses_pred_12282015.txt")# #PARAM 17, set in the script |
|
944 |
df_assessment_files <- read.table(df_assessment_files_name,stringsAsFactors=F,sep=",") |
|
945 |
#threshold_missing_day <- c(367,365,300,200) #PARM18 |
|
946 |
|
|
947 |
list_param_run_assessment_plotting <-list( |
|
948 |
in_dir,y_var_name, interpolation_method, out_suffix, |
|
949 |
out_dir, create_out_dir_param, mosaic_plot, proj_str, file_format, NA_flag_val, |
|
950 |
multiple_region, countries_shp, plot_region, num_cores, |
|
951 |
region_name, df_assessment_files_name, threshold_missing_day,year_predicted |
|
952 |
) |
|
953 |
|
|
954 |
names(list_param_run_assessment_plotting) <- c( |
|
955 |
"in_dir","y_var_name","interpolation_method","out_suffix", |
|
956 |
"out_dir","create_out_dir_param","mosaic_plot","proj_str","file_format","NA_flag_val", |
|
957 |
"multiple_region","countries_shp","plot_region","num_cores", |
|
958 |
"region_name","df_assessment_files_name","threshold_missing_day","year_predicted" |
|
959 |
) |
|
960 |
|
|
961 |
#function_assessment_part2 <- "global_run_scalingup_assessment_part2_01032016.R" |
|
962 |
#source(file.path(script_path,function_assessment_part2)) #source all functions used in this script |
|
963 |
|
|
964 |
debug(run_assessment_plotting_prediction_fun) |
|
965 |
df_assessment_figures_files <- |
|
966 |
run_assessment_plotting_prediction_fun(list_param_run_assessment_plotting) |
|
967 |
|
|
968 |
|
|
969 |
|
Also available in: Unified diff
initial commit, assessment part3 to combine all outputs