Project

General

Profile

« Previous | Next » 

Revision 5f28f8d6

Added by Benoit Parmentier about 12 years ago

Methods comp part7-task#491- SNOT-GHCN data updated script debugged to run through mcapply

View differences:

climate/research/oregon/interpolation/methods_comparison_assessment_part7.R
27 27
library(reshape)
28 28
library(RCurl)
29 29
######### Functions used in the script
30
#
30 31

  
31 32
load_obj <- function(f)
32 33
{
......
153 154
#########
154 155
#loading R objects that might have similar names
155 156

  
156
out_prefix<-"_method_comp7_12042012_"
157
out_prefix<-"_method_comp7_12102012b_"
157 158
infile2<-"list_365_dates_04212012.txt"
159
infile1<- "ghcn_or_tmax_covariates_06262012_OR83M.shp"    #GHCN shapefile containing variables for modeling 2010                 
160
#infile2<-"list_10_dates_04212012.txt"                    #List of 10 dates for the regression
161
infile2<-"list_365_dates_04212012.txt"                    #list of dates
162
infile3<-"LST_dates_var_names.txt"                        #LST dates name
163
infile4<-"models_interpolation_05142012.txt"              #Interpolation model names
164
infile5<-"mean_day244_rescaled.rst"                       #mean LST for day 244
165
inlistf<-"list_files_05032012.txt"                        #list of raster images containing the Covariates
166
infile6<-"OR83M_state_outline.shp"
167
#stat_loc<-read.table(paste(path,"/","location_study_area_OR_0602012.txt",sep=""),sep=",", header=TRUE)
158 168

  
159 169
i=2
160 170
##### LOAD USEFUL DATA
161 171

  
162 172
#obj_list<-"list_obj_08262012.txt"                                  #Results of fusion from the run on ATLAS
163
path_wd<-"/home/parmentier/Data/IPLANT_project/methods_interpolation_comparison_10242012" #Jupiter LOCATION on Atlas for kriging                              #Jupiter Location on XANDERS
173
path<-"/home/parmentier/Data/IPLANT_project/methods_interpolation_comparison_10242012" #Jupiter LOCATION on Atlas for kriging                              #Jupiter Location on XANDERS
174
path_wd<-"/home/parmentier/Data/IPLANT_project/methods_interpolation_comparison_10242012" #Jupiter LOCATION on Atlas for kriging
164 175
#path<-"/Users/benoitparmentier/Dropbox/Data/NCEAS/Oregon_covariates/"            #Local dropbox folder on Benoit's laptop
165
setwd(path_wd) 
176
setwd(path) 
166 177
path_data_cai<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_10242012_CAI"  #Change to constant
167 178
path_data_fus<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_10242012_GAM"
168 179
#list files that contain model objects and ratingin-testing information for CAI and Fusion
169 180
obj_mod_fus_name<-"results_mod_obj__365d_GAM_fusion_const_all_lstd_11022012.RData"
170 181
obj_mod_cai_name<-"results_mod_obj__365d_GAM_CAI2_const_all_10312012.RData"
171 182

  
183
#external function
184
source("function_methods_comparison_assessment_part7_12102012.R")
172 185

  
173 186
### Projection for the current region
174 187
proj_str="+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs";
175 188
#User defined output prefix
176 189

  
190
### MAKE THIS A FUNCTION TO LOAD STACK AND DEFINE VALID RANGE...
177 191
#CRS<-proj4string(ghcn)                       #Storing projection information (ellipsoid, datum,etc.)
178 192
lines<-read.table(paste(path,"/",inlistf,sep=""), sep="")                      #Column 1 contains the names of raster files
179 193
inlistvar<-lines[,1]
......
184 198
layerNames(s_raster)<-covar_names                                            #Assigning names to the raster layers
185 199
projection(s_raster)<-proj_str
186 200

  
201
#Create mask using land cover data
202
pos<-match("LC10",layerNames(s_raster))            #Find the layer which contains water bodies
203
LC10<-subset(s_raster,pos)
204
LC10[is.na(LC10)]<-0                               #Since NA values are 0, we assign all zero to NA
205
mask_land<-LC10<100                                #All values below 100% water are assigned the value 1, value 0 is "water"
206
mask_land_NA<-mask_land                            
207
mask_land_NA[mask_land_NA==0]<-NA                  #Water bodies are assigned value 1
208

  
209
data_name<-"mask_land_OR"
210
raster_name<-paste(data_name,".rst", sep="")
211
writeRaster(mask_land, filename=raster_name,overwrite=TRUE)  #Writing the data in a raster file format...(IDRISI)
212
#writeRaster(r2, filename=raster_name,overwrite=TRUE)  #Writing the data in a raster file format...(IDRISI)
213

  
214
pos<-match("ELEV_SRTM",layerNames(s_raster)) #Find column with name "ELEV_SRTM"
215
ELEV_SRTM<-raster(s_raster,layer=pos)             #Select layer from stack on 10/30
216
s_raster<-dropLayer(s_raster,pos)
217
ELEV_SRTM[ELEV_SRTM <0]<-NA
218
mask_ELEV_SRTM<-ELEV_SRTM>0
219

  
220
#Change this a in loop...
221
pos<-match("LC1",layerNames(s_raster)) #Find column with name "value"
222
LC1<-raster(s_raster,layer=pos)             #Select layer from stack
223
s_raster<-dropLayer(s_raster,pos)
224
LC1[is.na(LC1)]<-0
225
pos<-match("LC2",layerNames(s_raster)) #Find column with name "value"
226
LC2<-raster(s_raster,layer=pos)             #Select layer from stack
227
s_raster<-dropLayer(s_raster,pos)
228
LC2[is.na(LC2)]<-0
229
pos<-match("LC3",layerNames(s_raster)) #Find column with name "value"
230
LC3<-raster(s_raster,layer=pos)             #Select layer from stack
231
s_raster<-dropLayer(s_raster,pos)
232
LC3[is.na(LC3)]<-0
233
pos<-match("LC4",layerNames(s_raster)) #Find column with name "value"
234
LC4<-raster(s_raster,layer=pos)             #Select layer from stack
235
s_raster<-dropLayer(s_raster,pos)
236
LC4[is.na(LC4)]<-0
237
pos<-match("LC6",layerNames(s_raster)) #Find column with name "value"
238
LC6<-raster(s_raster,layer=pos)             #Select layer from stack
239
s_raster<-dropLayer(s_raster,pos)
240
LC6[is.na(LC6)]<-0
241
pos<-match("LC7",layerNames(s_raster)) #Find column with name "value"
242
LC7<-raster(s_raster,layer=pos)             #Select layer from stack
243
s_raster<-dropLayer(s_raster,pos)
244
LC7[is.na(LC7)]<-0
245
pos<-match("LC9",layerNames(s_raster)) #Find column with name "LC9", this is wetland...
246
LC9<-raster(s_raster,layer=pos)             #Select layer from stack
247
s_raster<-dropLayer(s_raster,pos)
248
LC9[is.na(LC9)]<-0
249

  
250
LC_s<-stack(LC1,LC2,LC3,LC4,LC6,LC7)
251
layerNames(LC_s)<-c("LC1_forest","LC2_shrub","LC3_grass","LC4_crop","LC6_urban","LC7_barren")
252
LC_s <-mask(LC_s,mask_ELEV_SRTM)
253
plot(LC_s)
254

  
255
s_raster<-addLayer(s_raster, LC_s)
256

  
257
#mention this is the last... files
258

  
259
#Read region outline...
260
filename<-sub(".shp","",infile6)             #Removing the extension from file.
261
reg_outline<-readOGR(".", filename)                 #reading shapefile 
262

  
187 263
########## Load Snotel data 
188 264
infile_snotname<-"snot_OR_2010_sp2_methods_11012012_.shp" #load Snotel data
189 265
snot_OR_2010_sp<-readOGR(".",sub(".shp","",infile_snotname))
......
206 282
#Load GHCN data used in modeling: training and validation site
207 283

  
208 284
### load specific date...and plot: make a function to extract the diff and prediction...
209
rast_diff_fc<-rast_fus_pred-rast_cai_pred
210
layerNames(rast_diff)<-paste("diff",date_selected,sep="_")
285
#rast_diff_fc<-rast_fus_pred-rast_cai_pred
286
#layerNames(rast_diff)<-paste("diff",date_selected,sep="_")
211 287

  
212 288
####COMPARE WITH LOCATION OF GHCN and SNOTEL NETWORK
213 289

  
......
215 291
i=1
216 292
date_selected<-dates[i]
217 293

  
218
X11(width=16,height=9)
219
par(mfrow=c(1,2))
294
X11(12,12)
295
# #plot(rast_diff_fc)
296
# plot(snot_OR_2010_sp,pch=2,col="red",add=T)
297
# plot(data_stat,add=T) #This is the GHCN network
298
# legend("bottom",legend=c("SNOTEL", "GHCN"), 
299
#        cex=0.8, col=c("red","black"),
300
#        pch=c(2,1))
301
# title(paste("SNOTEL and GHCN networks on ", date_selected, sep=""))
220 302

  
221
plot(rast_diff_fc)
303
plot(ELEV_SRTM)
222 304
plot(snot_OR_2010_sp,pch=2,col="red",add=T)
223
plot(data_stat,add=T) #This is the GHCN network
305
#plot(data_stat,add=T)
224 306
legend("bottom",legend=c("SNOTEL", "GHCN"), 
225 307
       cex=0.8, col=c("red","black"),
226 308
       pch=c(2,1))
227
title(paste("SNOTEL and GHCN networks on ", date_selected, sep=""))
228

  
229
plot(ELEV_SRTM)
230
plot(snot_OR_2010_sp,pch=2,col="red",add=T)
231
plot(data_stat,add=T)
232
legend("bottom",legend=c("SNOTEL", "GHCN"), 
233
     cex=0.8, col=c("red","black"),
234
      pch=c(2,1))
235 309
title(paste("SNOTEL and GHCN networks", sep=""))
236 310
savePlot(paste("fig1_map_SNOT_GHCN_network_diff_elev_bckgd",date_selected,out_prefix,".png", sep=""), type="png")
311
dev.off()
237 312

  
238 313
#add histogram of elev for SNOT and GHCN
239
hist(snot_data_selected$ELEV_SRTM,main="")
240
title(paste("SNOT stations and Elevation",date_selected,sep=" "))
241
hist(data_vc$ELEV_SRTM,main="")
242
title(paste("GHCN stations and Elevation",date_selected,sep=" "))
243
savePlot(paste("fig2_hist_elev_SNOT_GHCN_",out_prefix,".png", sep=""), type="png")
244
dev.off()
314
#X11(width=16,height=9)
315
#par(mfrow=c(1,2))
316
#hist(snot_data_selected$ELEV_SRTM,main="")
317
#title(paste("SNOT stations and Elevation",date_selected,sep=" "))
318
#hist(data_vc$ELEV_SRTM,main="")
319
#title(paste("GHCN stations and Elevation",date_selected,sep=" "))
320
#savePlot(paste("fig2_hist_elev_SNOT_GHCN_",out_prefix,".png", sep=""), type="png")
321
#dev.off()
245 322
## Select date from SNOT
246 323
#not_selected<-subset(snot_OR_2010_sp, date=="90110" )
247 324
list_ac_tab <-vector("list", length(dates))  #storing the accuracy metric data.frame in a list...
248 325
names(list_ac_tab)<-paste("date",1:length(dates),sep="")
249
X11(width=16,height=9)
250
par(mfrow=c(1,2))
251
#for(i in 1:length(dates)){
252
for(i in 163:length(dates)){
253
  date_selected<-dates[i]
254
  
255
  ## Get the relevant raster layers with prediction for fusion and CAI
256
  oldpath<-getwd()
257
  setwd(path_data_cai)
258
  file_pat<-glob2rx(paste("*tmax_predicted*",date_selected,"*_365d_GAM_CAI2_const_all_10312012.rst",sep="")) #Search for files in relation to fusion                  
259
  lf_cai2c<-list.files(pattern=file_pat) #Search for files in relation to fusion                  
260
  rast_cai2c<-stack(lf_cai2c)                   #lf_cai2c CAI results with constant sampling over 365 dates
261
  rast_cai2c<-mask(rast_cai2c,mask_ELEV_SRTM)
262
  
263
  oldpath<-getwd()
264
  setwd(path_data_fus)
265
  file_pat<-glob2rx(paste("*tmax_predicted*",date_selected,"*_365d_GAM_fusion_const_all_lstd_11022012.rst",sep="")) #Search for files in relation to fusion                  
266
  lf_fus1c<-list.files(pattern=file_pat) #Search for files in relation to fusion                        
267
  rast_fus1c<-stack(lf_fus1c)
268
  rast_fus1c<-mask(rast_fus1c,mask_ELEV_SRTM)
269
  
270
  #PLOT ALL MODELS
271
  #Prepare for plotting
272
  
273
  setwd(path) #set path to the output path
274
  
275
  rast_fus_pred<-raster(rast_fus1c,1)  # Select the first model from the stack i.e fusion with kriging for both steps
276
  rast_cai_pred<-raster(rast_cai2c,1)  
277
  layerNames(rast_cai_pred)<-paste("cai",date_selected,sep="_")
278
  layerNames(rast_fus_pred)<-paste("fus",date_selected,sep="_")
279
  rast_pred2<-stack(rast_fus_pred,rast_cai_pred)
280
  #function to extract training and test from object from object models created earlier during interpolation...
281
 
282
  #load training and testing date for the specified date for fusion and CAI
283
  data_vf<-station_data_interp(date_selected,file.path(path_data_fus,obj_mod_fus_name),training=FALSE,testing=TRUE)
284
  #data_sf<-station_data_interp(date_selected,file.path(path_data_fus,obj_mod_fus_name),training=TRUE,testing=FALSE)
285
  data_vc<-station_data_interp(date_selected,file.path(path_data_cai,obj_mod_cai_name),training=FALSE,testing=TRUE)
286
  #data_sc<-station_data_interp(date_selected,file.path(path_data_cai,obj_mod_cai_name),training=TRUE,testing=FALSE)
287
  
288
  date_selected_snot<-strptime(date_selected,"%Y%m%d")
289
  snot_selected <-snot_OR_2010_sp[snot_OR_2010_sp$date_formatted==date_selected_snot,]
290
  #snot_selected<-na.omit(as.data.frame(snot_OR_2010_sp[snot_OR_2010_sp$date==90110,]))
291
  rast_diff_fc<-rast_fus_pred-rast_cai_pred
292
  LC_stack<-stack(LC1,LC2,LC3,LC4,LC6,LC7)
293
  rast_pred3<-stack(rast_diff_fc,rast_pred2,ELEV_SRTM,LC_stack)
294
  layerNames(rast_pred3)<-c("diff_fc","fus","CAI","ELEV_SRTM","LC1","LC2","LC3","LC4","LC6","LC7")   #extract amount of veg...
295
  
296
  #extract predicted tmax corresponding to 
297
  extract_snot<-extract(rast_pred3,snot_selected)  #return value from extract is a matrix (with input SPDF)
298
  snot_data_selected<-cbind(as.data.frame(snot_selected),extract_snot)  #bind data together
299
  snot_data_selected$res_f<-snot_data_selected$fus-snot_data_selected$tmax #calculate the residuals for Fusion
300
  snot_data_selected$res_c<-snot_data_selected$CAI-snot_data_selected$tmax #calculate the residuals for CAI
301
  #snot_data_selected<-(na.omit(as.data.frame(snot_data_selected))) #remove rows containing NA, this may need to be modified later.
302
  
303
  ###fig3: Plot predicted vs observed tmax
304
  #fig3a: FUS
305
  x_range<-range(c(data_vf$pred_mod7,snot_data_selected$fus,data_vc$pred_mod9,snot_data_selected$CAI),na.rm=T)
306
  y_range<-range(c(data_vf$dailyTmax,snot_data_selected$tmax,data_vc$dailyTmax,snot_data_selected$tmax),na.rm=T)
307
  plot(data_vf$pred_mod7,data_vf$dailyTmax, ylab="Observed daily tmax (C)", xlab="Fusion predicted daily tmax (C)", 
308
       ylim=y_range,xlim=x_range)
309
  #text(data_vf$pred_mod7,data_vf$dailyTmax,labels=data_vf$idx,pos=3)
310
  abline(0,1) #takes intercept at 0 and slope as 1 so display 1:1 ine
311
  grid(lwd=0.5,col="black")
312
  points(snot_data_selected$fus,snot_data_selected$tmax,pch=2,co="red")
313
  title(paste("Testing stations tmax fusion vs daily tmax",date_selected,sep=" "))
314
  legend("topleft",legend=c("GHCN", "SNOT"), 
315
         cex=1.2, col=c("black","red"),
316
         pch=c(1,2))  
317
  #fig 3b: CAI
318
  #x_range<-range(c(data_vc$pred_mod9,snot_data_selected$CAI))
319
  #y_range<-range(c(data_vc$dailyTmax,snot_data_selected$tmax))
320
  plot(data_vc$pred_mod9,data_vc$dailyTmax, ylab="Observed daily tmax (C)", xlab="CAI predicted daily tmax (C)", 
321
       ylim=y_range,xlim=x_range)
322
  #text(data_vc$pred_mod9,data_vc$dailyTmax,labels=data_vf$idx,pos=3)
323
  abline(0,1) #takes intercept at 0 and slope as 1 so display 1:1 ine
324
  grid(lwd=0.5,col="black")
325
  points(snot_data_selected$CAI,snot_data_selected$tmax,pch=2,co="red") 
326
  #text(snot_data_selected$CAI,snot_data_selected$tmax,labels=1:nrow(snot_data_selected),pos=3)
327
  #title(paste("Testing stations tmax CAI vs daily tmax",date_selected,sep=" "))
328
  legend("topleft",legend=c("GHCN", "SNOT"), 
329
         cex=1.2, col=c("black","red"),
330
         pch=c(1,2))
331
  savePlot(paste("fig3_testing_scatterplot_pred_fus_CAI_observed_SNOT_GHCN_",date_selected,out_prefix,".png", sep=""), type="png")
332
    
333
  ##### Fig4a: ELEV-CAI
334
  y_range<-range(c(data_vc$pred_mod9,snot_data_selected$CAI),na.rm=T)
335
  #y_range<-range(c(data_vc$pred_mod9,snot_data_selected$CAI),na.rm=T)
336
  x_range<-range(c(data_vc$ELEV_SRTM,snot_data_selected$ELEV_SRTM),na.rm=T)
337
  lm_mod1<-lm(data_vc$pred_mod9~data_vc$ELEV_SRTM)
338
  lm_mod2<-lm(snot_data_selected$CAI~snot_data_selected$ELEV_SRTM)
339
  plot(data_vc$ELEV_SRTM,data_vc$pred_mod9,ylab="Observed daily tmax (C)", xlab="Elevation (m)", 
340
       ylim=y_range,xlim=x_range)
341
  #text(data_vc$ELEV_SRTM,data_vc$pred_mod9,labels=data_vc$idx,pos=3)
342
  abline(lm_mod1) #takes intercept at 0 and slope as 1 so display 1:1 ine
343
  abline(lm_mod2,col="red") #takes intercept at 0 and slope as 1 so display 1:1 ine
344
  grid(lwd=0.5, col="black")
345
  points(snot_data_selected$ELEV_SRTM,snot_data_selected$CAI,pch=2,co="red")
346
  title(paste("Testing stations tmax CAI vs elevation",date_selected,sep=" "))
347
  legend("topleft",legend=c("GHCN", "SNOT"), 
348
         cex=1.2, col=c("black","red"),
349
         pch=c(1,2))
350
  
351
  #Fig4bELEV-FUS
352
  y_range<-range(c(data_vf$pred_mod7,snot_data_selected$fus),na.rm=T)
353
  x_range<-range(c(data_vf$ELEV_SRTM,snot_data_selected$ELEV_SRTM),na.rm=T)
354
  lm_mod1<-lm(data_vf$pred_mod7~data_vf$ELEV_SRTM)
355
  lm_mod2<-lm(snot_data_selected$fus~snot_data_selected$ELEV_SRTM)
356
  plot(data_vf$ELEV_SRTM,data_vf$pred_mod7,ylab="Observed daily tmax (C)", xlab="Elevation (m)", 
357
       ylim=y_range,xlim=x_range)
358
  #text(data_vc$ELEV_SRTM,data_vc$pred_mod9,labels=data_vc$idx,pos=3)
359
  abline(lm_mod1) #takes intercept at 0 and slope as 1 so display 1:1 ine
360
  abline(lm_mod2,col="red") #takes intercept at 0 and slope as 1 so display 1:1 ine
361
  grid(lwd=0.5, col="black")
362
  points(snot_data_selected$ELEV_SRTM,snot_data_selected$fus,pch=2,co="red")
363
  title(paste("Testing stations tmax  vs elevation",date_selected,sep=" "))
364
  legend("topleft",legend=c("GHCN", "SNOT"), 
365
         cex=1.2, col=c("black","red"),
366
         pch=c(1,2))
367
  savePlot(paste("fig4_testing_scatterplot_pred_fus_CIA_elev_SNOT_GHCN_",date_selected,out_prefix,".png", sep=""), type="png") 
368
  
369
  ############ ACCURACY METRICS AND RESIDUALS #############
370
  
371
  #START FIG 5
372
  #####Fig5a: CAI vs FUSION: difference by plotting on in terms of the other
373
  lm_mod<-lm(snot_data_selected$CAI~snot_data_selected$fus)
374
  y_range<-range(c(data_vc$pred_mod9,snot_data_selected$CAI),na.rm=T)
375
  x_range<-range(c(data_vf$pred_mod7,snot_data_selected$fus),na.rm=T)
376
  
377
  plot(data_vf$pred_mod7,data_vc$pred_mod9,ylab="Predicted CAI daily tmax (C)", xlab="Predicted fusion daily tmax (C)", 
378
       ylim=y_range,xlim=x_range)
379
  #text(data_vc$ELEV_SRTM,data_vc$dailyTmax,labels=data_vc$idx,pos=3)
380
  abline(0,1) #takes intercept at 0 and slope as 1 so display 1:1 ine
381
  abline(lm_mod,col="red")
382
  grid(lwd=0.5, col="black")
383
  points(snot_data_selected$fus,snot_data_selected$CAI,pch=2,co="red")
384
  title(paste("Testing stations predicted tmax fusion vs CAI tmax",date_selected,sep=" "))
385
  legend("topleft",legend=c("GHCN", "SNOT"), 
386
         cex=1.2, col=c("black","red"),
387
         pch=c(1,2))
388
  ####Fig5b: diff vs elev: difference by plotting on in terms of elev
389
  diff_fc<-data_vf$pred_mod7-data_vc$pred_mod9
390
  plot(snot_data_selected$ELEV_SRTM,snot_data_selected$diff_fc,pch=2,col="red")
391
  lm_mod<-lm(snot_data_selected$diff_fc~snot_data_selected$ELEV_SRTM)
392
  abline(lm_mod,col="red")
393
  points(data_vf$ELEV_SRTM,diff_fc)
394
  lm_mod<-lm(diff_fc~data_vf$ELEV_SRTM)
395
  abline(lm_mod)
396
  legend("topleft",legend=c("GHCN", "SNOT"), 
397
         cex=1.2, col=c("black","red"),
398
         pch=c(1,2))
399
  title(paste("Prediction tmax difference and elevation ",sep=""))
400
  savePlot(paste("fig5_testing_scatterplot_pred_fus_CAI_observed_SNOT_GHCN_",date_selected,out_prefix,".png", sep=""), type="png")
401

  
402
  #DO diff IN TERM OF ELEVATION CLASSES as well as diff..
403
    
404
  #### START FIG 6: difference fc vs elev
405
  #fig6a
406
  brks<-c(0,500,1000,1500,2000,2500,4000)
407
  lab_brks<-1:6
408
  elev_rcstat<-cut(snot_data_selected$ELEV_SRTM,breaks=brks,labels=lab_brks,right=F)
409
  snot_data_selected$elev_rec<-elev_rcstat
410
  y_range<-range(c(snot_data_selected$diff_fc),na.rm=T)
411
  x_range<-range(c(elev_rcstat),na.rm=T)
412
  plot(elev_rcstat,snot_data_selected$diff_fc, ylab="diff_fc", xlab="ELEV_SRTM (m) ", 
413
       ylim=y_range, xlim=x_range)
414
  #text(elev_rcstat,diff_cf,labels=data_vf$idx,pos=3)
415
  grid(lwd=0.5,col="black")
416
  title(paste("SNOT stations diff f vs Elevation",date_selected,sep=" "))
417
  
418
  ###With fewer classes...fig6b
419
  brks<-c(0,1000,2000,3000,4000)
420
  lab_brks<-1:4
421
  elev_rcstat<-cut(snot_data_selected$ELEV_SRTM,breaks=brks,labels=lab_brks,right=F)
422
  snot_data_selected$elev_rec<-elev_rcstat
423
  y_range<-range(c(snot_data_selected$diff_fc),na.rm=T)
424
  x_range<-range(c(elev_rcstat),na.rm=T)
425
  plot(elev_rcstat,snot_data_selected$diff_fc, ylab="diff_fc", xlab="ELEV_SRTM (m) ", 
426
       ylim=y_range, xlim=x_range)
427
  #text(elev_rcstat,diff_cf,labels=data_vf$idx,pos=3)
428
  grid(lwd=0.5,col="black")
429
  title(paste("SNOT stations diff f vs Elevation",date_selected,sep=" "))
430
  savePlot(paste("fig6_elevation_classes_diff_SNOT_GHCN_network",date_selected,out_prefix,".png", sep=""), type="png")
431
  
432
  #START FIG 7 with residuals
433
  #fig 7a
434
  brks<-c(0,1000,2000,3000,4000)
435
  lab_brks<-1:4
436
  elev_rcstat<-cut(snot_data_selected$ELEV_SRTM,breaks=brks,labels=lab_brks,right=F)
437
  snot_data_selected$elev_rec<-elev_rcstat
438
  y_range<-range(c(snot_data_selected$res_f,snot_data_selected$res_c),na.rm=T)
439
  x_range<-range(c(elev_rcstat),na.rm=T)
440
  plot(elev_rcstat,snot_data_selected$res_f, ylab="res_f", xlab="ELEV_SRTM (m) ", 
441
       ylim=y_range, xlim=x_range)
442
  #text(elev_rcstat,diff_cf,labels=data_vf$idx,pos=3)
443
  grid(lwd=0.5,col="black")
444
  title(paste("SNOT stations residuals fusion vs Elevation",date_selected,sep=" "))
445
  #fig 7b
446
  elev_rcstat<-cut(snot_data_selected$ELEV_SRTM,breaks=brks,labels=lab_brks,right=F)
447
  y_range<-range(c(snot_data_selected$res_c,snot_data_selected$res_f),na.rm=T)
448
  x_range<-range(c(elev_rcstat))
449
  plot(elev_rcstat,snot_data_selected$res_c, ylab="res_c", xlab="ELEV_SRTM (m) ", 
450
       ylim=y_range, xlim=x_range)
451
  #text(elev_rcstat,diff_cf,labels=data_vf$idx,pos=3)
452
  grid(lwd=0.5,col="black")
453
  title(paste("SNOT stations residuals CAI vs Elevation",date_selected,sep=" "))
454
  savePlot(paste("fig7_elevation_classes_residuals_SNOT_GHCN_network",date_selected,out_prefix,".png", sep=""), type="png")
455
  
456
  ####### COMPARE CAI FUSION USING SNOTEL DATA WITH ACCURACY METRICS###############
457
  ################ RESIDUALS and MAE etc.  #####################
458
  
459
  ### Run for full list of date? --365
460
  ac_tab_snot_fus<-calc_accuracy_metrics(snot_data_selected$tmax,snot_data_selected$fus) 
461
  ac_tab_snot_cai<-calc_accuracy_metrics(snot_data_selected$tmax,snot_data_selected$CAI) 
462
  ac_tab_ghcn_fus<-calc_accuracy_metrics(data_vf$dailyTmax,data_vf$pred_mod7) 
463
  ac_tab_ghcn_cai<-calc_accuracy_metrics(data_vc$dailyTmax,data_vc$pred_mod9)
464
  
465
  ac_tab<-do.call(rbind,list(ac_tab_snot_fus,ac_tab_snot_cai,ac_tab_ghcn_fus,ac_tab_ghcn_cai))
466
  rownames(ac_tab)<-c("snot_fus","snot_cai","ghcn_fus","ghcn_cai")
467
  ac_tab$date<-date_selected
468
  list_ac_tab[[i]]<-ac_tab  #storing the accuracy metric data.frame in a list...
469
  #save(list_ac_tab,)
470
  save(list_ac_tab,file= paste("list_ac_tab_", date_selected,out_prefix,".RData",sep=""))
471

  
472
  #FIG8: boxplot of residuals for methods (fus, cai) using SNOT and GHCN data
473
  #fig8a
474
  y_range<-range(c(snot_data_selected$res_f,snot_data_selected$res_c,data_vf$res_mod7,data_vc$res_mod9),na.rm=T)
475
  boxplot(snot_data_selected$res_f,snot_data_selected$res_c,names=c("FUS","CAI"),ylim=y_range,ylab="Residuals tmax degree C")
476
  title(paste("Residuals for fusion and CAI methods for SNOT data ",date_selected,sep=" "))
477
  #fig8b
478
  boxplot(data_vf$res_mod7,data_vc$res_mod9,names=c("FUS","CAI"),ylim=y_range,ylab="Residuals tmax degree C")
479
  title(paste("Residuals for fusion and CAI methods for GHCN data ",date_selected,sep=" "))
480
  savePlot(paste("fig8_residuals_boxplot_SNOT_GHCN_network",date_selected,out_prefix,".png", sep=""), type="png")
481
  
482
  mae_fun<-function(residuals){
483
    mean(abs(residuals),na.rm=T)
484
  }
485
  
486
  mean_diff_fc<-aggregate(diff_fc~elev_rec,data=snot_data_selected,mean)
487
  mean_mae_c<-aggregate(res_c~elev_rec,data=snot_data_selected,mae_fun)
488
  mean_mae_f<-aggregate(res_f~elev_rec,data=snot_data_selected,mae_fun)
489
  
490
  ####FIG 9: plot MAE for fusion and CAI as well as boxplots of both thechnique
491
  #fig 9a: boxplot of residuals for MAE and CAI
492
  height<-cbind(snot_data_selected$res_f,snot_data_selected$res_c)
493
  boxplot(height,names=c("FUS","CAI"),ylab="Residuals tmax degree C")
494
  title(paste("Residuals for fusion and CAI methods for SNOT data ",date_selected,sep=" "))
495
  #par(new=TRUE)
496
  #abline(h=ac_tab[1,1],col="red")
497
  points(1,ac_tab[1,1],pch=5,col="red")
498
  points(2,ac_tab[2,1],pch=5,col="black")
499
  legend("bottom",legend=c("FUS_MAE", "CAI_MAE"), 
500
         cex=0.8, col=c("red","black"),
501
         pch=c(2,1))
502
  #fig 9b: MAE per 3 elevation classes:0-1000,1000-2000,2000-3000,3000-4000
503
  y_range<-c(0,max(c(mean_mae_c[,2],mean_mae_f[,2]),na.rm=T))
504
  plot(1:3,mean_mae_c[,2],ylim=y_range,type="n",ylab="MAE in degree C",xlab="elevation classes")
505
  points(mean_mae_c,ylim=y_range)
506
  lines(1:3,mean_mae_c[,2],col="black")
507
  par(new=TRUE)              # key: ask for new plot without erasing old
508
  points(mean_mae_f,ylim=y_range)
509
  lines(1:3,mean_mae_f[,2],col="red")
510
  legend("bottom",legend=c("FUS_MAE", "CAI_MAE"), 
511
         cex=0.8, col=c("red","black"),
512
         pch=c(2,1))
513
  title(paste("MAE per elevation classes for SNOT data ",date_selected,sep=" "))
514
  savePlot(paste("fig9_residuals_boxplot_MAE_SNOT_GHCN_network",date_selected,out_prefix,".png", sep=""), type="png")
515
  
516
  ### LM MODELS for difference and elevation categories
517
  ## Are the differences plotted on fig 9 significant??
518
  diffelev_mod<-lm(diff_fc~elev_rec,data=snot_data_selected)
519
  summary(diffelev_mod)
520
  ##LM MODEL MAE PER ELEVATION CLASS: residuals for CAI
521
  diffelev_mod<-lm(res_c~elev_rec,data=snot_data_selected)
522
  summary(diffelev_mod)
523
  ##LM MODEL MAE PER ELEVATION CLASS: residuals for Fusions
524
  diffelev_mod<-lm(res_f~elev_rec,data=snot_data_selected)
525
  summary(diffelev_mod)
526
  
527
  ### LM MODELS for RESIDUALS BETWEEN CAI AND FUSION
528
  ## Are the differences plotted on fig 9 significant??
529
  ## STORE THE p values...?? overall and per cat?
530
  
531
  #diffelev_mod<-lm(res_f~elev_rec,data=snot_data_selected)
532
  #table(snot_data_selected$elev_rec) #Number of observation per class
533
  #max(snot_data_selected$E_STRM)
534
  
535
  #res
536
  
537
  #############################################
538
  #USING BOTH validation and training
539
  #This part is exploratory....
540
  ################## EXAMINING RESIDUALS AND DIFFERENCES IN LAND COVER......############
541
  ######
542

  
543
  #LC_names<-c("LC1_rec","LC2_rec","LC3_rec","LC4_rec","LC6_rec")
544
  suf_name<-c("rec1")
545
  sum_var<-c("diff_fc")
546
  LC_names<-c("LC1","LC2","LC3","LC4","LC6")
547
  brks<-c(-1,20,40,60,80,101)
548
  lab_brks<-seq(1,5,1)
549
  #var_name<-LC_names; suffix<-"rec1"; s_function<-"mean";df<-snot_data_selected;summary_var<-"diff_fc"
550
  #reclassify_df(snot_data_selected,LC_names,var_name,brks,lab_brks,suffix,summary_var)
551
  
552
  #Calculate mean per land cover percentage
553
  data_agg<-reclassify_df(snot_data_selected,LC_names,brks,lab_brks,suf_name,sum_var)
554
  data_lc<-data_agg[[1]]
555
  snot_data_selected<-data_agg[[2]]
556
  
557
  by_name<-"rec1"
558
  df_lc_diff_fc<-merge_multiple_df(data_lc,by_name)
559
  
560
  ###### FIG10: PLOT LAND COVER
561
  zones_stat<-df_lc_diff_fc #first land cover
562
  #names(zones_stat)<-c("lab_brks","LC")
563
  y_range<-range(as.vector(t(zones_stat[,-1])),na.rm=T)
564
  lab_brks_mid<-c(10,30,50,70,90)
565
  plot(lab_brks_mid,zones_stat[,2],type="b",ylim=y_range,col="black", lwd=2,
566
       ylab="difference between fusion and CAI",xlab="land cover percent classes")
567
  lines(lab_brks_mid,zones_stat[,3],col="red",type="b")
568
  lines(lab_brks_mid,zones_stat[,4],col="blue",type="b")
569
  lines(lab_brks_mid,zones_stat[,5],col="darkgreen",type="b")
570
  lines(lab_brks_mid,zones_stat[,6],col="purple",type="b")
571
  legend("topleft",legend=c("LC1_forest", "LC2_shrub", "LC3_grass", "LC4_crop", "LC6_urban"), 
572
         cex=1.2, col=c("black","red","blue","darkgreen","purple"),
573
         lty=1,lwd=1.8)
574
  title(paste("Prediction tmax difference and land cover ",date_selected,sep=""))
575

  
576
  ###NOW USE RESIDUALS FOR FUSION
577
  sum_var<-"res_f"
578
  suf_name<-"rec2"
579
  data_agg2<-reclassify_df(snot_data_selected,LC_names,brks,lab_brks,suf_name,sum_var)
580
  data_resf_lc<-data_agg2[[1]]
581
  #snot_data_selected<-data_agg[[2]]
582
  
583
  by_name<-"rec2"
584
  df_lc_resf<-merge_multiple_df(data_resf_lc,by_name)
585
  
586
  zones_stat<-df_lc_resf #first land cover
587
  #names(zones_stat)<-c("lab_brks","LC")
588
  lab_brks_mid<-c(10,30,50,70,90)
589
  plot(lab_brks_mid,zones_stat[,2],type="b",ylim=y_range,col="black",lwd=2,
590
       ylab="tmax residuals fusion ",xlab="land cover percent classes")
591
  lines(lab_brks_mid,zones_stat[,3],col="red",type="b")
592
  lines(lab_brks_mid,zones_stat[,4],col="blue",type="b")
593
  lines(lab_brks_mid,zones_stat[,5],col="darkgreen",type="b")
594
  lines(lab_brks_mid,zones_stat[,6],col="purple",type="b")
595
  legend("topleft",legend=c("LC1_forest", "LC2_shrub", "LC3_grass", "LC4_crop", "LC6_urban"), 
596
         cex=1.2, col=c("black","red","blue","darkgreen","purple"),
597
         lty=1,lwd=1.2)
598
  title(paste("Prediction tmax residuals and land cover ",date_selected,sep=""))
599
  savePlot(paste("fig10_diff_prediction_tmax_diff_res_f_land cover",date_selected,out_prefix,".png", sep=""), type="png")
600
  
601
  #### FIGURE11: res_f and res_c per land cover
602
  
603
  sum_var<-"res_c"
604
  suf_name<-"rec3"
605
  data_agg3<-reclassify_df(snot_data_selected,LC_names,brks,lab_brks,suf_name,sum_var)
606
  data_resc_lc<-data_agg3[[1]]
607
  snot_data_selected<-data_agg3[[2]]
608
  
609
  by_name<-"rec3"
610
  df_lc_resc<-merge_multiple_df(data_resc_lc,by_name)
611
  
612
  zones_stat<-df_lc_resc #first land cover
613
  #names(zones_stat)<-c("lab_brks","LC")
614
  y_range<-range(as.vector(t(zones_stat[,-1])),na.rm=T)
615
  lab_brks_mid<-c(10,30,50,70,90)
616
  plot(lab_brks_mid,zones_stat[,2],type="b",ylim=y_range,col="black",lwd=2,
617
       ylab="tmax residuals CAI",xlab="land cover percent classes")
618
  lines(lab_brks_mid,zones_stat[,3],col="red",type="b")
619
  lines(lab_brks_mid,zones_stat[,4],col="blue",type="b")
620
  lines(lab_brks_mid,zones_stat[,5],col="darkgreen",type="b")
621
  lines(lab_brks_mid,zones_stat[,6],col="purple",type="b")
622
  legend("topleft",legend=c("LC1_forest", "LC2_shrub", "LC3_grass", "LC4_crop", "LC6_urban"), 
623
         cex=1.2, col=c("black","red","blue","darkgreen","purple"),
624
         lty=1,lwd=1.2)
625
  title(paste("Prediction tmax residuals CAI and land cover ",date_selected,sep=""))
626
  
627
  #fig11b
628
  zones_stat<-df_lc_resf #first land cover
629
  #names(zones_stat)<-c("lab_brks","LC")
630
  y_range<-range(as.vector(t(zones_stat[,-1])),na.rm=T)
631
  lab_brks_mid<-c(10,30,50,70,90)
632
  plot(lab_brks_mid,zones_stat[,2],type="b",ylim=y_range,col="black",lwd=2,
633
       ylab="tmax residuals fusion ",xlab="land cover percent classes")
634
  lines(lab_brks_mid,zones_stat[,3],col="red",type="b")
635
  lines(lab_brks_mid,zones_stat[,4],col="blue",type="b")
636
  lines(lab_brks_mid,zones_stat[,5],col="darkgreen",type="b")
637
  lines(lab_brks_mid,zones_stat[,6],col="purple",type="b")
638
  legend("topleft",legend=c("LC1_forest", "LC2_shrub", "LC3_grass", "LC4_crop", "LC6_urban"), 
639
         cex=1.2, col=c("black","red","blue","darkgreen","purple"),
640
         lty=1,lwd=1.2)
641
  title(paste("Prediction tmax residuals and land cover ",date_selected,sep=""))
642
  #savePlot(paste("fig10_diff_prediction_tmax_diff_res_f_land cover",date_selected,out_prefix,".png", sep=""), type="png")
643
  savePlot(paste("fig11_prediction_tmax_res_f_res_c_land cover",date_selected,out_prefix,".png", sep=""), type="png")
644
    
645
} 
646 326

  
647
#Collect accuracy information for different dates
648
ac_data_xdates<-do.call(rbind,list_ac_tab)
649 327

  
650
ac_data_xdates$mod_id<-rownames(ac_data_xdates)
328
#ac_mod<-mclapply(1:length(dates), accuracy_comp_CAI_fus_function,mc.preschedule=FALSE,mc.cores = 8) #This is the end bracket from mclapply(...) statement
329
source("function_methods_comparison_assessment_part7_12102012.R")
330
#Use mcMap or mappply for function with multiple arguments...
331
#ac_mod<-mclapply(1:6, accuracy_comp_CAI_fus_function,mc.preschedule=FALSE,mc.cores = 1) #This is the end bracket from mclapply(...) statement
332
ac_mod<-mclapply(1:length(dates), accuracy_comp_CAI_fus_function,mc.preschedule=FALSE,mc.cores = 8) #This is the end bracket from mclapply(...) statement
651 333

  
652
tmp_rownames<-rownames(ac_data_xdates)
653
rowstr<-strsplit(tmp_rownames,"\\.")
654
for (i in 1:length(rowstr)){
655
  ac_data_xdates$mod_id[i]<-rowstr[[i]][[2]]
334
tb<-ac_mod[[1]][[4]][0,]  #empty data frame with metric table structure that can be used in rbinding...
335
tb_tmp<-ac_mod #copy
336

  
337
for (i in 1:length(tb_tmp)){
338
  tmp<-tb_tmp[[i]][[4]]
339
  tb<-rbind(tb,tmp)
656 340
}
341
rm(tb_tmp)
342
#Collect accuracy information for different dates
343
#ac_data_xdates<-do.call(rbind,tb)
344
ac_data_xdates<-tb
657 345
##Now subset for each model...
658 346

  
659 347
mod_names<-unique(ac_data_xdates$mod_id)
......
684 372
mean(data_ac_ghcn_fus)
685 373
mean(data_ac_ghcn_cai)
686 374

  
375
### END OF CODE
687 376
### END OF CODE
688 377
#Write a part to caculate MAE per date...
689 378
#ac_table_metrics<-do.call(rbind,ac_tab_list)

Also available in: Unified diff