Revision 6a5b56da
Added by Benoit Parmentier about 12 years ago
climate/research/oregon/interpolation/Database_stations_extraction_raster_covariates_processing.R | ||
---|---|---|
1 | 1 |
################## Data preparation for interpolation ####################################### |
2 | 2 |
############################ Extraction of station data ########################################## |
3 |
#This script perform queries on the Postgres database ghcn for stations matching the #
|
|
4 |
#interpolation area. It requires the following inputs: #
|
|
5 |
# 1)the text file ofGHCND stations from NCDC matching the database version release #
|
|
6 |
# 2)a shape file of the study area with geographic coordinates: lonlat WGS84 # #
|
|
7 |
# 3)a new coordinate system can be provided as an argument #
|
|
8 |
# 4)the variable of interest: "TMAX","TMIN" or "PRCP" #
|
|
9 |
# #
|
|
10 |
#The outputs are text files and a shape file of a time subset of the database #
|
|
11 |
#AUTHOR: Benoit Parmentier #
|
|
12 |
#DATE: 01/31/2013 #
|
|
3 |
#This script perform queries on the Postgres database ghcn for stations matching the |
|
4 |
#interpolation area. It requires the following inputs: |
|
5 |
# 1)the text file ofGHCND stations from NCDC matching the database version release |
|
6 |
# 2)a shape file of the study area with geographic coordinates: lonlat WGS84 # |
|
7 |
# 3)a new coordinate system can be provided as an argument |
|
8 |
# 4)the variable of interest: "TMAX","TMIN" or "PRCP" |
|
9 |
# 5)the location of raser covariate stack.
|
|
10 |
#The outputs are text files and a shape file of a time subset of the database |
|
11 |
#AUTHOR: Benoit Parmentier |
|
12 |
#DATE: 02/08/2013
|
|
13 | 13 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363-- |
14 | 14 |
#Comments and TODO |
15 | 15 |
#-Add buffer option... |
... | ... | |
33 | 33 |
var <- "TMAX" #name of the variables to keep: TMIN, TMAX or PRCP |
34 | 34 |
year_start<-"2010" #starting year for the query (included) |
35 | 35 |
year_end<-"2011" #end year for the query (excluded) |
36 |
infile1<- "_venezuela_region__VE_01292013.shp" #This is the shape file of outline of the study area. |
|
37 |
#It is projected alreaday |
|
36 |
infile1<- "outline_venezuela_region__VE_01292013.shp" #This is the shape file of outline of the study area. #It is projected alreaday |
|
38 | 37 |
infile2<-"ghcnd-stations.txt" #This is the textfile of station locations from GHCND |
39 |
new_proj<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs" |
|
40 | 38 |
infile3<-"covariates__venezuela_region__VE_01292013.tif" #this is an output from covariate script |
41 | 39 |
|
40 |
new_proj<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs" |
|
41 |
locs_coord<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") |
|
42 |
CRS_locs_WGS84<-"+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0" |
|
42 | 43 |
##Paths to inputs and output |
43 | 44 |
in_path <- "/home/parmentier/Data/benoit_test" |
44 | 45 |
in_path <- "/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/input_data/" |
45 | 46 |
out_path<- "/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/output_data/" |
46 | 47 |
ghcnd_path<- "/home/layers/data/climate/ghcn/v2.92-upd-2012052822" |
47 | 48 |
setwd(in_path) |
48 |
out_suffix<-"y2010_2010_VE_01292013" #User defined output prefix
|
|
49 |
out_suffix<-"y2010_2010_VE_02082013" #User defined output prefix
|
|
49 | 50 |
out_region_name<-"_venezuela_region" |
50 | 51 |
#out_suffix<-"_VE_01292013" |
51 | 52 |
|
... | ... | |
77 | 78 |
colnames(dat_stat)<-c("STAT_ID","lat","lon","elev","state","name","GSNF","HCNF","WMOID") |
78 | 79 |
coords<- dat_stat[,c('lon','lat')] |
79 | 80 |
coordinates(dat_stat)<-coords |
80 |
locs_coord<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") |
|
81 |
proj4string(dat_stat)<-locs_coord |
|
81 |
proj4string(dat_stat)<-locs_coord #this is the WGS84 projection |
|
82 | 82 |
#proj4string(dat_stat)<-CRS_interp |
83 | 83 |
dat_stat2<-spTransform(dat_stat,CRS(new_proj)) # Project from WGS84 to new coord. system |
84 | 84 |
|
85 | 85 |
# Spatial query to find relevant stations |
86 | 86 |
inside <- !is.na(over(dat_stat2, as(interp_area, "SpatialPolygons"))) #Finding stations contained in the current interpolation area |
87 |
stat_reg<-dat_stat2[inside,] #Finding stations contained in the current interpolation area
|
|
87 |
stat_reg<-dat_stat2[inside,] #Selecting stations contained in the current interpolation area
|
|
88 | 88 |
|
89 | 89 |
#Quick visualization of station locations |
90 | 90 |
plot(interp_area, axes =TRUE) |
... | ... | |
122 | 122 |
|
123 | 123 |
#Transform the subset data frame in a spatial data frame and reproject |
124 | 124 |
data_reg<-data_table #Make a copy of the data frame |
125 |
coords<- data_reg[c('lon.1','lat.1')] #Define coordinates in a data frame: clean up here!!
|
|
125 |
coords<- data_reg[c('lon','lat')] #Define coordinates in a data frame: clean up here!!
|
|
126 | 126 |
#Wrong label...it is in fact projected... |
127 | 127 |
coordinates(data_reg)<-coords #Assign coordinates to the data frame |
128 | 128 |
#proj4string(data3)<-locs_coord #Assign coordinates reference system in PROJ4 format |
129 |
proj4string(data_reg)<-new_proj #Assign coordinates reference system in PROJ4 format
|
|
130 |
#data_proj<-spTransform(data3,CRS(new_proj)) #Project from WGS84 to new coord. system
|
|
129 |
proj4string(data_reg)<-locs_coord #Assign coordinates reference system in PROJ4 format
|
|
130 |
data_reg<-spTransform(data_reg,CRS(new_proj)) #Project from WGS84 to new coord. system
|
|
131 | 131 |
|
132 | 132 |
plot(interp_area, axes =TRUE) |
133 | 133 |
plot(stat_reg, pch=1, col="red", cex= 0.7, add=TRUE) |
... | ... | |
137 | 137 |
### STEP 3: Save results and outuput in textfile and a shape file |
138 | 138 |
|
139 | 139 |
#Save a textfile of the locations of meteorological stations in the study area |
140 |
write.table(as.data.frame(stat_reg), file=file.path(in_path,paste(out_region_name,"_", |
|
140 |
write.table(as.data.frame(stat_reg), file=file.path(in_path,paste("stations",out_region_name,"_",
|
|
141 | 141 |
out_suffix,".txt",sep="")),sep=",") |
142 |
#Save a textfile and shape file of all the subset data |
|
143 |
#write.table(data_table,file= paste(path,"/","ghcn_data_",var,out_suffix,".txt",sep=""), sep=",") |
|
144 |
#outfile<-paste(path,"ghcn_data_",var,out_prefix,sep="") #Removing extension if it is present |
|
142 |
outfile<-paste("stations",out_region_name,"_", |
|
143 |
out_suffix,sep="") |
|
144 |
writeOGR(stat_reg,dsn= ".",layer= outfile, driver="ESRI Shapefile",overwrite_layer=TRUE) |
|
145 |
|
|
145 | 146 |
outfile<-paste("ghcn_data_",var,out_suffix,sep="") #Name of the file |
146 | 147 |
#writeOGR(data_proj, paste(outfile, "shp", sep="."), outfile, driver ="ESRI Shapefile") #Note that the layer name is the file name without extension |
147 | 148 |
writeOGR(data_reg,dsn= ".",layer= outfile, driver="ESRI Shapefile",overwrite_layer=TRUE) |
148 |
outfile<-paste(out_region_name,"_", |
|
149 |
out_suffix,sep="") |
|
150 |
writeOGR(stat_reg,dsn= ".",layer= outfile, driver="ESRI Shapefile",overwrite_layer=TRUE) |
|
151 | 149 |
|
152 | 150 |
################################################################### |
153 | 151 |
### STEP 4: Extract values at stations from covariates stack of raster images |
... | ... | |
171 | 169 |
data_RST<-as.data.frame(stat_val) #This creates a data frame with the values extracted |
172 | 170 |
data_RST_SDF<-cbind(data_reg,data_RST) |
173 | 171 |
coordinates(data_RST_SDF)<-coordinates(data_reg) #Transforming data_RST_SDF into a spatial point dataframe |
174 |
CRS<-proj4string(data_reg) |
|
175 |
proj4string(data_RST_SDF)<-CRS #Need to assign coordinates... |
|
172 |
CRS_reg<-proj4string(data_reg)
|
|
173 |
proj4string(data_RST_SDF)<-CRS_reg #Need to assign coordinates...
|
|
176 | 174 |
|
177 | 175 |
#Creating a date column |
178 | 176 |
date1<-ISOdate(data_RST_SDF$year,data_RST_SDF$month,data_RST_SDF$day) #Creating a date object from 3 separate column |
179 | 177 |
date2<-gsub("-","",as.character(as.Date(date1))) |
180 | 178 |
data_RST_SDF$date<-date2 #Date format (year,month,day) is the following: "20100627" |
181 | 179 |
|
180 |
#This allows to change only one name of the data.frame |
|
181 |
pos<-match("value",names(data_RST_SDF)) #Find column with name "value" |
|
182 |
if (var=="TMAX"){ |
|
183 |
#names(data_RST_SDF)[pos]<-c("TMax") |
|
184 |
data_RST_SDF$value<-data_RST_SDF$value/10 #TMax is the average max temp for monthy data |
|
185 |
} |
|
186 |
|
|
187 |
#write out a new shapefile (including .prj component) |
|
188 |
outfile<-paste("daily_covariates_ghcn_data_",var,out_suffix,sep="") #Name of the file |
|
189 |
writeOGR(data_RST_SDF,dsn= ".",layer= outfile, driver="ESRI Shapefile",overwrite_layer=TRUE) |
|
190 |
|
|
191 |
############################################################### |
|
192 |
######## STEP 5: Preparing monthly averages from the ProstGres database |
|
193 |
|
|
194 |
drv <- dbDriver("PostgreSQL") |
|
195 |
db <- dbConnect(drv, dbname=db.name) |
|
196 |
|
|
197 |
year_start<-2000 |
|
198 |
year_end<-2011 |
|
199 |
time1<-proc.time() #Start stop watch |
|
200 |
list_s<-format_s(stat_reg$STAT_ID) |
|
201 |
data_m<-dbGetQuery(db, paste("SELECT * |
|
202 |
FROM ghcn |
|
203 |
WHERE element=",shQuote(var), |
|
204 |
"AND year>=",year_start, |
|
205 |
"AND year<",year_end, |
|
206 |
"AND station IN ",list_s,";",sep="")) #Selecting station using a SQL query |
|
207 |
time_duration<-proc.time()-time1 #Time for the query may be long given the size of the database |
|
208 |
time_minutes<-time_duration[3]/60 |
|
209 |
|
|
210 |
# do this work outside of (before) this function |
|
211 |
# to avoid making a copy of the data frame inside the function call |
|
212 |
date1<-ISOdate(data_m$year,data_m$month,data_m$day) #Creating a date object from 3 separate column |
|
213 |
date2<-as.POSIXlt(as.Date(date1)) |
|
214 |
data_m$date<-date2 |
|
215 |
#In Venezuela and other regions where there are not many stations...mflag==S should be added..see Durenne etal.2010. |
|
216 |
#d<-subset(data_m,year>=2000 & mflag=="0" ) #Selecting dataset 2000-2010 with good quality: 193 stations |
|
217 |
d<-subset(data_m,mflag=="0" | mflag=="S") |
|
218 |
#May need some screeing??? i.e. range of temp and elevation... |
|
219 |
d1<-aggregate(value~station+month, data=d, mean) #Calculate monthly mean for every station in OR |
|
220 |
id<-as.data.frame(unique(d1$station)) #Unique station in OR for year 2000-2010: 193 but 7 loss of monthly avg |
|
221 |
|
|
222 |
dst<-merge(d1, stat_reg, by.x="station", by.y="STAT_ID") #Inner join all columns are retained |
|
223 |
|
|
224 |
#This allows to change only one name of the data.frame |
|
225 |
pos<-match("value",names(dst)) #Find column with name "value" |
|
226 |
if (var=="TMAX"){ |
|
227 |
names(dst)[pos]<-c("TMax") |
|
228 |
dst$TMax<-dst$TMax/10 #TMax is the average max temp for monthy data |
|
229 |
} |
|
230 |
#dstjan=dst[dst$month==9,] #dst contains the monthly averages for tmax for every station over 2000-2010 |
|
231 |
|
|
232 |
#Extracting covariates from stack for the monthly dataset... |
|
233 |
coords<- dst[c('lon','lat')] #Define coordinates in a data frame |
|
234 |
coordinates(dst)<-coords #Assign coordinates to the data frame |
|
235 |
proj4string(dst)<-CRS_locs_WGS84 #Assign coordinates reference system in PROJ4 format |
|
236 |
dst_month<-spTransform(dst,CRS(CRS_interp)) #Project from WGS84 to new coord. system |
|
237 |
|
|
238 |
stations_val<-extract(s_raster,dst_month) #extraction of the infomration at station location |
|
239 |
stations_val<-as.data.frame(stations_val) |
|
240 |
dst_extract<-cbind(dst_month,stations_val) #this is in sinusoidal from the raster stack |
|
241 |
dst<-dst_extract |
|
242 |
|
|
243 |
coords<- dst[c('x','y')] #Define coordinates in a data frame, this is the local x,y |
|
244 |
coordinates(dst)<-coords #Assign coordinates to the data frame |
|
245 |
proj4string(dst)<-projection(s_raster) #Assign coordinates reference system in PROJ4 format |
|
246 |
|
|
247 |
#### |
|
182 | 248 |
#write out a new shapefile (including .prj component) |
183 |
outfile<-paste("covariates_ghcn_data_",var,out_suffix,sep="") #Name of the file |
|
184 |
writeOGR(data_RST_SDF,,dsn= ".",layer= outfile, driver="ESRI Shapefile",overwrite_layer=TRUE) |
|
249 |
outfile<-paste("monthly_covariates_ghcn_data_",var,out_suffix,sep="") #Name of the file |
|
250 |
dst$OID<-1:nrow(dst) #need a unique ID? |
|
251 |
writeOGR(dst,dsn= ".",layer= outfile, driver="ESRI Shapefile",overwrite_layer=TRUE) |
|
185 | 252 |
|
186 | 253 |
##### END OF SCRIPT ########## |
climate/research/oregon/interpolation/Database_stations_extraction_raster_covariates_processing_region.R | ||
---|---|---|
1 |
################## Data preparation for interpolation ####################################### |
|
2 |
############################ Extraction of station data ########################################## |
|
3 |
#This script perform queries on the Postgres database ghcn for stations matching the |
|
4 |
#interpolation area. It requires the following inputs: |
|
5 |
# 1)the text file ofGHCND stations from NCDC matching the database version release |
|
6 |
# 2)a shape file of the study area with geographic coordinates: lonlat WGS84 # |
|
7 |
# 3)a new coordinate system can be provided as an argument |
|
8 |
# 4)the variable of interest: "TMAX","TMIN" or "PRCP" |
|
9 |
# 5)the location of raser covariate stack. |
|
10 |
#The outputs are text files and a shape file of a time subset of the database |
|
11 |
#AUTHOR: Benoit Parmentier |
|
12 |
#DATE: 02/08/2013 |
|
13 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363-- |
|
14 |
#Comments and TODO |
|
15 |
#-Add buffer option... |
|
16 |
#-Add calculation of monthly mean... |
|
17 |
################################################################################################## |
|
18 |
|
|
19 |
###Loading R library and packages |
|
20 |
|
|
21 |
library(RPostgreSQL) |
|
22 |
library(sp) # Spatial pacakge with class definition by Bivand et al. |
|
23 |
library(spdep) # Spatial pacakge with methods and spatial stat. by Bivand et al. |
|
24 |
library(rgdal) # GDAL wrapper for R, spatial utilities |
|
25 |
library(rgeos) |
|
26 |
library(rgdal) |
|
27 |
library(raster) |
|
28 |
library(rasterVis) |
|
29 |
|
|
30 |
### Parameters and arguments |
|
31 |
|
|
32 |
db.name <- "ghcn" #name of the Postgres database |
|
33 |
var <- "TMAX" #name of the variables to keep: TMIN, TMAX or PRCP |
|
34 |
year_start<-"2010" #starting year for the query (included) |
|
35 |
year_end<-"2011" #end year for the query (excluded) |
|
36 |
infile1<- "outline_venezuela_region__VE_01292013.shp" #This is the shape file of outline of the study area. #It is projected alreaday |
|
37 |
infile2<-"ghcnd-stations.txt" #This is the textfile of station locations from GHCND |
|
38 |
infile3<-"covariates__venezuela_region__VE_01292013.tif" #this is an output from covariate script |
|
39 |
|
|
40 |
new_proj<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs" |
|
41 |
locs_coord<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") |
|
42 |
CRS_locs_WGS84<-"+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0" |
|
43 |
##Paths to inputs and output |
|
44 |
in_path <- "/home/parmentier/Data/benoit_test" |
|
45 |
in_path <- "/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/input_data/" |
|
46 |
out_path<- "/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/output_data/" |
|
47 |
ghcnd_path<- "/home/layers/data/climate/ghcn/v2.92-upd-2012052822" |
|
48 |
setwd(in_path) |
|
49 |
out_suffix<-"y2010_2010_VE_02082013" #User defined output prefix |
|
50 |
out_region_name<-"_venezuela_region" |
|
51 |
#out_suffix<-"_VE_01292013" |
|
52 |
|
|
53 |
### Functions used in the script |
|
54 |
|
|
55 |
format_s <-function(s_ID){ |
|
56 |
#Format station ID in a vector format/tuple that is used in a psql query. |
|
57 |
# Argument 1: vector of station ID |
|
58 |
# Return: character of station ID |
|
59 |
tx2<-s_ID |
|
60 |
tx2<-as.character(tx2) |
|
61 |
stat_list<-tx2 |
|
62 |
temp<-shQuote(stat_list) |
|
63 |
t<-paste(temp, collapse= " ") |
|
64 |
t1<-gsub(" ", ",",t) |
|
65 |
sf_ID<-paste("(",t1,")",sep="") #vector containing the station ID to query |
|
66 |
return(sf_ID) |
|
67 |
} |
|
68 |
|
|
69 |
############ BEGIN: START OF THE SCRIPT ################# |
|
70 |
|
|
71 |
##### STEP 1: Select station in the study area |
|
72 |
|
|
73 |
filename<-sub(".shp","",infile1) #Removing the extension from file. |
|
74 |
interp_area <- readOGR(".",filename) |
|
75 |
CRS_interp<-proj4string(interp_area) #Storing the coordinate information: geographic coordinates longlat WGS84 |
|
76 |
|
|
77 |
dat_stat <- read.fwf(file.path(ghcnd_path,"ghcnd-stations.txt"), widths = c(11,9,10,7,3,31,4,4,6),fill=TRUE) |
|
78 |
colnames(dat_stat)<-c("STAT_ID","lat","lon","elev","state","name","GSNF","HCNF","WMOID") |
|
79 |
coords<- dat_stat[,c('lon','lat')] |
|
80 |
coordinates(dat_stat)<-coords |
|
81 |
proj4string(dat_stat)<-locs_coord #this is the WGS84 projection |
|
82 |
#proj4string(dat_stat)<-CRS_interp |
|
83 |
dat_stat2<-spTransform(dat_stat,CRS(new_proj)) # Project from WGS84 to new coord. system |
|
84 |
|
|
85 |
# Spatial query to find relevant stations |
|
86 |
inside <- !is.na(over(dat_stat2, as(interp_area, "SpatialPolygons"))) #Finding stations contained in the current interpolation area |
|
87 |
stat_reg<-dat_stat2[inside,] #Selecting stations contained in the current interpolation area |
|
88 |
|
|
89 |
#Quick visualization of station locations |
|
90 |
plot(interp_area, axes =TRUE) |
|
91 |
plot(stat_reg, pch=1, col="red", cex= 0.7, add=TRUE) |
|
92 |
#plot(data3,pch=1,col="blue",cex=3,add=TRUE) |
|
93 |
#legend("topleft", pch=1,col="red",bty="n",title= "Stations",cex=1.6) |
|
94 |
#only 357 station for Venezuela?? |
|
95 |
|
|
96 |
#### |
|
97 |
##Add buffer option? |
|
98 |
#### |
|
99 |
|
|
100 |
#### STEP 2: Connecting to the database and query for relevant data |
|
101 |
|
|
102 |
drv <- dbDriver("PostgreSQL") |
|
103 |
db <- dbConnect(drv, dbname=db.name) |
|
104 |
|
|
105 |
time1<-proc.time() #Start stop watch |
|
106 |
list_s<-format_s(stat_reg$STAT_ID) |
|
107 |
data2<-dbGetQuery(db, paste("SELECT * |
|
108 |
FROM ghcn |
|
109 |
WHERE element=",shQuote(var), |
|
110 |
"AND year>=",year_start, |
|
111 |
"AND year<",year_end, |
|
112 |
"AND station IN ",list_s,";",sep="")) #Selecting station using a SQL query |
|
113 |
time_duration<-proc.time()-time1 #Time for the query may be long given the size of the database |
|
114 |
time_minutes<-time_duration[3]/60 |
|
115 |
|
|
116 |
### |
|
117 |
#Add month query and averages here... |
|
118 |
### |
|
119 |
|
|
120 |
#data2 contains only 46 stations for Venezueal area?? |
|
121 |
data_table<-merge(data2,as.data.frame(stat_reg), by.x = "station", by.y = "STAT_ID") |
|
122 |
|
|
123 |
#Transform the subset data frame in a spatial data frame and reproject |
|
124 |
data_reg<-data_table #Make a copy of the data frame |
|
125 |
coords<- data_reg[c('lon','lat')] #Define coordinates in a data frame: clean up here!! |
|
126 |
#Wrong label...it is in fact projected... |
|
127 |
coordinates(data_reg)<-coords #Assign coordinates to the data frame |
|
128 |
#proj4string(data3)<-locs_coord #Assign coordinates reference system in PROJ4 format |
|
129 |
proj4string(data_reg)<-locs_coord #Assign coordinates reference system in PROJ4 format |
|
130 |
data_reg<-spTransform(data_reg,CRS(new_proj)) #Project from WGS84 to new coord. system |
|
131 |
|
|
132 |
plot(interp_area, axes =TRUE) |
|
133 |
plot(stat_reg, pch=1, col="red", cex= 0.7, add=TRUE) |
|
134 |
plot(data_reg,pch=2,col="blue",cex=2,add=TRUE) |
|
135 |
|
|
136 |
################################################################## |
|
137 |
### STEP 3: Save results and outuput in textfile and a shape file |
|
138 |
|
|
139 |
#Save a textfile of the locations of meteorological stations in the study area |
|
140 |
write.table(as.data.frame(stat_reg), file=file.path(in_path,paste("stations",out_region_name,"_", |
|
141 |
out_suffix,".txt",sep="")),sep=",") |
|
142 |
outfile<-paste("stations",out_region_name,"_", |
|
143 |
out_suffix,sep="") |
|
144 |
writeOGR(stat_reg,dsn= ".",layer= outfile, driver="ESRI Shapefile",overwrite_layer=TRUE) |
|
145 |
|
|
146 |
outfile<-paste("ghcn_data_",var,out_suffix,sep="") #Name of the file |
|
147 |
#writeOGR(data_proj, paste(outfile, "shp", sep="."), outfile, driver ="ESRI Shapefile") #Note that the layer name is the file name without extension |
|
148 |
writeOGR(data_reg,dsn= ".",layer= outfile, driver="ESRI Shapefile",overwrite_layer=TRUE) |
|
149 |
|
|
150 |
################################################################### |
|
151 |
### STEP 4: Extract values at stations from covariates stack of raster images |
|
152 |
#Eventually this step may be skipped if the covariates information is stored in the database... |
|
153 |
|
|
154 |
#The names of covariates can be changed... |
|
155 |
rnames<-c("x","y","lon","lat","N","E","N_w","E_w","elev","slope","aspect","CANHEIGHT","DISTOC") |
|
156 |
lc_names<-c("LC1","LC2","LC3","LC4","LC5","LC6","LC7","LC8","LC9","LC10","LC11","LC12") |
|
157 |
lst_names<-c("mm_01","mm_02","mm_03","mm_04","mm_05","mm_06","mm_07","mm_08","mm_09","mm_10","mm_11","mm_12", |
|
158 |
"nobs_01","nobs_02","nobs_03","nobs_04","nobs_05","nobs_06","nobs_07","nobs_08", |
|
159 |
"nobs_09","nobs_10","nobs_11","nobs_12") |
|
160 |
|
|
161 |
covar_names<-c(rnames,lc_names,lst_names) |
|
162 |
|
|
163 |
s_raster<-stack(infile3) #read in the data stack |
|
164 |
names(s_raster)<-covar_names #Assigning names to the raster layers: making sure it is included in the extraction |
|
165 |
stat_val<- extract(s_raster, data_reg) #Extracting values from the raster stack for every point location in coords data frame. |
|
166 |
|
|
167 |
#create a shape file and data_frame with names |
|
168 |
|
|
169 |
data_RST<-as.data.frame(stat_val) #This creates a data frame with the values extracted |
|
170 |
data_RST_SDF<-cbind(data_reg,data_RST) |
|
171 |
coordinates(data_RST_SDF)<-coordinates(data_reg) #Transforming data_RST_SDF into a spatial point dataframe |
|
172 |
CRS_reg<-proj4string(data_reg) |
|
173 |
proj4string(data_RST_SDF)<-CRS_reg #Need to assign coordinates... |
|
174 |
|
|
175 |
#Creating a date column |
|
176 |
date1<-ISOdate(data_RST_SDF$year,data_RST_SDF$month,data_RST_SDF$day) #Creating a date object from 3 separate column |
|
177 |
date2<-gsub("-","",as.character(as.Date(date1))) |
|
178 |
data_RST_SDF$date<-date2 #Date format (year,month,day) is the following: "20100627" |
|
179 |
|
|
180 |
#This allows to change only one name of the data.frame |
|
181 |
pos<-match("value",names(data_RST_SDF)) #Find column with name "value" |
|
182 |
if (var=="TMAX"){ |
|
183 |
#names(data_RST_SDF)[pos]<-c("TMax") |
|
184 |
data_RST_SDF$value<-data_RST_SDF$value/10 #TMax is the average max temp for monthy data |
|
185 |
} |
|
186 |
|
|
187 |
#write out a new shapefile (including .prj component) |
|
188 |
outfile<-paste("daily_covariates_ghcn_data_",var,out_suffix,sep="") #Name of the file |
|
189 |
writeOGR(data_RST_SDF,dsn= ".",layer= outfile, driver="ESRI Shapefile",overwrite_layer=TRUE) |
|
190 |
|
|
191 |
############################################################### |
|
192 |
######## STEP 5: Preparing monthly averages from the ProstGres database |
|
193 |
|
|
194 |
drv <- dbDriver("PostgreSQL") |
|
195 |
db <- dbConnect(drv, dbname=db.name) |
|
196 |
|
|
197 |
year_start<-2000 |
|
198 |
year_end<-2011 |
|
199 |
time1<-proc.time() #Start stop watch |
|
200 |
list_s<-format_s(stat_reg$STAT_ID) |
|
201 |
data_m<-dbGetQuery(db, paste("SELECT * |
|
202 |
FROM ghcn |
|
203 |
WHERE element=",shQuote(var), |
|
204 |
"AND year>=",year_start, |
|
205 |
"AND year<",year_end, |
|
206 |
"AND station IN ",list_s,";",sep="")) #Selecting station using a SQL query |
|
207 |
time_duration<-proc.time()-time1 #Time for the query may be long given the size of the database |
|
208 |
time_minutes<-time_duration[3]/60 |
|
209 |
|
|
210 |
# do this work outside of (before) this function |
|
211 |
# to avoid making a copy of the data frame inside the function call |
|
212 |
date1<-ISOdate(data_m$year,data_m$month,data_m$day) #Creating a date object from 3 separate column |
|
213 |
date2<-as.POSIXlt(as.Date(date1)) |
|
214 |
data_m$date<-date2 |
|
215 |
#In Venezuela and other regions where there are not many stations...mflag==S should be added..see Durenne etal.2010. |
|
216 |
#d<-subset(data_m,year>=2000 & mflag=="0" ) #Selecting dataset 2000-2010 with good quality: 193 stations |
|
217 |
d<-subset(data_m,mflag=="0" | mflag=="S") |
|
218 |
#May need some screeing??? i.e. range of temp and elevation... |
|
219 |
d1<-aggregate(value~station+month, data=d, mean) #Calculate monthly mean for every station in OR |
|
220 |
id<-as.data.frame(unique(d1$station)) #Unique station in OR for year 2000-2010: 193 but 7 loss of monthly avg |
|
221 |
|
|
222 |
dst<-merge(d1, stat_reg, by.x="station", by.y="STAT_ID") #Inner join all columns are retained |
|
223 |
|
|
224 |
#This allows to change only one name of the data.frame |
|
225 |
pos<-match("value",names(dst)) #Find column with name "value" |
|
226 |
if (var=="TMAX"){ |
|
227 |
names(dst)[pos]<-c("TMax") |
|
228 |
dst$TMax<-dst$TMax/10 #TMax is the average max temp for monthy data |
|
229 |
} |
|
230 |
#dstjan=dst[dst$month==9,] #dst contains the monthly averages for tmax for every station over 2000-2010 |
|
231 |
|
|
232 |
#Extracting covariates from stack for the monthly dataset... |
|
233 |
coords<- dst[c('lon','lat')] #Define coordinates in a data frame |
|
234 |
coordinates(dst)<-coords #Assign coordinates to the data frame |
|
235 |
proj4string(dst)<-CRS_locs_WGS84 #Assign coordinates reference system in PROJ4 format |
|
236 |
dst_month<-spTransform(dst,CRS(CRS_interp)) #Project from WGS84 to new coord. system |
|
237 |
|
|
238 |
stations_val<-extract(s_raster,dst_month) #extraction of the infomration at station location |
|
239 |
stations_val<-as.data.frame(stations_val) |
|
240 |
dst_extract<-cbind(dst_month,stations_val) #this is in sinusoidal from the raster stack |
|
241 |
dst<-dst_extract |
|
242 |
|
|
243 |
coords<- dst[c('x','y')] #Define coordinates in a data frame, this is the local x,y |
|
244 |
coordinates(dst)<-coords #Assign coordinates to the data frame |
|
245 |
proj4string(dst)<-projection(s_raster) #Assign coordinates reference system in PROJ4 format |
|
246 |
|
|
247 |
#### |
|
248 |
#write out a new shapefile (including .prj component) |
|
249 |
outfile<-paste("monthly_covariates_ghcn_data_",var,out_suffix,sep="") #Name of the file |
|
250 |
dst$OID<-1:nrow(dst) #need a unique ID? |
|
251 |
writeOGR(dst,dsn= ".",layer= outfile, driver="ESRI Shapefile",overwrite_layer=TRUE) |
|
252 |
|
|
253 |
##### END OF SCRIPT ########## |
Also available in: Unified diff
Data preparation Venezuela, added monthly query from Postgres station database