Project

General

Profile

« Previous | Next » 

Revision 68849df1

Added by Benoit Parmentier about 10 years ago

run 8 NEX scaling up assessment part2, production of figures for Asia, Africa and South America

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R
5 5
#Analyses, figures, tables and data are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 10/21/2014            
8
#MODIFIED ON: 11/03/2014            
9 9
#Version: 3
10 10
#PROJECT: Environmental Layers project     
11 11
#COMMENTS: analyses for run 5 global using 6 specific tiles
......
215 215
#in_dir1 <- "/data/project/layers/commons/NEX_data/output_run6_global_analyses_09162014/output20Deg2"
216 216
# parent output dir for the curent script analyes
217 217
#out_dir <-"/data/project/layers/commons/NEX_data/output_run3_global_analyses_06192014/" #On NCEAS Atlas
218
out_dir <-"/data/project/layers/commons/NEX_data/output_run8_global_analyses_10212014/"
218
out_dir <-"/data/project/layers/commons/NEX_data/output_run8_global_analyses_10292014/"
219 219
# input dir containing shapefiles defining tiles
220 220
#in_dir_shp <- "/data/project/layers/commons/NEX_data/output_run5_global_analyses_08252014/output/subset/shapefiles"
221 221

  
......
228 228

  
229 229
y_var_name <- "dailyTmax"
230 230
interpolation_method <- c("gam_CAI")
231
out_prefix<-"run8_global_analyses_10212014"
231
out_prefix<-"run8_global_analyses_10292014"
232 232
mosaic_plot <- FALSE
233 233

  
234 234
proj_str<- CRS_WGS84
......
622 622
  list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")]
623 623
}
624 624

  
625

  
626
#coordinates
627
coordinates(summary_metrics_v) <- c("lon","lat")
628
summary_metrics_v$n_missing <- summary_metrics_v$n == 365
629
  
630
#plot(summary_metrics_v)
631
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black'))
632
#title("(a) Mean for 1 January")
633
p <- bubble(summary_metrics_v,"n_missing",main=paste("Averrage RMSE per tile and by ",model_name[i]))
634
p1 <- p+p_shp
635
print(p1)
636

  
625 637
######################
626 638
### Figure 7: Number of predictions: daily and monthly
627 639

  
......
631 643
#xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
632 644
#                                           pred_mod!="mod_kr"),type="h")
633 645

  
634

  
646
#cor
635 647

  
636 648
# 
637 649
## Figure 7a
......
653 665
                                           pred_mod!="mod_kr"),type="h")
654 666

  
655 667
test
668

  
669
unique(test$tile_id) #71 tiles
670
dim(subset(test,test$predicted==365 & test$pred_mod=="mod2"))
671
histogram(subset(test, test$pred_mod=="mod2")$predicted)
672
unique(subset(test, test$pred_mod=="mod2")$predicted)
673
table((subset(test, test$pred_mod=="mod2")$predicted))
674

  
656 675
LST_avgm_min <- aggregate(LST~month,data=data_month_all,min)
657 676
histogram(test$predicted~test$tile_id)
658 677
table(tb)

Also available in: Unified diff