Revision 6193eb79
Added by Benoit Parmentier about 10 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part1.R | ||
---|---|---|
5 | 5 |
#Part 1 create summary tables and inputs for figure in part 2 and part 3. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 03/23/2014 |
8 |
#MODIFIED ON: 10/04/2014
|
|
8 |
#MODIFIED ON: 10/21/2014
|
|
9 | 9 |
#Version: 3 |
10 | 10 |
#PROJECT: Environmental Layers project |
11 | 11 |
#TO DO: |
... | ... | |
46 | 46 |
#Additional libraries not used in workflow |
47 | 47 |
library(pgirmess) # Krusall Wallis test with mulitple options, Kruskalmc {pgirmess} |
48 | 48 |
library(colorRamps) |
49 |
|
|
49 |
|
|
50 | 50 |
#### FUNCTION USED IN SCRIPT |
51 |
|
|
51 |
|
|
52 | 52 |
function_analyses_paper1 <-"contribution_of_covariates_paper_interpolation_functions_07182014.R" #first interp paper |
53 | 53 |
function_analyses_paper2 <-"multi_timescales_paper_interpolation_functions_08132014.R" |
54 |
|
|
54 |
|
|
55 | 55 |
load_obj <- function(f) |
56 | 56 |
{ |
57 | 57 |
env <- new.env() |
58 | 58 |
nm <- load(f, env)[1] |
59 | 59 |
env[[nm]] |
60 | 60 |
} |
61 |
|
|
61 |
|
|
62 | 62 |
create_dir_fun <- function(out_dir,out_suffix){ |
63 | 63 |
if(!is.null(out_suffix)){ |
64 | 64 |
out_name <- paste("output_",out_suffix,sep="") |
... | ... | |
459 | 459 |
|
460 | 460 |
#in_dir1 <- "/data/project/layers/commons/NEX_data/test_run1_03232014/output" #On Atlas |
461 | 461 |
#in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output20Deg2/" |
462 |
in_dir1 <-"/nobackupp4/aguzman4/climateLayers/output20Deg_75overlap/reg4" |
|
462 |
#in_dir1 <-"/nobackupp4/aguzman4/climateLayers/output20Deg_75overlap/reg4" |
|
463 |
in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output1000x3000_km/" |
|
463 | 464 |
#/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/finished.txt |
464 | 465 |
in_dir_list <- list.dirs(path=in_dir1,recursive=FALSE) #get the list regions processed for this run |
465 |
in_dir_list_all <- in_dir_list |
|
466 |
#if(basename(in_dir_list)[[1]]=="reg?") #add later |
|
467 |
in_dir_list_all <- lapply(in_dir_list,function(x){list.dirs(path=x,recursive=F)}) |
|
468 |
#in_dir_list_all <- in_dir_list |
|
466 | 469 |
#in_dir_list <- list.dirs(path=in_dir_reg,recursive=FALSE) #get the list of tiles/directories with outputs |
470 |
in_dir_list <- unlist(in_dir_list_all[c(2)]) #only region 3 has informatation at this stage |
|
467 | 471 |
|
468 | 472 |
#in_dir_list <- in_dir_list[grep("bak",basename(basename(in_dir_list)),invert=TRUE)] #the first one is the in_dir1 |
469 |
in_dir_subset <- in_dir_list[grep("subset",basename(in_dir_reg),invert=FALSE)] #select directory with shapefiles...
|
|
473 |
in_dir_subset <- in_dir_list[grep("subset",basename(in_dir_list),invert=FALSE)] #select directory with shapefiles...
|
|
470 | 474 |
in_dir_shp <- file.path(in_dir_subset,"shapefiles") |
471 | 475 |
|
472 | 476 |
#select only directories used for predictions |
473 | 477 |
in_dir_reg <- in_dir_list[grep(".*._.*.",basename(in_dir_list),invert=FALSE)] #select directory with shapefiles... |
474 |
in_dir_reg <- in_dir_list[grep("july_tiffs",basename(in_dir_reg),invert=TRUE)] #select directory with shapefiles... |
|
478 |
#in_dir_reg <- in_dir_list[grep("july_tiffs",basename(in_dir_reg),invert=TRUE)] #select directory with shapefiles...
|
|
475 | 479 |
in_dir_list <- in_dir_reg |
476 | 480 |
#Models used. |
477 | 481 |
#list_models<-c("y_var ~ s(lat,lon,k=4) + s(elev_s,k=3) + s(LST,k=3)", |
... | ... | |
493 | 497 |
# the last directory contains shapefiles |
494 | 498 |
y_var_name <- "dailyTmax" |
495 | 499 |
interpolation_method <- c("gam_CAI") |
496 |
out_prefix<-"run7_global_analyses_10042014"
|
|
500 |
out_prefix<-"run8_global_analyses_10212014"
|
|
497 | 501 |
|
498 | 502 |
#out_dir<-"/data/project/layers/commons/NEX_data/" #On NCEAS Atlas |
499 | 503 |
out_dir <- "/nobackup/bparmen1/" #on NEX |
... | ... | |
704 | 708 |
list_shp_world <- list.files(path=in_dir_shp,pattern=".*.shp",full.names=T) |
705 | 709 |
l_shp <- unlist(lapply(1:length(list_shp_world), |
706 | 710 |
FUN=function(i){paste(strsplit(list_shp_world[i],"_")[[1]][3:4],collapse="_")})) |
707 |
|
|
711 |
l_shp <- gsub(".shp","",l_shp) |
|
708 | 712 |
matching_index <- match(basename(in_dir_list),l_shp) |
709 | 713 |
list_shp_reg_files <- list_shp_world[matching_index] |
710 | 714 |
df_tile_processed$shp_files <-list_shp_world[matching_index] |
... | ... | |
1004 | 1008 |
### This assumes the tree structure has been replicated on Atlas: |
1005 | 1009 |
#for i in 1:length(df_tiled_processed$tile_coord) |
1006 | 1010 |
#output_atlas_dir <- "/data/project/layers/commons/NEX_data/output_run3_global_analyses_06192014/output10Deg/reg1" |
1007 |
output_atlas_dir <- "/data/project/layers/commons/NEX_data/output_run5_global_analyses_08252014/output20Deg" |
|
1011 |
#output_atlas_dir <- "/data/project/layers/commons/NEX_data/output_run5_global_analyses_08252014/output20Deg" |
|
1012 |
output_atlas_dir <- "/data/project/layers/commons/NEX_data/output_run8_global_analyses_10212014" |
|
1008 | 1013 |
#Make directories on ATLAS |
1009 | 1014 |
#for (i in 1:length(df_tile_processed$tile_coord)){ |
1010 | 1015 |
# create_dir_fun(file.path(output_atlas_dir,as.character(df_tile_processed$tile_coord[i])),out_suffix=NULL) |
Also available in: Unified diff
scaling up assessment part 1, Asia, overlap with 10x30 degrees tiles