Project

General

Profile

« Previous | Next » 

Revision 68e7f033

Added by Benoit Parmentier over 10 years ago

contribution of covariates and method paper: revisions adding figures of variograms and map of residuals

View differences:

climate/research/oregon/interpolation/contribution_of_covariates_paper_interpolation.R
4 4
#different covariates using two baselines. Accuracy methods are added in the the function script to evaluate results.
5 5
#Figures, tables and data for the contribution of covariate paper are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier                                                                      
7
#MODIFIED ON: 05/21/2014            
7
#MODIFIED ON: 07/03/2014            
8 8
#Version: 5
9 9
#PROJECT: Environmental Layers project                                     
10 10
#################################################################################################
......
65 65
met_stations_outfiles_obj_file<-"/data/project/layers/commons/data_workflow/output_data_365d_gam_fus_lst_test_run_07172013/met_stations_outfiles_obj_gam_fusion__365d_gam_fus_lst_test_run_07172013.RData"
66 66
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
67 67
y_var_name <- "dailyTmax"
68
out_prefix<-"_05252014"
68
out_prefix<-"_07032014"
69 69
out_dir<-"/home/parmentier/Data/IPLANT_project/paper_contribution_covar_analyses_tables_fig"
70 70
setwd(out_dir)
71 71

  
......
1190 1190
#stat_loc<-readOGR(dsn=in_dir1,layer=sub(".shp","",basename(met_obj$loc_stations)))
1191 1191
#dim(stat_loc)      
1192 1192

  
1193
############################
1194
#### Figure 9: variograms for 2 dates  and model 1 ###
1195
      
1196
#Make a function to extract and plot variogram models...one per day and model
1197
#plot.gstatVariogram
1198
#Plot a sample variogram, and possibly a fitted model
1199
#model 1 lat,lon and elev
1200
layout_m<-c(1,1) # works if set to this?? ok set the resolution...
1201
      
1202
date_selected <- c("20100101","20100901")
1203
png(paste("Figure9_paper_","_variogram_",date_selected[1],"_",date_selected[2],"_",out_prefix,".png", sep=""),
1204
    height=960*layout_m[1],width=960*layout_m[2])
1205
    #height=480*6,width=480*4)
1206

  
1207
#p3 <- list_plots_spt[[3]]
1208
p1<-plot(raster_prediction_obj_3$method_mod_obj[[1]]$mod[[1]]$exp_var,raster_prediction_obj_3$method_mod_obj[[1]]$mod[[1]]$var_model)
1209
#plot(p1)
1210
p241<-plot(raster_prediction_obj_3$method_mod_obj[[241]]$mod[[1]]$exp_var,raster_prediction_obj_3$method_mod_obj[[241]]$mod[[1]]$var_model)
1211
#plot(p241)
1212

  
1213
#grid.arrange(p1,p2,p3,ncol=1)
1214
grid.arrange(p1,p241,ncol=1)
1215

  
1216
dev.off()
1217
#Combine both plot?     + plot info on sill, nugget and range? and most frequent model selected
1218

  
1219
      
1220
###########################################
1221
### Figure 10: map of residuals...for a specific date...
1222
index <- 244
1223
names_mod <- names(raster_prediction_obj_2$method_mod_obj[[index]][[y_var_name]]) #names of models to plot
1224
#in_dir2 <-"/home/parmentier/Data/IPLANT_project/Oregon_interpolation/Oregon_03142013/output_data_365d_gam_day_lst_comb4_08152013"
1225
#date_selected <-  c("20100101")
1226
date_selected <-  c("20100901")
1227

  
1228
data_v <-raster_prediction_obj_2$validation_mod_obj[[index]]$data_v #testing with residuals
1229
#data_s<-validation_mod_obj[[index]]$data_s
1230
date_proc<-strptime(date_selected, "%Y%m%d")   # interpolation date being processed
1231
mo<-as.integer(strftime(date_proc, "%m"))          # current month of the date being processed
1232
day<-as.integer(strftime(date_proc, "%d"))
1233
year<-as.integer(strftime(date_proc, "%Y"))
1234
datelabel=format(ISOdate(year,mo,day),"%b %d, %Y")
1235

  
1236
    #height=480*6,width=480*4)
1237
list_p <- vector("list", length(names_mod))
1238
for (k in 1:length(names_mod)){
1239
  model_name <- names_mod[k]
1240
  #fig_name <- file.path(out_path,paste("Figure_residuals_map_",y_var_name,"_",model_name,"_",sampling_dat$date,"_",sampling_dat$prop,"_",
1241
  #                             sampling_dat$run_samp,out_prefix,".png", sep=""))
1242
    
1243
  png(file.path(out_dir,paste("Figure_residuals_map_",y_var_name,"_",model_name,"_",date_selected,out_prefix,".png", sep="")))
1244
  res_model_name <- paste("res",model_name,sep="_")
1245
  elev <- subset(s_raster,"elev_s")
1246
  #p1 <- levelplot(elev,scales = list(draw = FALSE), colorkey = FALSE,col.regions=rev(terrain.colors(255)),contour=T)
1247
  #add legend..par.settings = GrTheme
1248
  cx <- ((data_v[[res_model_name]])*2)
1249
  #p1 <- levelplot(elev,scales = list(draw = FALSE), colorkey = FALSE,par.settings = GrTheme)
1250

  
1251
  #p2 <- spplot(data_v,res_model_name, cex=1 * cx,main=paste("Residuals for ",res_model_name," ",datelabel,sep=""),
1252
  #             col.regions=matlab.like(25))
1253
  p2 <- bubble(data_v,res_model_name, main=paste("Residuals for ",res_model_name," ",datelabel,sep=""),
1254
               col.regions=matlab.like(25))  
1255
  p3 <- p2 + p1 + p2 #to force legend...
1256
  #p1 <- spplot(interp_area)
1257
  #p3 <- p1+p2 #to force legend...
1258
  #p + layer(sp.lines(mapaSHP, lwd=0.8, col='darkgray'))
1259

  
1260
  #p2
1261
  print(p3)
1262

  
1263
  dev.off()
1264
  list_p[[k]] <- p3
1265
}
1266

  
1267
layout_m<-c(2,5) # works if set to this?? ok set the resolution...
1268
png(paste("Figure10_paper_","_residuals_",date_selected,"_",out_prefix,".png", sep=""),
1269
    height=480*layout_m[1],width=480*layout_m[2])
1270

  
1271
grid.arrange(list_p[[1]],list_p[[2]],list_p[[3]],list_p[[4]],list_p[[5]],
1272
             list_p[[6]],list_p[[7]],list_p[[8]],list_p[[9]],list_p[[10]],ncol=5)
1273
      
1274
dev.off()   
1275

  
1276
      
1277
list_data_v <- lapply(1:365,function(i){raster_prediction_obj_2$validation_mod_obj[[i]]$data_v} #testing with residuals
1278

  
1279
test <- do.call(rbind,list_data_v)        
1280
                
1281
plot(res_mod1~elev,data=test)                    
1282
plot(res_mod2~elev,data=test)                    
1283
cor(test$res_mod1,test$elev)
1284
cor(test$res_mod2,test$elev,use="complete.obs") #decrease in corellation when using elev
1285
cor(test$res_mod1,test$LST,,use="complete.obs")
1286
cor(test$res_mod5,test$LST,use="complete.obs") #decrease in correlation when using LST
1287

  
1288
plot(res_mod1~LST,data=test)                    
1289
plot(res_mod9~LST,data=test)                    
1290
                     
1193 1291
###################### END OF SCRIPT #######################
1194 1292

  
1195 1293

  

Also available in: Unified diff