Revision 628fa2b0
Added by Benoit Parmentier over 11 years ago
climate/research/oregon/interpolation/master_script_temp.R | ||
---|---|---|
10 | 10 |
#STAGE 5: Output analyses: assessment of results for specific dates... |
11 | 11 |
# |
12 | 12 |
#AUTHOR: Benoit Parmentier |
13 |
#DATE: 08/05/2013
|
|
13 |
#DATE: 08/06/2013
|
|
14 | 14 |
|
15 | 15 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363, TASK$568-- |
16 | 16 |
|
... | ... | |
67 | 67 |
source(file.path(script_path,"sampling_script_functions_03122013.R")) |
68 | 68 |
source(file.path(script_path,"GAM_fusion_function_multisampling_07302013.R")) #Include GAM_CAI |
69 | 69 |
source(file.path(script_path,"interpolation_method_day_function_multisampling_07052013.R")) #Include GAM_day |
70 |
source(file.path(script_path,"GAM_fusion_function_multisampling_validation_metrics_05062013.R"))
|
|
70 |
source(file.path(script_path,"GAM_fusion_function_multisampling_validation_metrics_08062013.R"))
|
|
71 | 71 |
|
72 | 72 |
#stages_to_run<-c(1,2,3,4,5) #May decide on antoher strategy later on... |
73 | 73 |
#stages_to_run<-c(0,2,3,4,5) #May decide on antoher strategy later on... |
74 | 74 |
stages_to_run<-c(0,2,3,4,5) #MRun only raster fitting, prediction and assessemnt (providing lst averages, covar brick and met stations) |
75 | 75 |
#If stage 2 is skipped then use previous covar object |
76 | 76 |
covar_obj_file<-"/data/project/layers/commons/data_workflow/output_data_365d_gam_fus_lst_test_run_07172013/covar_obj__365d_gam_fus_lst_test_run_07172013.RData" |
77 |
covar_obj_file<-"covar_obj__365d_kriging_daily_mults10_lst_comb3_08062013.RData" |
|
77 | 78 |
#If stage 3 is skipped then use previous met_stations object |
78 | 79 |
met_stations_outfiles_obj_file<-"/data/project/layers/commons/data_workflow/output_data_365d_gam_fus_lst_test_run_07172013/met_stations_outfiles_obj_gam_fusion__365d_gam_fus_lst_test_run_07172013.RData" |
79 | 80 |
|
81 |
met_stations_outfiles_obj_file<-"met_stations_outfiles_obj_kriging_daily__365d_kriging_daily_mults10_lst_comb3_08062013.RData" |
|
80 | 82 |
var<-"TMAX" # variable being interpolated |
81 |
out_prefix<-"_365d_kriging_cai_lst_comb3_08052013" #User defined output prefix
|
|
82 |
out_suffix<-"_OR_08052013" #Regional suffix
|
|
83 |
out_prefix<-"_365d_kriging_daily_mults10_lst_comb3_08062013" #User defined output prefix
|
|
84 |
out_suffix<-"_OR_08062013" #Regional suffix
|
|
83 | 85 |
out_suffix_modis <-"_05302013" #pattern to find tiles produced previously |
84 | 86 |
|
85 | 87 |
#interpolation_method<-c("gam_fusion","gam_CAI","gam_daily") #other otpions to be added later |
... | ... | |
88 | 90 |
#interpolation_method<-c("kriging_fusion") #other otpions to be added later |
89 | 91 |
#interpolation_method<-c("gwr_fusion") #other otpions to be added later |
90 | 92 |
#interpolation_method<-c("gwr_CAI") #other otpions to be added later |
91 |
interpolation_method<-c("kriging_CAI") |
|
93 |
#interpolation_method<-c("kriging_CAI")
|
|
92 | 94 |
|
93 | 95 |
#interpolation_method<-c("gam_daily") #other otpions to be added later |
94 |
#interpolation_method<-c("kriging_daily") #other otpions to be added later
|
|
96 |
interpolation_method<-c("kriging_daily") #other otpions to be added later |
|
95 | 97 |
#interpolation_method<-c("gwr_daily") #other otpions to be added later |
96 | 98 |
|
97 | 99 |
out_path<-"/home/parmentier/Data/IPLANT_project/Oregon_interpolation/Oregon_03142013/output_data" |
... | ... | |
241 | 243 |
#Set additional parameters |
242 | 244 |
#Input for sampling function... |
243 | 245 |
seed_number<- 100 #if seed zero then no seed? |
244 |
nb_sample<-1 #number of time random sampling must be repeated for every hold out proportion |
|
245 |
step<-0 |
|
246 |
nb_sample<-10 #number of time random sampling must be repeated for every hold out proportion
|
|
247 |
step<-0.1
|
|
246 | 248 |
constant<-0 #if value 1 then use the same samples as date one for the all set of dates |
247 |
prop_minmax<-c(0.3,0.3) #if prop_min=prop_max and step=0 then predicitons are done for the number of dates...
|
|
249 |
prop_minmax<-c(0.1,0.7) #if prop_min=prop_max and step=0 then predicitons are done for the number of dates...
|
|
248 | 250 |
#dates_selected<-c("20100101","20100102","20100103","20100901") # Note that the dates set must have a specific format: yyymmdd |
249 |
#dates_selected<-c("20100101","20100102","20100301","20100302","20100501","20100502","20100701","20100702","20100901","20100902","20101101","20101102")
|
|
250 |
dates_selected<-"" # if empty string then predict for the full year specified earlier |
|
251 |
dates_selected<-c("20100101","20100102","20100301","20100302","20100501","20100502","20100701","20100702","20100901","20100902","20101101","20101102") |
|
252 |
#dates_selected<-"" # if empty string then predict for the full year specified earlier
|
|
251 | 253 |
screen_data_training<-FALSE #screen training data for NA and use same input training for all models fitted |
252 | 254 |
|
253 | 255 |
#Models to run...this can be changed for each run |
... | ... | |
264 | 266 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,LC1)", |
265 | 267 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,CANHGHT)") |
266 | 268 |
|
267 |
list_models<-c("y_var ~ lat*lon + elev_s", |
|
268 |
"y_var ~ lat*lon + elev_s + N_w", |
|
269 |
"y_var ~ lat*lon + elev_s + E_w", |
|
270 |
"y_var ~ lat*lon + elev_s + LST", |
|
271 |
"y_var ~ lat*lon + elev_s + DISTOC", |
|
272 |
"y_var ~ lat*lon + elev_s + LC1", |
|
273 |
"y_var ~ lat*lon + elev_s + CANHGHT", |
|
274 |
"y_var ~ lat*lon + elev_s + LST + I(LST*LC1)", |
|
275 |
"y_var ~ lat*lon + elev_s + LST + I(LST*CANHGHT)") |
|
269 |
list_models<-c("y_var ~ lat*lon + elev_s") |
|
270 |
|
|
271 |
#list_models<-c("y_var ~ lat*lon + elev_s", |
|
272 |
# "y_var ~ lat*lon + elev_s + N_w", |
|
273 |
# "y_var ~ lat*lon + elev_s + E_w", |
|
274 |
# "y_var ~ lat*lon + elev_s + LST", |
|
275 |
# "y_var ~ lat*lon + elev_s + DISTOC", |
|
276 |
# "y_var ~ lat*lon + elev_s + LC1", |
|
277 |
# "y_var ~ lat*lon + elev_s + CANHGHT", |
|
278 |
# "y_var ~ lat*lon + elev_s + LST + I(LST*LC1)", |
|
279 |
# "y_var ~ lat*lon + elev_s + LST + I(LST*CANHGHT)") |
|
276 | 280 |
|
277 | 281 |
#Default name of LST avg to be matched |
278 | 282 |
lst_avg<-c("mm_01","mm_02","mm_03","mm_04","mm_05","mm_06","mm_07","mm_08","mm_09","mm_10","mm_11","mm_12") |
... | ... | |
292 | 296 |
############## STAGE 5: OUTPUT ANALYSES ################## |
293 | 297 |
|
294 | 298 |
date_selected_results<-c("20100101") |
295 |
covar_obj<-load_obj("covar_obj__365d_kriging_cai_lst_comb3_07312013.RData") |
|
296 |
raster_prediction_obj <- load_obj("raster_prediction_obj_kriging_CAI_dailyTmax_365d_kriging_cai_lst_comb3_07312013.RData") |
|
297 | 299 |
list_param_results_analyses<-list(out_path,script_path,raster_prediction_obj,interpolation_method, |
298 | 300 |
covar_obj,date_selected_results,var,out_prefix) |
299 | 301 |
names(list_param_results_analyses)<-c("out_path","script_path","raster_prediction_obj","interpolation_method", |
Also available in: Unified diff
running kriging daily with multisampling 10 to 70% for baselin comb3