Revision 5f28f8d6
Added by Benoit Parmentier about 12 years ago
climate/research/oregon/interpolation/methods_comparison_assessment_part7.R | ||
---|---|---|
27 | 27 |
library(reshape) |
28 | 28 |
library(RCurl) |
29 | 29 |
######### Functions used in the script |
30 |
# |
|
30 | 31 |
|
31 | 32 |
load_obj <- function(f) |
32 | 33 |
{ |
... | ... | |
153 | 154 |
######### |
154 | 155 |
#loading R objects that might have similar names |
155 | 156 |
|
156 |
out_prefix<-"_method_comp7_12042012_"
|
|
157 |
out_prefix<-"_method_comp7_12102012b_"
|
|
157 | 158 |
infile2<-"list_365_dates_04212012.txt" |
159 |
infile1<- "ghcn_or_tmax_covariates_06262012_OR83M.shp" #GHCN shapefile containing variables for modeling 2010 |
|
160 |
#infile2<-"list_10_dates_04212012.txt" #List of 10 dates for the regression |
|
161 |
infile2<-"list_365_dates_04212012.txt" #list of dates |
|
162 |
infile3<-"LST_dates_var_names.txt" #LST dates name |
|
163 |
infile4<-"models_interpolation_05142012.txt" #Interpolation model names |
|
164 |
infile5<-"mean_day244_rescaled.rst" #mean LST for day 244 |
|
165 |
inlistf<-"list_files_05032012.txt" #list of raster images containing the Covariates |
|
166 |
infile6<-"OR83M_state_outline.shp" |
|
167 |
#stat_loc<-read.table(paste(path,"/","location_study_area_OR_0602012.txt",sep=""),sep=",", header=TRUE) |
|
158 | 168 |
|
159 | 169 |
i=2 |
160 | 170 |
##### LOAD USEFUL DATA |
161 | 171 |
|
162 | 172 |
#obj_list<-"list_obj_08262012.txt" #Results of fusion from the run on ATLAS |
163 |
path_wd<-"/home/parmentier/Data/IPLANT_project/methods_interpolation_comparison_10242012" #Jupiter LOCATION on Atlas for kriging #Jupiter Location on XANDERS |
|
173 |
path<-"/home/parmentier/Data/IPLANT_project/methods_interpolation_comparison_10242012" #Jupiter LOCATION on Atlas for kriging #Jupiter Location on XANDERS |
|
174 |
path_wd<-"/home/parmentier/Data/IPLANT_project/methods_interpolation_comparison_10242012" #Jupiter LOCATION on Atlas for kriging |
|
164 | 175 |
#path<-"/Users/benoitparmentier/Dropbox/Data/NCEAS/Oregon_covariates/" #Local dropbox folder on Benoit's laptop |
165 |
setwd(path_wd)
|
|
176 |
setwd(path) |
|
166 | 177 |
path_data_cai<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_10242012_CAI" #Change to constant |
167 | 178 |
path_data_fus<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_10242012_GAM" |
168 | 179 |
#list files that contain model objects and ratingin-testing information for CAI and Fusion |
169 | 180 |
obj_mod_fus_name<-"results_mod_obj__365d_GAM_fusion_const_all_lstd_11022012.RData" |
170 | 181 |
obj_mod_cai_name<-"results_mod_obj__365d_GAM_CAI2_const_all_10312012.RData" |
171 | 182 |
|
183 |
#external function |
|
184 |
source("function_methods_comparison_assessment_part7_12102012.R") |
|
172 | 185 |
|
173 | 186 |
### Projection for the current region |
174 | 187 |
proj_str="+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
175 | 188 |
#User defined output prefix |
176 | 189 |
|
190 |
### MAKE THIS A FUNCTION TO LOAD STACK AND DEFINE VALID RANGE... |
|
177 | 191 |
#CRS<-proj4string(ghcn) #Storing projection information (ellipsoid, datum,etc.) |
178 | 192 |
lines<-read.table(paste(path,"/",inlistf,sep=""), sep="") #Column 1 contains the names of raster files |
179 | 193 |
inlistvar<-lines[,1] |
... | ... | |
184 | 198 |
layerNames(s_raster)<-covar_names #Assigning names to the raster layers |
185 | 199 |
projection(s_raster)<-proj_str |
186 | 200 |
|
201 |
#Create mask using land cover data |
|
202 |
pos<-match("LC10",layerNames(s_raster)) #Find the layer which contains water bodies |
|
203 |
LC10<-subset(s_raster,pos) |
|
204 |
LC10[is.na(LC10)]<-0 #Since NA values are 0, we assign all zero to NA |
|
205 |
mask_land<-LC10<100 #All values below 100% water are assigned the value 1, value 0 is "water" |
|
206 |
mask_land_NA<-mask_land |
|
207 |
mask_land_NA[mask_land_NA==0]<-NA #Water bodies are assigned value 1 |
|
208 |
|
|
209 |
data_name<-"mask_land_OR" |
|
210 |
raster_name<-paste(data_name,".rst", sep="") |
|
211 |
writeRaster(mask_land, filename=raster_name,overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
212 |
#writeRaster(r2, filename=raster_name,overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
213 |
|
|
214 |
pos<-match("ELEV_SRTM",layerNames(s_raster)) #Find column with name "ELEV_SRTM" |
|
215 |
ELEV_SRTM<-raster(s_raster,layer=pos) #Select layer from stack on 10/30 |
|
216 |
s_raster<-dropLayer(s_raster,pos) |
|
217 |
ELEV_SRTM[ELEV_SRTM <0]<-NA |
|
218 |
mask_ELEV_SRTM<-ELEV_SRTM>0 |
|
219 |
|
|
220 |
#Change this a in loop... |
|
221 |
pos<-match("LC1",layerNames(s_raster)) #Find column with name "value" |
|
222 |
LC1<-raster(s_raster,layer=pos) #Select layer from stack |
|
223 |
s_raster<-dropLayer(s_raster,pos) |
|
224 |
LC1[is.na(LC1)]<-0 |
|
225 |
pos<-match("LC2",layerNames(s_raster)) #Find column with name "value" |
|
226 |
LC2<-raster(s_raster,layer=pos) #Select layer from stack |
|
227 |
s_raster<-dropLayer(s_raster,pos) |
|
228 |
LC2[is.na(LC2)]<-0 |
|
229 |
pos<-match("LC3",layerNames(s_raster)) #Find column with name "value" |
|
230 |
LC3<-raster(s_raster,layer=pos) #Select layer from stack |
|
231 |
s_raster<-dropLayer(s_raster,pos) |
|
232 |
LC3[is.na(LC3)]<-0 |
|
233 |
pos<-match("LC4",layerNames(s_raster)) #Find column with name "value" |
|
234 |
LC4<-raster(s_raster,layer=pos) #Select layer from stack |
|
235 |
s_raster<-dropLayer(s_raster,pos) |
|
236 |
LC4[is.na(LC4)]<-0 |
|
237 |
pos<-match("LC6",layerNames(s_raster)) #Find column with name "value" |
|
238 |
LC6<-raster(s_raster,layer=pos) #Select layer from stack |
|
239 |
s_raster<-dropLayer(s_raster,pos) |
|
240 |
LC6[is.na(LC6)]<-0 |
|
241 |
pos<-match("LC7",layerNames(s_raster)) #Find column with name "value" |
|
242 |
LC7<-raster(s_raster,layer=pos) #Select layer from stack |
|
243 |
s_raster<-dropLayer(s_raster,pos) |
|
244 |
LC7[is.na(LC7)]<-0 |
|
245 |
pos<-match("LC9",layerNames(s_raster)) #Find column with name "LC9", this is wetland... |
|
246 |
LC9<-raster(s_raster,layer=pos) #Select layer from stack |
|
247 |
s_raster<-dropLayer(s_raster,pos) |
|
248 |
LC9[is.na(LC9)]<-0 |
|
249 |
|
|
250 |
LC_s<-stack(LC1,LC2,LC3,LC4,LC6,LC7) |
|
251 |
layerNames(LC_s)<-c("LC1_forest","LC2_shrub","LC3_grass","LC4_crop","LC6_urban","LC7_barren") |
|
252 |
LC_s <-mask(LC_s,mask_ELEV_SRTM) |
|
253 |
plot(LC_s) |
|
254 |
|
|
255 |
s_raster<-addLayer(s_raster, LC_s) |
|
256 |
|
|
257 |
#mention this is the last... files |
|
258 |
|
|
259 |
#Read region outline... |
|
260 |
filename<-sub(".shp","",infile6) #Removing the extension from file. |
|
261 |
reg_outline<-readOGR(".", filename) #reading shapefile |
|
262 |
|
|
187 | 263 |
########## Load Snotel data |
188 | 264 |
infile_snotname<-"snot_OR_2010_sp2_methods_11012012_.shp" #load Snotel data |
189 | 265 |
snot_OR_2010_sp<-readOGR(".",sub(".shp","",infile_snotname)) |
... | ... | |
206 | 282 |
#Load GHCN data used in modeling: training and validation site |
207 | 283 |
|
208 | 284 |
### load specific date...and plot: make a function to extract the diff and prediction... |
209 |
rast_diff_fc<-rast_fus_pred-rast_cai_pred |
|
210 |
layerNames(rast_diff)<-paste("diff",date_selected,sep="_") |
|
285 |
#rast_diff_fc<-rast_fus_pred-rast_cai_pred
|
|
286 |
#layerNames(rast_diff)<-paste("diff",date_selected,sep="_")
|
|
211 | 287 |
|
212 | 288 |
####COMPARE WITH LOCATION OF GHCN and SNOTEL NETWORK |
213 | 289 |
|
... | ... | |
215 | 291 |
i=1 |
216 | 292 |
date_selected<-dates[i] |
217 | 293 |
|
218 |
X11(width=16,height=9) |
|
219 |
par(mfrow=c(1,2)) |
|
294 |
X11(12,12) |
|
295 |
# #plot(rast_diff_fc) |
|
296 |
# plot(snot_OR_2010_sp,pch=2,col="red",add=T) |
|
297 |
# plot(data_stat,add=T) #This is the GHCN network |
|
298 |
# legend("bottom",legend=c("SNOTEL", "GHCN"), |
|
299 |
# cex=0.8, col=c("red","black"), |
|
300 |
# pch=c(2,1)) |
|
301 |
# title(paste("SNOTEL and GHCN networks on ", date_selected, sep="")) |
|
220 | 302 |
|
221 |
plot(rast_diff_fc)
|
|
303 |
plot(ELEV_SRTM)
|
|
222 | 304 |
plot(snot_OR_2010_sp,pch=2,col="red",add=T) |
223 |
plot(data_stat,add=T) #This is the GHCN network
|
|
305 |
#plot(data_stat,add=T)
|
|
224 | 306 |
legend("bottom",legend=c("SNOTEL", "GHCN"), |
225 | 307 |
cex=0.8, col=c("red","black"), |
226 | 308 |
pch=c(2,1)) |
227 |
title(paste("SNOTEL and GHCN networks on ", date_selected, sep="")) |
|
228 |
|
|
229 |
plot(ELEV_SRTM) |
|
230 |
plot(snot_OR_2010_sp,pch=2,col="red",add=T) |
|
231 |
plot(data_stat,add=T) |
|
232 |
legend("bottom",legend=c("SNOTEL", "GHCN"), |
|
233 |
cex=0.8, col=c("red","black"), |
|
234 |
pch=c(2,1)) |
|
235 | 309 |
title(paste("SNOTEL and GHCN networks", sep="")) |
236 | 310 |
savePlot(paste("fig1_map_SNOT_GHCN_network_diff_elev_bckgd",date_selected,out_prefix,".png", sep=""), type="png") |
311 |
dev.off() |
|
237 | 312 |
|
238 | 313 |
#add histogram of elev for SNOT and GHCN |
239 |
hist(snot_data_selected$ELEV_SRTM,main="") |
|
240 |
title(paste("SNOT stations and Elevation",date_selected,sep=" ")) |
|
241 |
hist(data_vc$ELEV_SRTM,main="") |
|
242 |
title(paste("GHCN stations and Elevation",date_selected,sep=" ")) |
|
243 |
savePlot(paste("fig2_hist_elev_SNOT_GHCN_",out_prefix,".png", sep=""), type="png") |
|
244 |
dev.off() |
|
314 |
#X11(width=16,height=9) |
|
315 |
#par(mfrow=c(1,2)) |
|
316 |
#hist(snot_data_selected$ELEV_SRTM,main="") |
|
317 |
#title(paste("SNOT stations and Elevation",date_selected,sep=" ")) |
|
318 |
#hist(data_vc$ELEV_SRTM,main="") |
|
319 |
#title(paste("GHCN stations and Elevation",date_selected,sep=" ")) |
|
320 |
#savePlot(paste("fig2_hist_elev_SNOT_GHCN_",out_prefix,".png", sep=""), type="png") |
|
321 |
#dev.off() |
|
245 | 322 |
## Select date from SNOT |
246 | 323 |
#not_selected<-subset(snot_OR_2010_sp, date=="90110" ) |
247 | 324 |
list_ac_tab <-vector("list", length(dates)) #storing the accuracy metric data.frame in a list... |
248 | 325 |
names(list_ac_tab)<-paste("date",1:length(dates),sep="") |
249 |
X11(width=16,height=9) |
|
250 |
par(mfrow=c(1,2)) |
|
251 |
#for(i in 1:length(dates)){ |
|
252 |
for(i in 163:length(dates)){ |
|
253 |
date_selected<-dates[i] |
|
254 |
|
|
255 |
## Get the relevant raster layers with prediction for fusion and CAI |
|
256 |
oldpath<-getwd() |
|
257 |
setwd(path_data_cai) |
|
258 |
file_pat<-glob2rx(paste("*tmax_predicted*",date_selected,"*_365d_GAM_CAI2_const_all_10312012.rst",sep="")) #Search for files in relation to fusion |
|
259 |
lf_cai2c<-list.files(pattern=file_pat) #Search for files in relation to fusion |
|
260 |
rast_cai2c<-stack(lf_cai2c) #lf_cai2c CAI results with constant sampling over 365 dates |
|
261 |
rast_cai2c<-mask(rast_cai2c,mask_ELEV_SRTM) |
|
262 |
|
|
263 |
oldpath<-getwd() |
|
264 |
setwd(path_data_fus) |
|
265 |
file_pat<-glob2rx(paste("*tmax_predicted*",date_selected,"*_365d_GAM_fusion_const_all_lstd_11022012.rst",sep="")) #Search for files in relation to fusion |
|
266 |
lf_fus1c<-list.files(pattern=file_pat) #Search for files in relation to fusion |
|
267 |
rast_fus1c<-stack(lf_fus1c) |
|
268 |
rast_fus1c<-mask(rast_fus1c,mask_ELEV_SRTM) |
|
269 |
|
|
270 |
#PLOT ALL MODELS |
|
271 |
#Prepare for plotting |
|
272 |
|
|
273 |
setwd(path) #set path to the output path |
|
274 |
|
|
275 |
rast_fus_pred<-raster(rast_fus1c,1) # Select the first model from the stack i.e fusion with kriging for both steps |
|
276 |
rast_cai_pred<-raster(rast_cai2c,1) |
|
277 |
layerNames(rast_cai_pred)<-paste("cai",date_selected,sep="_") |
|
278 |
layerNames(rast_fus_pred)<-paste("fus",date_selected,sep="_") |
|
279 |
rast_pred2<-stack(rast_fus_pred,rast_cai_pred) |
|
280 |
#function to extract training and test from object from object models created earlier during interpolation... |
|
281 |
|
|
282 |
#load training and testing date for the specified date for fusion and CAI |
|
283 |
data_vf<-station_data_interp(date_selected,file.path(path_data_fus,obj_mod_fus_name),training=FALSE,testing=TRUE) |
|
284 |
#data_sf<-station_data_interp(date_selected,file.path(path_data_fus,obj_mod_fus_name),training=TRUE,testing=FALSE) |
|
285 |
data_vc<-station_data_interp(date_selected,file.path(path_data_cai,obj_mod_cai_name),training=FALSE,testing=TRUE) |
|
286 |
#data_sc<-station_data_interp(date_selected,file.path(path_data_cai,obj_mod_cai_name),training=TRUE,testing=FALSE) |
|
287 |
|
|
288 |
date_selected_snot<-strptime(date_selected,"%Y%m%d") |
|
289 |
snot_selected <-snot_OR_2010_sp[snot_OR_2010_sp$date_formatted==date_selected_snot,] |
|
290 |
#snot_selected<-na.omit(as.data.frame(snot_OR_2010_sp[snot_OR_2010_sp$date==90110,])) |
|
291 |
rast_diff_fc<-rast_fus_pred-rast_cai_pred |
|
292 |
LC_stack<-stack(LC1,LC2,LC3,LC4,LC6,LC7) |
|
293 |
rast_pred3<-stack(rast_diff_fc,rast_pred2,ELEV_SRTM,LC_stack) |
|
294 |
layerNames(rast_pred3)<-c("diff_fc","fus","CAI","ELEV_SRTM","LC1","LC2","LC3","LC4","LC6","LC7") #extract amount of veg... |
|
295 |
|
|
296 |
#extract predicted tmax corresponding to |
|
297 |
extract_snot<-extract(rast_pred3,snot_selected) #return value from extract is a matrix (with input SPDF) |
|
298 |
snot_data_selected<-cbind(as.data.frame(snot_selected),extract_snot) #bind data together |
|
299 |
snot_data_selected$res_f<-snot_data_selected$fus-snot_data_selected$tmax #calculate the residuals for Fusion |
|
300 |
snot_data_selected$res_c<-snot_data_selected$CAI-snot_data_selected$tmax #calculate the residuals for CAI |
|
301 |
#snot_data_selected<-(na.omit(as.data.frame(snot_data_selected))) #remove rows containing NA, this may need to be modified later. |
|
302 |
|
|
303 |
###fig3: Plot predicted vs observed tmax |
|
304 |
#fig3a: FUS |
|
305 |
x_range<-range(c(data_vf$pred_mod7,snot_data_selected$fus,data_vc$pred_mod9,snot_data_selected$CAI),na.rm=T) |
|
306 |
y_range<-range(c(data_vf$dailyTmax,snot_data_selected$tmax,data_vc$dailyTmax,snot_data_selected$tmax),na.rm=T) |
|
307 |
plot(data_vf$pred_mod7,data_vf$dailyTmax, ylab="Observed daily tmax (C)", xlab="Fusion predicted daily tmax (C)", |
|
308 |
ylim=y_range,xlim=x_range) |
|
309 |
#text(data_vf$pred_mod7,data_vf$dailyTmax,labels=data_vf$idx,pos=3) |
|
310 |
abline(0,1) #takes intercept at 0 and slope as 1 so display 1:1 ine |
|
311 |
grid(lwd=0.5,col="black") |
|
312 |
points(snot_data_selected$fus,snot_data_selected$tmax,pch=2,co="red") |
|
313 |
title(paste("Testing stations tmax fusion vs daily tmax",date_selected,sep=" ")) |
|
314 |
legend("topleft",legend=c("GHCN", "SNOT"), |
|
315 |
cex=1.2, col=c("black","red"), |
|
316 |
pch=c(1,2)) |
|
317 |
#fig 3b: CAI |
|
318 |
#x_range<-range(c(data_vc$pred_mod9,snot_data_selected$CAI)) |
|
319 |
#y_range<-range(c(data_vc$dailyTmax,snot_data_selected$tmax)) |
|
320 |
plot(data_vc$pred_mod9,data_vc$dailyTmax, ylab="Observed daily tmax (C)", xlab="CAI predicted daily tmax (C)", |
|
321 |
ylim=y_range,xlim=x_range) |
|
322 |
#text(data_vc$pred_mod9,data_vc$dailyTmax,labels=data_vf$idx,pos=3) |
|
323 |
abline(0,1) #takes intercept at 0 and slope as 1 so display 1:1 ine |
|
324 |
grid(lwd=0.5,col="black") |
|
325 |
points(snot_data_selected$CAI,snot_data_selected$tmax,pch=2,co="red") |
|
326 |
#text(snot_data_selected$CAI,snot_data_selected$tmax,labels=1:nrow(snot_data_selected),pos=3) |
|
327 |
#title(paste("Testing stations tmax CAI vs daily tmax",date_selected,sep=" ")) |
|
328 |
legend("topleft",legend=c("GHCN", "SNOT"), |
|
329 |
cex=1.2, col=c("black","red"), |
|
330 |
pch=c(1,2)) |
|
331 |
savePlot(paste("fig3_testing_scatterplot_pred_fus_CAI_observed_SNOT_GHCN_",date_selected,out_prefix,".png", sep=""), type="png") |
|
332 |
|
|
333 |
##### Fig4a: ELEV-CAI |
|
334 |
y_range<-range(c(data_vc$pred_mod9,snot_data_selected$CAI),na.rm=T) |
|
335 |
#y_range<-range(c(data_vc$pred_mod9,snot_data_selected$CAI),na.rm=T) |
|
336 |
x_range<-range(c(data_vc$ELEV_SRTM,snot_data_selected$ELEV_SRTM),na.rm=T) |
|
337 |
lm_mod1<-lm(data_vc$pred_mod9~data_vc$ELEV_SRTM) |
|
338 |
lm_mod2<-lm(snot_data_selected$CAI~snot_data_selected$ELEV_SRTM) |
|
339 |
plot(data_vc$ELEV_SRTM,data_vc$pred_mod9,ylab="Observed daily tmax (C)", xlab="Elevation (m)", |
|
340 |
ylim=y_range,xlim=x_range) |
|
341 |
#text(data_vc$ELEV_SRTM,data_vc$pred_mod9,labels=data_vc$idx,pos=3) |
|
342 |
abline(lm_mod1) #takes intercept at 0 and slope as 1 so display 1:1 ine |
|
343 |
abline(lm_mod2,col="red") #takes intercept at 0 and slope as 1 so display 1:1 ine |
|
344 |
grid(lwd=0.5, col="black") |
|
345 |
points(snot_data_selected$ELEV_SRTM,snot_data_selected$CAI,pch=2,co="red") |
|
346 |
title(paste("Testing stations tmax CAI vs elevation",date_selected,sep=" ")) |
|
347 |
legend("topleft",legend=c("GHCN", "SNOT"), |
|
348 |
cex=1.2, col=c("black","red"), |
|
349 |
pch=c(1,2)) |
|
350 |
|
|
351 |
#Fig4bELEV-FUS |
|
352 |
y_range<-range(c(data_vf$pred_mod7,snot_data_selected$fus),na.rm=T) |
|
353 |
x_range<-range(c(data_vf$ELEV_SRTM,snot_data_selected$ELEV_SRTM),na.rm=T) |
|
354 |
lm_mod1<-lm(data_vf$pred_mod7~data_vf$ELEV_SRTM) |
|
355 |
lm_mod2<-lm(snot_data_selected$fus~snot_data_selected$ELEV_SRTM) |
|
356 |
plot(data_vf$ELEV_SRTM,data_vf$pred_mod7,ylab="Observed daily tmax (C)", xlab="Elevation (m)", |
|
357 |
ylim=y_range,xlim=x_range) |
|
358 |
#text(data_vc$ELEV_SRTM,data_vc$pred_mod9,labels=data_vc$idx,pos=3) |
|
359 |
abline(lm_mod1) #takes intercept at 0 and slope as 1 so display 1:1 ine |
|
360 |
abline(lm_mod2,col="red") #takes intercept at 0 and slope as 1 so display 1:1 ine |
|
361 |
grid(lwd=0.5, col="black") |
|
362 |
points(snot_data_selected$ELEV_SRTM,snot_data_selected$fus,pch=2,co="red") |
|
363 |
title(paste("Testing stations tmax vs elevation",date_selected,sep=" ")) |
|
364 |
legend("topleft",legend=c("GHCN", "SNOT"), |
|
365 |
cex=1.2, col=c("black","red"), |
|
366 |
pch=c(1,2)) |
|
367 |
savePlot(paste("fig4_testing_scatterplot_pred_fus_CIA_elev_SNOT_GHCN_",date_selected,out_prefix,".png", sep=""), type="png") |
|
368 |
|
|
369 |
############ ACCURACY METRICS AND RESIDUALS ############# |
|
370 |
|
|
371 |
#START FIG 5 |
|
372 |
#####Fig5a: CAI vs FUSION: difference by plotting on in terms of the other |
|
373 |
lm_mod<-lm(snot_data_selected$CAI~snot_data_selected$fus) |
|
374 |
y_range<-range(c(data_vc$pred_mod9,snot_data_selected$CAI),na.rm=T) |
|
375 |
x_range<-range(c(data_vf$pred_mod7,snot_data_selected$fus),na.rm=T) |
|
376 |
|
|
377 |
plot(data_vf$pred_mod7,data_vc$pred_mod9,ylab="Predicted CAI daily tmax (C)", xlab="Predicted fusion daily tmax (C)", |
|
378 |
ylim=y_range,xlim=x_range) |
|
379 |
#text(data_vc$ELEV_SRTM,data_vc$dailyTmax,labels=data_vc$idx,pos=3) |
|
380 |
abline(0,1) #takes intercept at 0 and slope as 1 so display 1:1 ine |
|
381 |
abline(lm_mod,col="red") |
|
382 |
grid(lwd=0.5, col="black") |
|
383 |
points(snot_data_selected$fus,snot_data_selected$CAI,pch=2,co="red") |
|
384 |
title(paste("Testing stations predicted tmax fusion vs CAI tmax",date_selected,sep=" ")) |
|
385 |
legend("topleft",legend=c("GHCN", "SNOT"), |
|
386 |
cex=1.2, col=c("black","red"), |
|
387 |
pch=c(1,2)) |
|
388 |
####Fig5b: diff vs elev: difference by plotting on in terms of elev |
|
389 |
diff_fc<-data_vf$pred_mod7-data_vc$pred_mod9 |
|
390 |
plot(snot_data_selected$ELEV_SRTM,snot_data_selected$diff_fc,pch=2,col="red") |
|
391 |
lm_mod<-lm(snot_data_selected$diff_fc~snot_data_selected$ELEV_SRTM) |
|
392 |
abline(lm_mod,col="red") |
|
393 |
points(data_vf$ELEV_SRTM,diff_fc) |
|
394 |
lm_mod<-lm(diff_fc~data_vf$ELEV_SRTM) |
|
395 |
abline(lm_mod) |
|
396 |
legend("topleft",legend=c("GHCN", "SNOT"), |
|
397 |
cex=1.2, col=c("black","red"), |
|
398 |
pch=c(1,2)) |
|
399 |
title(paste("Prediction tmax difference and elevation ",sep="")) |
|
400 |
savePlot(paste("fig5_testing_scatterplot_pred_fus_CAI_observed_SNOT_GHCN_",date_selected,out_prefix,".png", sep=""), type="png") |
|
401 |
|
|
402 |
#DO diff IN TERM OF ELEVATION CLASSES as well as diff.. |
|
403 |
|
|
404 |
#### START FIG 6: difference fc vs elev |
|
405 |
#fig6a |
|
406 |
brks<-c(0,500,1000,1500,2000,2500,4000) |
|
407 |
lab_brks<-1:6 |
|
408 |
elev_rcstat<-cut(snot_data_selected$ELEV_SRTM,breaks=brks,labels=lab_brks,right=F) |
|
409 |
snot_data_selected$elev_rec<-elev_rcstat |
|
410 |
y_range<-range(c(snot_data_selected$diff_fc),na.rm=T) |
|
411 |
x_range<-range(c(elev_rcstat),na.rm=T) |
|
412 |
plot(elev_rcstat,snot_data_selected$diff_fc, ylab="diff_fc", xlab="ELEV_SRTM (m) ", |
|
413 |
ylim=y_range, xlim=x_range) |
|
414 |
#text(elev_rcstat,diff_cf,labels=data_vf$idx,pos=3) |
|
415 |
grid(lwd=0.5,col="black") |
|
416 |
title(paste("SNOT stations diff f vs Elevation",date_selected,sep=" ")) |
|
417 |
|
|
418 |
###With fewer classes...fig6b |
|
419 |
brks<-c(0,1000,2000,3000,4000) |
|
420 |
lab_brks<-1:4 |
|
421 |
elev_rcstat<-cut(snot_data_selected$ELEV_SRTM,breaks=brks,labels=lab_brks,right=F) |
|
422 |
snot_data_selected$elev_rec<-elev_rcstat |
|
423 |
y_range<-range(c(snot_data_selected$diff_fc),na.rm=T) |
|
424 |
x_range<-range(c(elev_rcstat),na.rm=T) |
|
425 |
plot(elev_rcstat,snot_data_selected$diff_fc, ylab="diff_fc", xlab="ELEV_SRTM (m) ", |
|
426 |
ylim=y_range, xlim=x_range) |
|
427 |
#text(elev_rcstat,diff_cf,labels=data_vf$idx,pos=3) |
|
428 |
grid(lwd=0.5,col="black") |
|
429 |
title(paste("SNOT stations diff f vs Elevation",date_selected,sep=" ")) |
|
430 |
savePlot(paste("fig6_elevation_classes_diff_SNOT_GHCN_network",date_selected,out_prefix,".png", sep=""), type="png") |
|
431 |
|
|
432 |
#START FIG 7 with residuals |
|
433 |
#fig 7a |
|
434 |
brks<-c(0,1000,2000,3000,4000) |
|
435 |
lab_brks<-1:4 |
|
436 |
elev_rcstat<-cut(snot_data_selected$ELEV_SRTM,breaks=brks,labels=lab_brks,right=F) |
|
437 |
snot_data_selected$elev_rec<-elev_rcstat |
|
438 |
y_range<-range(c(snot_data_selected$res_f,snot_data_selected$res_c),na.rm=T) |
|
439 |
x_range<-range(c(elev_rcstat),na.rm=T) |
|
440 |
plot(elev_rcstat,snot_data_selected$res_f, ylab="res_f", xlab="ELEV_SRTM (m) ", |
|
441 |
ylim=y_range, xlim=x_range) |
|
442 |
#text(elev_rcstat,diff_cf,labels=data_vf$idx,pos=3) |
|
443 |
grid(lwd=0.5,col="black") |
|
444 |
title(paste("SNOT stations residuals fusion vs Elevation",date_selected,sep=" ")) |
|
445 |
#fig 7b |
|
446 |
elev_rcstat<-cut(snot_data_selected$ELEV_SRTM,breaks=brks,labels=lab_brks,right=F) |
|
447 |
y_range<-range(c(snot_data_selected$res_c,snot_data_selected$res_f),na.rm=T) |
|
448 |
x_range<-range(c(elev_rcstat)) |
|
449 |
plot(elev_rcstat,snot_data_selected$res_c, ylab="res_c", xlab="ELEV_SRTM (m) ", |
|
450 |
ylim=y_range, xlim=x_range) |
|
451 |
#text(elev_rcstat,diff_cf,labels=data_vf$idx,pos=3) |
|
452 |
grid(lwd=0.5,col="black") |
|
453 |
title(paste("SNOT stations residuals CAI vs Elevation",date_selected,sep=" ")) |
|
454 |
savePlot(paste("fig7_elevation_classes_residuals_SNOT_GHCN_network",date_selected,out_prefix,".png", sep=""), type="png") |
|
455 |
|
|
456 |
####### COMPARE CAI FUSION USING SNOTEL DATA WITH ACCURACY METRICS############### |
|
457 |
################ RESIDUALS and MAE etc. ##################### |
|
458 |
|
|
459 |
### Run for full list of date? --365 |
|
460 |
ac_tab_snot_fus<-calc_accuracy_metrics(snot_data_selected$tmax,snot_data_selected$fus) |
|
461 |
ac_tab_snot_cai<-calc_accuracy_metrics(snot_data_selected$tmax,snot_data_selected$CAI) |
|
462 |
ac_tab_ghcn_fus<-calc_accuracy_metrics(data_vf$dailyTmax,data_vf$pred_mod7) |
|
463 |
ac_tab_ghcn_cai<-calc_accuracy_metrics(data_vc$dailyTmax,data_vc$pred_mod9) |
|
464 |
|
|
465 |
ac_tab<-do.call(rbind,list(ac_tab_snot_fus,ac_tab_snot_cai,ac_tab_ghcn_fus,ac_tab_ghcn_cai)) |
|
466 |
rownames(ac_tab)<-c("snot_fus","snot_cai","ghcn_fus","ghcn_cai") |
|
467 |
ac_tab$date<-date_selected |
|
468 |
list_ac_tab[[i]]<-ac_tab #storing the accuracy metric data.frame in a list... |
|
469 |
#save(list_ac_tab,) |
|
470 |
save(list_ac_tab,file= paste("list_ac_tab_", date_selected,out_prefix,".RData",sep="")) |
|
471 |
|
|
472 |
#FIG8: boxplot of residuals for methods (fus, cai) using SNOT and GHCN data |
|
473 |
#fig8a |
|
474 |
y_range<-range(c(snot_data_selected$res_f,snot_data_selected$res_c,data_vf$res_mod7,data_vc$res_mod9),na.rm=T) |
|
475 |
boxplot(snot_data_selected$res_f,snot_data_selected$res_c,names=c("FUS","CAI"),ylim=y_range,ylab="Residuals tmax degree C") |
|
476 |
title(paste("Residuals for fusion and CAI methods for SNOT data ",date_selected,sep=" ")) |
|
477 |
#fig8b |
|
478 |
boxplot(data_vf$res_mod7,data_vc$res_mod9,names=c("FUS","CAI"),ylim=y_range,ylab="Residuals tmax degree C") |
|
479 |
title(paste("Residuals for fusion and CAI methods for GHCN data ",date_selected,sep=" ")) |
|
480 |
savePlot(paste("fig8_residuals_boxplot_SNOT_GHCN_network",date_selected,out_prefix,".png", sep=""), type="png") |
|
481 |
|
|
482 |
mae_fun<-function(residuals){ |
|
483 |
mean(abs(residuals),na.rm=T) |
|
484 |
} |
|
485 |
|
|
486 |
mean_diff_fc<-aggregate(diff_fc~elev_rec,data=snot_data_selected,mean) |
|
487 |
mean_mae_c<-aggregate(res_c~elev_rec,data=snot_data_selected,mae_fun) |
|
488 |
mean_mae_f<-aggregate(res_f~elev_rec,data=snot_data_selected,mae_fun) |
|
489 |
|
|
490 |
####FIG 9: plot MAE for fusion and CAI as well as boxplots of both thechnique |
|
491 |
#fig 9a: boxplot of residuals for MAE and CAI |
|
492 |
height<-cbind(snot_data_selected$res_f,snot_data_selected$res_c) |
|
493 |
boxplot(height,names=c("FUS","CAI"),ylab="Residuals tmax degree C") |
|
494 |
title(paste("Residuals for fusion and CAI methods for SNOT data ",date_selected,sep=" ")) |
|
495 |
#par(new=TRUE) |
|
496 |
#abline(h=ac_tab[1,1],col="red") |
|
497 |
points(1,ac_tab[1,1],pch=5,col="red") |
|
498 |
points(2,ac_tab[2,1],pch=5,col="black") |
|
499 |
legend("bottom",legend=c("FUS_MAE", "CAI_MAE"), |
|
500 |
cex=0.8, col=c("red","black"), |
|
501 |
pch=c(2,1)) |
|
502 |
#fig 9b: MAE per 3 elevation classes:0-1000,1000-2000,2000-3000,3000-4000 |
|
503 |
y_range<-c(0,max(c(mean_mae_c[,2],mean_mae_f[,2]),na.rm=T)) |
|
504 |
plot(1:3,mean_mae_c[,2],ylim=y_range,type="n",ylab="MAE in degree C",xlab="elevation classes") |
|
505 |
points(mean_mae_c,ylim=y_range) |
|
506 |
lines(1:3,mean_mae_c[,2],col="black") |
|
507 |
par(new=TRUE) # key: ask for new plot without erasing old |
|
508 |
points(mean_mae_f,ylim=y_range) |
|
509 |
lines(1:3,mean_mae_f[,2],col="red") |
|
510 |
legend("bottom",legend=c("FUS_MAE", "CAI_MAE"), |
|
511 |
cex=0.8, col=c("red","black"), |
|
512 |
pch=c(2,1)) |
|
513 |
title(paste("MAE per elevation classes for SNOT data ",date_selected,sep=" ")) |
|
514 |
savePlot(paste("fig9_residuals_boxplot_MAE_SNOT_GHCN_network",date_selected,out_prefix,".png", sep=""), type="png") |
|
515 |
|
|
516 |
### LM MODELS for difference and elevation categories |
|
517 |
## Are the differences plotted on fig 9 significant?? |
|
518 |
diffelev_mod<-lm(diff_fc~elev_rec,data=snot_data_selected) |
|
519 |
summary(diffelev_mod) |
|
520 |
##LM MODEL MAE PER ELEVATION CLASS: residuals for CAI |
|
521 |
diffelev_mod<-lm(res_c~elev_rec,data=snot_data_selected) |
|
522 |
summary(diffelev_mod) |
|
523 |
##LM MODEL MAE PER ELEVATION CLASS: residuals for Fusions |
|
524 |
diffelev_mod<-lm(res_f~elev_rec,data=snot_data_selected) |
|
525 |
summary(diffelev_mod) |
|
526 |
|
|
527 |
### LM MODELS for RESIDUALS BETWEEN CAI AND FUSION |
|
528 |
## Are the differences plotted on fig 9 significant?? |
|
529 |
## STORE THE p values...?? overall and per cat? |
|
530 |
|
|
531 |
#diffelev_mod<-lm(res_f~elev_rec,data=snot_data_selected) |
|
532 |
#table(snot_data_selected$elev_rec) #Number of observation per class |
|
533 |
#max(snot_data_selected$E_STRM) |
|
534 |
|
|
535 |
#res |
|
536 |
|
|
537 |
############################################# |
|
538 |
#USING BOTH validation and training |
|
539 |
#This part is exploratory.... |
|
540 |
################## EXAMINING RESIDUALS AND DIFFERENCES IN LAND COVER......############ |
|
541 |
###### |
|
542 |
|
|
543 |
#LC_names<-c("LC1_rec","LC2_rec","LC3_rec","LC4_rec","LC6_rec") |
|
544 |
suf_name<-c("rec1") |
|
545 |
sum_var<-c("diff_fc") |
|
546 |
LC_names<-c("LC1","LC2","LC3","LC4","LC6") |
|
547 |
brks<-c(-1,20,40,60,80,101) |
|
548 |
lab_brks<-seq(1,5,1) |
|
549 |
#var_name<-LC_names; suffix<-"rec1"; s_function<-"mean";df<-snot_data_selected;summary_var<-"diff_fc" |
|
550 |
#reclassify_df(snot_data_selected,LC_names,var_name,brks,lab_brks,suffix,summary_var) |
|
551 |
|
|
552 |
#Calculate mean per land cover percentage |
|
553 |
data_agg<-reclassify_df(snot_data_selected,LC_names,brks,lab_brks,suf_name,sum_var) |
|
554 |
data_lc<-data_agg[[1]] |
|
555 |
snot_data_selected<-data_agg[[2]] |
|
556 |
|
|
557 |
by_name<-"rec1" |
|
558 |
df_lc_diff_fc<-merge_multiple_df(data_lc,by_name) |
|
559 |
|
|
560 |
###### FIG10: PLOT LAND COVER |
|
561 |
zones_stat<-df_lc_diff_fc #first land cover |
|
562 |
#names(zones_stat)<-c("lab_brks","LC") |
|
563 |
y_range<-range(as.vector(t(zones_stat[,-1])),na.rm=T) |
|
564 |
lab_brks_mid<-c(10,30,50,70,90) |
|
565 |
plot(lab_brks_mid,zones_stat[,2],type="b",ylim=y_range,col="black", lwd=2, |
|
566 |
ylab="difference between fusion and CAI",xlab="land cover percent classes") |
|
567 |
lines(lab_brks_mid,zones_stat[,3],col="red",type="b") |
|
568 |
lines(lab_brks_mid,zones_stat[,4],col="blue",type="b") |
|
569 |
lines(lab_brks_mid,zones_stat[,5],col="darkgreen",type="b") |
|
570 |
lines(lab_brks_mid,zones_stat[,6],col="purple",type="b") |
|
571 |
legend("topleft",legend=c("LC1_forest", "LC2_shrub", "LC3_grass", "LC4_crop", "LC6_urban"), |
|
572 |
cex=1.2, col=c("black","red","blue","darkgreen","purple"), |
|
573 |
lty=1,lwd=1.8) |
|
574 |
title(paste("Prediction tmax difference and land cover ",date_selected,sep="")) |
|
575 |
|
|
576 |
###NOW USE RESIDUALS FOR FUSION |
|
577 |
sum_var<-"res_f" |
|
578 |
suf_name<-"rec2" |
|
579 |
data_agg2<-reclassify_df(snot_data_selected,LC_names,brks,lab_brks,suf_name,sum_var) |
|
580 |
data_resf_lc<-data_agg2[[1]] |
|
581 |
#snot_data_selected<-data_agg[[2]] |
|
582 |
|
|
583 |
by_name<-"rec2" |
|
584 |
df_lc_resf<-merge_multiple_df(data_resf_lc,by_name) |
|
585 |
|
|
586 |
zones_stat<-df_lc_resf #first land cover |
|
587 |
#names(zones_stat)<-c("lab_brks","LC") |
|
588 |
lab_brks_mid<-c(10,30,50,70,90) |
|
589 |
plot(lab_brks_mid,zones_stat[,2],type="b",ylim=y_range,col="black",lwd=2, |
|
590 |
ylab="tmax residuals fusion ",xlab="land cover percent classes") |
|
591 |
lines(lab_brks_mid,zones_stat[,3],col="red",type="b") |
|
592 |
lines(lab_brks_mid,zones_stat[,4],col="blue",type="b") |
|
593 |
lines(lab_brks_mid,zones_stat[,5],col="darkgreen",type="b") |
|
594 |
lines(lab_brks_mid,zones_stat[,6],col="purple",type="b") |
|
595 |
legend("topleft",legend=c("LC1_forest", "LC2_shrub", "LC3_grass", "LC4_crop", "LC6_urban"), |
|
596 |
cex=1.2, col=c("black","red","blue","darkgreen","purple"), |
|
597 |
lty=1,lwd=1.2) |
|
598 |
title(paste("Prediction tmax residuals and land cover ",date_selected,sep="")) |
|
599 |
savePlot(paste("fig10_diff_prediction_tmax_diff_res_f_land cover",date_selected,out_prefix,".png", sep=""), type="png") |
|
600 |
|
|
601 |
#### FIGURE11: res_f and res_c per land cover |
|
602 |
|
|
603 |
sum_var<-"res_c" |
|
604 |
suf_name<-"rec3" |
|
605 |
data_agg3<-reclassify_df(snot_data_selected,LC_names,brks,lab_brks,suf_name,sum_var) |
|
606 |
data_resc_lc<-data_agg3[[1]] |
|
607 |
snot_data_selected<-data_agg3[[2]] |
|
608 |
|
|
609 |
by_name<-"rec3" |
|
610 |
df_lc_resc<-merge_multiple_df(data_resc_lc,by_name) |
|
611 |
|
|
612 |
zones_stat<-df_lc_resc #first land cover |
|
613 |
#names(zones_stat)<-c("lab_brks","LC") |
|
614 |
y_range<-range(as.vector(t(zones_stat[,-1])),na.rm=T) |
|
615 |
lab_brks_mid<-c(10,30,50,70,90) |
|
616 |
plot(lab_brks_mid,zones_stat[,2],type="b",ylim=y_range,col="black",lwd=2, |
|
617 |
ylab="tmax residuals CAI",xlab="land cover percent classes") |
|
618 |
lines(lab_brks_mid,zones_stat[,3],col="red",type="b") |
|
619 |
lines(lab_brks_mid,zones_stat[,4],col="blue",type="b") |
|
620 |
lines(lab_brks_mid,zones_stat[,5],col="darkgreen",type="b") |
|
621 |
lines(lab_brks_mid,zones_stat[,6],col="purple",type="b") |
|
622 |
legend("topleft",legend=c("LC1_forest", "LC2_shrub", "LC3_grass", "LC4_crop", "LC6_urban"), |
|
623 |
cex=1.2, col=c("black","red","blue","darkgreen","purple"), |
|
624 |
lty=1,lwd=1.2) |
|
625 |
title(paste("Prediction tmax residuals CAI and land cover ",date_selected,sep="")) |
|
626 |
|
|
627 |
#fig11b |
|
628 |
zones_stat<-df_lc_resf #first land cover |
|
629 |
#names(zones_stat)<-c("lab_brks","LC") |
|
630 |
y_range<-range(as.vector(t(zones_stat[,-1])),na.rm=T) |
|
631 |
lab_brks_mid<-c(10,30,50,70,90) |
|
632 |
plot(lab_brks_mid,zones_stat[,2],type="b",ylim=y_range,col="black",lwd=2, |
|
633 |
ylab="tmax residuals fusion ",xlab="land cover percent classes") |
|
634 |
lines(lab_brks_mid,zones_stat[,3],col="red",type="b") |
|
635 |
lines(lab_brks_mid,zones_stat[,4],col="blue",type="b") |
|
636 |
lines(lab_brks_mid,zones_stat[,5],col="darkgreen",type="b") |
|
637 |
lines(lab_brks_mid,zones_stat[,6],col="purple",type="b") |
|
638 |
legend("topleft",legend=c("LC1_forest", "LC2_shrub", "LC3_grass", "LC4_crop", "LC6_urban"), |
|
639 |
cex=1.2, col=c("black","red","blue","darkgreen","purple"), |
|
640 |
lty=1,lwd=1.2) |
|
641 |
title(paste("Prediction tmax residuals and land cover ",date_selected,sep="")) |
|
642 |
#savePlot(paste("fig10_diff_prediction_tmax_diff_res_f_land cover",date_selected,out_prefix,".png", sep=""), type="png") |
|
643 |
savePlot(paste("fig11_prediction_tmax_res_f_res_c_land cover",date_selected,out_prefix,".png", sep=""), type="png") |
|
644 |
|
|
645 |
} |
|
646 | 326 |
|
647 |
#Collect accuracy information for different dates |
|
648 |
ac_data_xdates<-do.call(rbind,list_ac_tab) |
|
649 | 327 |
|
650 |
ac_data_xdates$mod_id<-rownames(ac_data_xdates) |
|
328 |
#ac_mod<-mclapply(1:length(dates), accuracy_comp_CAI_fus_function,mc.preschedule=FALSE,mc.cores = 8) #This is the end bracket from mclapply(...) statement |
|
329 |
source("function_methods_comparison_assessment_part7_12102012.R") |
|
330 |
#Use mcMap or mappply for function with multiple arguments... |
|
331 |
#ac_mod<-mclapply(1:6, accuracy_comp_CAI_fus_function,mc.preschedule=FALSE,mc.cores = 1) #This is the end bracket from mclapply(...) statement |
|
332 |
ac_mod<-mclapply(1:length(dates), accuracy_comp_CAI_fus_function,mc.preschedule=FALSE,mc.cores = 8) #This is the end bracket from mclapply(...) statement |
|
651 | 333 |
|
652 |
tmp_rownames<-rownames(ac_data_xdates) |
|
653 |
rowstr<-strsplit(tmp_rownames,"\\.") |
|
654 |
for (i in 1:length(rowstr)){ |
|
655 |
ac_data_xdates$mod_id[i]<-rowstr[[i]][[2]] |
|
334 |
tb<-ac_mod[[1]][[4]][0,] #empty data frame with metric table structure that can be used in rbinding... |
|
335 |
tb_tmp<-ac_mod #copy |
|
336 |
|
|
337 |
for (i in 1:length(tb_tmp)){ |
|
338 |
tmp<-tb_tmp[[i]][[4]] |
|
339 |
tb<-rbind(tb,tmp) |
|
656 | 340 |
} |
341 |
rm(tb_tmp) |
|
342 |
#Collect accuracy information for different dates |
|
343 |
#ac_data_xdates<-do.call(rbind,tb) |
|
344 |
ac_data_xdates<-tb |
|
657 | 345 |
##Now subset for each model... |
658 | 346 |
|
659 | 347 |
mod_names<-unique(ac_data_xdates$mod_id) |
... | ... | |
684 | 372 |
mean(data_ac_ghcn_fus) |
685 | 373 |
mean(data_ac_ghcn_cai) |
686 | 374 |
|
375 |
### END OF CODE |
|
687 | 376 |
### END OF CODE |
688 | 377 |
#Write a part to caculate MAE per date... |
689 | 378 |
#ac_table_metrics<-do.call(rbind,ac_tab_list) |
Also available in: Unified diff
Methods comp part7-task#491- SNOT-GHCN data updated script debugged to run through mcapply