Project

General

Profile

« Previous | Next » 

Revision 628fa2b0

Added by Benoit Parmentier over 11 years ago

running kriging daily with multisampling 10 to 70% for baselin comb3

View differences:

climate/research/oregon/interpolation/master_script_temp.R
10 10
#STAGE 5: Output analyses: assessment of results for specific dates...
11 11
#
12 12
#AUTHOR: Benoit Parmentier                                                                       
13
#DATE: 08/05/2013                                                                                 
13
#DATE: 08/06/2013                                                                                 
14 14

  
15 15
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363, TASK$568--   
16 16

  
......
67 67
source(file.path(script_path,"sampling_script_functions_03122013.R"))
68 68
source(file.path(script_path,"GAM_fusion_function_multisampling_07302013.R")) #Include GAM_CAI
69 69
source(file.path(script_path,"interpolation_method_day_function_multisampling_07052013.R")) #Include GAM_day
70
source(file.path(script_path,"GAM_fusion_function_multisampling_validation_metrics_05062013.R"))
70
source(file.path(script_path,"GAM_fusion_function_multisampling_validation_metrics_08062013.R"))
71 71

  
72 72
#stages_to_run<-c(1,2,3,4,5) #May decide on antoher strategy later on...
73 73
#stages_to_run<-c(0,2,3,4,5) #May decide on antoher strategy later on...
74 74
stages_to_run<-c(0,2,3,4,5) #MRun only raster fitting, prediction and assessemnt (providing lst averages, covar brick and met stations)
75 75
#If stage 2 is skipped then use previous covar object
76 76
covar_obj_file<-"/data/project/layers/commons/data_workflow/output_data_365d_gam_fus_lst_test_run_07172013/covar_obj__365d_gam_fus_lst_test_run_07172013.RData"
77
covar_obj_file<-"covar_obj__365d_kriging_daily_mults10_lst_comb3_08062013.RData"
77 78
#If stage 3 is skipped then use previous met_stations object
78 79
met_stations_outfiles_obj_file<-"/data/project/layers/commons/data_workflow/output_data_365d_gam_fus_lst_test_run_07172013/met_stations_outfiles_obj_gam_fusion__365d_gam_fus_lst_test_run_07172013.RData"
79 80

  
81
met_stations_outfiles_obj_file<-"met_stations_outfiles_obj_kriging_daily__365d_kriging_daily_mults10_lst_comb3_08062013.RData"
80 82
var<-"TMAX" # variable being interpolated
81
out_prefix<-"_365d_kriging_cai_lst_comb3_08052013"                #User defined output prefix
82
out_suffix<-"_OR_08052013"                                       #Regional suffix
83
out_prefix<-"_365d_kriging_daily_mults10_lst_comb3_08062013"                #User defined output prefix
84
out_suffix<-"_OR_08062013"                                       #Regional suffix
83 85
out_suffix_modis <-"_05302013"                       #pattern to find tiles produced previously     
84 86

  
85 87
#interpolation_method<-c("gam_fusion","gam_CAI","gam_daily") #other otpions to be added later
......
88 90
#interpolation_method<-c("kriging_fusion") #other otpions to be added later
89 91
#interpolation_method<-c("gwr_fusion") #other otpions to be added later
90 92
#interpolation_method<-c("gwr_CAI") #other otpions to be added later
91
interpolation_method<-c("kriging_CAI") 
93
#interpolation_method<-c("kriging_CAI") 
92 94

  
93 95
#interpolation_method<-c("gam_daily") #other otpions to be added later
94
#interpolation_method<-c("kriging_daily") #other otpions to be added later
96
interpolation_method<-c("kriging_daily") #other otpions to be added later
95 97
#interpolation_method<-c("gwr_daily") #other otpions to be added later
96 98

  
97 99
out_path<-"/home/parmentier/Data/IPLANT_project/Oregon_interpolation/Oregon_03142013/output_data"
......
241 243
#Set additional parameters
242 244
#Input for sampling function...
243 245
seed_number<- 100  #if seed zero then no seed?     
244
nb_sample<-1           #number of time random sampling must be repeated for every hold out proportion
245
step<-0         
246
nb_sample<-10           #number of time random sampling must be repeated for every hold out proportion
247
step<-0.1         
246 248
constant<-0             #if value 1 then use the same samples as date one for the all set of dates
247
prop_minmax<-c(0.3,0.3)  #if prop_min=prop_max and step=0 then predicitons are done for the number of dates...
249
prop_minmax<-c(0.1,0.7)  #if prop_min=prop_max and step=0 then predicitons are done for the number of dates...
248 250
#dates_selected<-c("20100101","20100102","20100103","20100901") # Note that the dates set must have a specific format: yyymmdd
249
#dates_selected<-c("20100101","20100102","20100301","20100302","20100501","20100502","20100701","20100702","20100901","20100902","20101101","20101102")
250
dates_selected<-"" # if empty string then predict for the full year specified earlier
251
dates_selected<-c("20100101","20100102","20100301","20100302","20100501","20100502","20100701","20100702","20100901","20100902","20101101","20101102")
252
#dates_selected<-"" # if empty string then predict for the full year specified earlier
251 253
screen_data_training<-FALSE #screen training data for NA and use same input training for all models fitted
252 254

  
253 255
#Models to run...this can be changed for each run
......
264 266
#               "y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,LC1)",
265 267
#               "y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,CANHGHT)")
266 268

  
267
list_models<-c("y_var ~ lat*lon + elev_s",
268
              "y_var ~ lat*lon + elev_s + N_w",
269
              "y_var ~ lat*lon + elev_s + E_w",
270
              "y_var ~ lat*lon + elev_s + LST",
271
              "y_var ~ lat*lon + elev_s + DISTOC",
272
              "y_var ~ lat*lon + elev_s + LC1",
273
              "y_var ~ lat*lon + elev_s + CANHGHT",
274
              "y_var ~ lat*lon + elev_s + LST + I(LST*LC1)",
275
              "y_var ~ lat*lon + elev_s + LST + I(LST*CANHGHT)")
269
list_models<-c("y_var ~ lat*lon + elev_s")
270

  
271
#list_models<-c("y_var ~ lat*lon + elev_s",
272
#              "y_var ~ lat*lon + elev_s + N_w",
273
#              "y_var ~ lat*lon + elev_s + E_w",
274
#              "y_var ~ lat*lon + elev_s + LST",
275
#              "y_var ~ lat*lon + elev_s + DISTOC",
276
#              "y_var ~ lat*lon + elev_s + LC1",
277
#             "y_var ~ lat*lon + elev_s + CANHGHT",
278
#              "y_var ~ lat*lon + elev_s + LST + I(LST*LC1)",
279
#              "y_var ~ lat*lon + elev_s + LST + I(LST*CANHGHT)")
276 280

  
277 281
#Default name of LST avg to be matched               
278 282
lst_avg<-c("mm_01","mm_02","mm_03","mm_04","mm_05","mm_06","mm_07","mm_08","mm_09","mm_10","mm_11","mm_12")  
......
292 296
############## STAGE 5: OUTPUT ANALYSES ##################
293 297

  
294 298
date_selected_results<-c("20100101") 
295
covar_obj<-load_obj("covar_obj__365d_kriging_cai_lst_comb3_07312013.RData")
296
raster_prediction_obj <- load_obj("raster_prediction_obj_kriging_CAI_dailyTmax_365d_kriging_cai_lst_comb3_07312013.RData")
297 299
list_param_results_analyses<-list(out_path,script_path,raster_prediction_obj,interpolation_method,
298 300
                                  covar_obj,date_selected_results,var,out_prefix)
299 301
names(list_param_results_analyses)<-c("out_path","script_path","raster_prediction_obj","interpolation_method",

Also available in: Unified diff