1
|
library(raster)
|
2
|
|
3
|
#Get list of tile names and add full pathname to beginning
|
4
|
Tiles <- list.files("DEM/asterGdem/N59to81_W20toE19", pattern="^ASTGTM.*_dem.tif$")
|
5
|
Tiles<- paste("DEM/asterGdem/N59to81_W20toE19/", Tiles, sep="")
|
6
|
|
7
|
# datavalues: 0= water, -9999= nodata
|
8
|
|
9
|
#Create new vectors for name of tile and accompanying % of cells= ocean and non-landmass
|
10
|
# IF % OCEAN AND % NON-LAND ARE VERY DIFFERENT USE % NON-LAND FOR QC CHECK, IF THEY
|
11
|
# ARE THE SAME, % OCEAN IS FASTER TO CALCULATE SO USE THIS
|
12
|
|
13
|
l<- length (Tiles)
|
14
|
Names<- c(1:l)*NA
|
15
|
PctNotLand<- c(1:l) * NA
|
16
|
PctOcean<- c(1:l)*NA
|
17
|
|
18
|
#Fill vectors with % of each tiles where pixel value = 0 (water) OR 0 & -9999 (water or nodata)
|
19
|
for (i in 1:l){
|
20
|
Names[i]<-sapply(strsplit(Tiles[i], '[/]'), '[[', 4)
|
21
|
PctOcean[i]<- count(raster(Tiles[i]),0)/ncell(raster(Tiles[i]))
|
22
|
PctNotLand[i]<- (count(raster(Tiles[i]),0)+count(raster(Tiles[i]),-9999))/ncell(raster(Tiles[i]))
|
23
|
}
|
24
|
|
25
|
data.frame (Names, PctOcean,PctNotLand)
|
26
|
|
27
|
#Use the above calculation to calculate % landmass for each tile and compare total over all tiles
|
28
|
# in folder to % landmass of USGS coverage for same area.
|
29
|
|
30
|
# Requires aggregating aster tiles to match pixel size of USGS coverage:
|
31
|
|
32
|
LandAgg<- c(1:l) * NA
|
33
|
Counts_Agg<- c(1:l)*NA
|
34
|
for (i in 1:l){
|
35
|
Counts_Agg[i]<- count(aggregate(raster(Tiles[i]),30),0)+count(aggregate(raster(Tiles[i]),30),-9999)
|
36
|
LandAgg[i]<- ncell(aggregate(raster(Tiles[i]),30))-Counts_Agg[i]
|
37
|
}
|
38
|
|
39
|
a<-sum(LandAgg)
|
40
|
|
41
|
|
42
|
|
43
|
#Calculate % landmass in USGS coverage and compare:
|
44
|
|
45
|
AstRast<- raster("DEM/asterGdem/N59to81_W20toE19/w020n90/W020N90_clipped.dem")
|
46
|
b<-ncell(AstRast)-cellStats(AstRast, "countNA") #Total # cells- cells with no value
|
47
|
1-(b/a) #Difference= 4.49%
|
48
|
#------------------------------------------------------------------
|
49
|
#after first try, anytime PctNotLand was >= 99%, so too was PctOcean and visa versa
|
50
|
# All subsequent runs will only calc. PctOcean to save time
|
51
|
|
52
|
Tiles <- list.files("DEM/asterGdem/N59to81_E20to59", pattern="^ASTGTM.*_dem.tif$")
|
53
|
Tiles<- paste("DEM/asterGdem/N59to81_E20to59/", Tiles, sep="")
|
54
|
|
55
|
l<- length (Tiles)
|
56
|
Names<- c(1:l)*NA
|
57
|
PctNotLand<- c(1:l) * NA
|
58
|
PctOcean<- c(1:l)*NA
|
59
|
for (i in 1:l){
|
60
|
Names[i]<-sapply(strsplit(Tiles[i], '[/]'), '[[', 4)
|
61
|
PctOcean[i]<- count(raster(Tiles[i]),0)/ncell(raster(Tiles[i]))
|
62
|
}
|
63
|
|
64
|
data.frame (Names, PctOcean)
|
65
|
|
66
|
LandAgg<- c(1:l) * NA
|
67
|
Counts_Agg<- c(1:l)*NA
|
68
|
for (i in 1:l){
|
69
|
Counts_Agg[i]<- count(aggregate(raster(Tiles[i]),30),0)+count(aggregate(raster(Tiles[i]),30),-9999)
|
70
|
LandAgg[i]<- ncell(aggregate(raster(Tiles[i]),30))-Counts_Agg[i]
|
71
|
print( paste(round(100*i/l),"%",sep=""), quote=FALSE )
|
72
|
}
|
73
|
|
74
|
a<-sum(LandAgg)
|
75
|
AstRast<- raster("DEM/asterGdem/N59to81_E20to59/e020n90/E020N90_clipped.dem")
|
76
|
b<-ncell(AstRast)-cellStats(AstRast, "countNA") #Total # cells- cells with no value
|
77
|
1-(b/a) #Difference= 2.21%
|
78
|
#-----------------------------------------------------------------------
|
79
|
Tiles <- list.files("DEM/asterGdem/N59to81_E60to99", pattern="^ASTGTM.*_dem.tif$")
|
80
|
Tiles<- paste("DEM/asterGdem/N59to81_E60to99/", Tiles, sep="")
|
81
|
|
82
|
l<- length (Tiles)
|
83
|
Names<- c(1:l)*NA
|
84
|
PctNotLand<- c(1:l) * NA
|
85
|
PctOcean<- c(1:l)*NA
|
86
|
for (i in 1:l){
|
87
|
Names[i]<-sapply(strsplit(Tiles[i], '[/]'), '[[', 4)
|
88
|
PctOcean[i]<- count(raster(Tiles[i]),0)/ncell(raster(Tiles[i]))
|
89
|
}
|
90
|
|
91
|
data.frame (Names, PctOcean)
|
92
|
|
93
|
LandAgg<- c(1:l) * NA
|
94
|
Counts_Agg<- c(1:l)*NA
|
95
|
for (i in 1:l){
|
96
|
Counts_Agg[i]<- count(aggregate(raster(Tiles[i]),30),0)+count(aggregate(raster(Tiles[i]),30),-9999)
|
97
|
LandAgg[i]<- ncell(aggregate(raster(Tiles[i]),30))-Counts_Agg[i]
|
98
|
}
|
99
|
|
100
|
a<-sum(LandAgg)
|
101
|
AstRast<- raster("DEM/asterGdem/N59to81_E60to99/USGS_ErosDEM_N59to81E60to99/E060N90_clipped.dem")
|
102
|
b<-ncell(AstRast)-cellStats(AstRast, "countNA") #Total # cells- cells with no value
|
103
|
1-(b/a) # Datasets differ by 2.27%
|
104
|
|
105
|
cellStats(AstRast,max)
|
106
|
cellStats(AstRast,min)
|
107
|
count(AstRast, NA)
|
108
|
#-----------------------------------------------------------------------
|
109
|
Tiles <- list.files("DEM/asterGdem/N59to81_E100to139", pattern="^ASTGTM.*_dem.tif$")
|
110
|
Tiles<- paste("DEM/asterGdem/N59to81_E100to139/", Tiles, sep="")
|
111
|
|
112
|
l<- length (Tiles)
|
113
|
Names<- c(1:l)*NA
|
114
|
PctNotLand<- c(1:l) * NA
|
115
|
PctOcean<- c(1:l)*NA
|
116
|
for (i in 1:l){
|
117
|
Names[i]<-sapply(strsplit(Tiles[i], '[/]'), '[[', 4)
|
118
|
PctOcean[i]<- count(raster(Tiles[i]),0)/ncell(raster(Tiles[i]))
|
119
|
}
|
120
|
|
121
|
data.frame (Names, PctOcean)
|
122
|
|
123
|
LandAgg<- c(1:l) * NA
|
124
|
Counts_Agg<- c(1:l)*NA
|
125
|
for (i in 1:l){
|
126
|
Counts_Agg[i]<- count(aggregate(raster(Tiles[i]),30),0)+count(aggregate(raster(Tiles[i]),30),-9999)
|
127
|
LandAgg[i]<- ncell(aggregate(raster(Tiles[i]),30))-Counts_Agg[i]
|
128
|
print( paste(round(100*i/l),"%",sep=""), quote=FALSE )
|
129
|
}
|
130
|
|
131
|
a<-sum(LandAgg)
|
132
|
AstRast<- raster("DEM/asterGdem/N59to81_E100to139/e100n90/E100N90_clipped.dem")
|
133
|
b<-ncell(AstRast)-cellStats(AstRast, "countNA") #Total # cells- cells with no value
|
134
|
1-(b/a) #Difference= 3.1%
|
135
|
#-----------------------------------------------------------------------
|
136
|
Tiles <- list.files("DEM/asterGdem/N59to81_E140to179", pattern="^ASTGTM.*_dem.tif$")
|
137
|
Tiles<- paste("DEM/asterGdem/N59to81_E140to179/", Tiles, sep="")
|
138
|
|
139
|
l<- length (Tiles)
|
140
|
Names<- c(1:l)*NA
|
141
|
PctNotLand<- c(1:l) * NA
|
142
|
PctOcean<- c(1:l)*NA
|
143
|
for (i in 1:l){
|
144
|
Names[i]<-sapply(strsplit(Tiles[i], '[/]'), '[[', 4)
|
145
|
PctOcean[i]<- count(raster(Tiles[i]),0)/ncell(raster(Tiles[i]))
|
146
|
}
|
147
|
|
148
|
data.frame (Names, PctOcean)
|
149
|
|
150
|
LandAgg<- c(1:l) * NA
|
151
|
Counts_Agg<- c(1:l)*NA
|
152
|
for (i in 1:l){
|
153
|
Counts_Agg[i]<- count(aggregate(raster(Tiles[i]),30),0)+count(aggregate(raster(Tiles[i]),30),-9999)
|
154
|
LandAgg[i]<- ncell(aggregate(raster(Tiles[i]),30))-Counts_Agg[i]
|
155
|
print( paste(round(100*i/l),"%",sep=""), quote=FALSE )
|
156
|
}
|
157
|
|
158
|
a<-sum(LandAgg)
|
159
|
AstRast<- raster("DEM/asterGdem/N59to81_E140to179/e140n90/E140N90_clipped.dem")
|
160
|
b<-ncell(AstRast)-cellStats(AstRast, "countNA") #Total # cells- cells with no value
|
161
|
1-(b/a) #Difference= 3.4%
|
162
|
#-----------------------------------------------------------------------
|
163
|
Tiles <- list.files("DEM/asterGdem/N59to81_W60to21", pattern="^ASTGTM.*_dem.tif$")
|
164
|
Tiles<- paste("DEM/asterGdem/N59to81_W60to21/", Tiles, sep="")
|
165
|
|
166
|
l<- length (Tiles)
|
167
|
Names<- c(1:l)*NA
|
168
|
PctNotLand<- c(1:l) * NA
|
169
|
PctOcean<- c(1:l)*NA
|
170
|
for (i in 1:l){
|
171
|
Names[i]<-sapply(strsplit(Tiles[i], '[/]'), '[[', 4)
|
172
|
PctOcean[i]<- count(raster(Tiles[i]),0)/ncell(raster(Tiles[i]))
|
173
|
}
|
174
|
|
175
|
data.frame (Names, PctOcean)
|
176
|
|
177
|
LandAgg<- c(1:l) * NA
|
178
|
Counts_Agg<- c(1:l)*NA
|
179
|
for (i in 1:l){
|
180
|
Counts_Agg[i]<- count(aggregate(raster(Tiles[i]),30),0)+count(aggregate(raster(Tiles[i]),30),-9999)
|
181
|
LandAgg[i]<- ncell(aggregate(raster(Tiles[i]),30))-Counts_Agg[i]
|
182
|
print( paste(round(100*i/l),"%",sep=""), quote=FALSE )
|
183
|
}
|
184
|
|
185
|
a<-sum(LandAgg)
|
186
|
AstRast<- raster("DEM/asterGdem/N59to81_W60to21/w060n90/W060N90_clipped.dem")
|
187
|
b<-ncell(AstRast)-cellStats(AstRast, "countNA") #Total # cells- cells with no value
|
188
|
1-(b/a) #Difference= 3.03%
|
189
|
#-----------------------------------------------------------------------
|
190
|
Tiles <- list.files("DEM/asterGdem/N59to81_W180to141", pattern="^ASTGTM.*_dem.tif$")
|
191
|
Tiles<- paste("DEM/asterGdem/N59to81_W180to141/", Tiles, sep="")
|
192
|
|
193
|
l<- length (Tiles)
|
194
|
Names<- c(1:l)*NA
|
195
|
PctNotLand<- c(1:l) * NA
|
196
|
PctOcean<- c(1:l)*NA
|
197
|
for (i in 1:l){
|
198
|
Names[i]<-sapply(strsplit(Tiles[i], '[/]'), '[[', 4)
|
199
|
PctOcean[i]<- count(raster(Tiles[i]),0)/ncell(raster(Tiles[i]))
|
200
|
}
|
201
|
|
202
|
data.frame (Names, PctOcean)
|
203
|
|
204
|
LandAgg<- c(1:l) * NA
|
205
|
Counts_Agg<- c(1:l)*NA
|
206
|
for (i in 1:l){
|
207
|
Counts_Agg[i]<- count(aggregate(raster(Tiles[i]),30),0)+count(aggregate(raster(Tiles[i]),30),-9999)
|
208
|
LandAgg[i]<- ncell(aggregate(raster(Tiles[i]),30))-Counts_Agg[i]
|
209
|
print( paste(round(100*i/l),"%",sep=""), quote=FALSE )
|
210
|
}
|
211
|
|
212
|
a<-sum(LandAgg)
|
213
|
AstRast<- raster("DEM/asterGdem/N59to81_W180to141/w180n90/W180N90_clipped.dem")
|
214
|
b<-ncell(AstRast)-cellStats(AstRast, "countNA") #Total # cells- cells with no value
|
215
|
1-(b/a) #Difference= 2.87%
|
216
|
#-----------------------------------------------------------------------
|
217
|
Tiles <- list.files("DEM/asterGdem/N59to81_W140to101", pattern="^ASTGTM.*_dem.tif$")
|
218
|
Tiles<- paste("DEM/asterGdem/N59to81_W140to101/", Tiles, sep="")
|
219
|
|
220
|
l<- length (Tiles)
|
221
|
Names<- c(1:l)*NA
|
222
|
PctNotLand<- c(1:l) * NA
|
223
|
PctOcean<- c(1:l)*NA
|
224
|
for (i in 1:l){
|
225
|
Names[i]<-sapply(strsplit(Tiles[i], '[/]'), '[[', 4)
|
226
|
PctOcean[i]<- count(raster(Tiles[i]),0)/ncell(raster(Tiles[i]))
|
227
|
}
|
228
|
|
229
|
data.frame (Names, PctOcean)
|
230
|
|
231
|
LandAgg<- c(1:l) * NA
|
232
|
Counts_Agg<- c(1:l)*NA
|
233
|
for (i in 1:l){
|
234
|
Counts_Agg[i]<- count(aggregate(raster(Tiles[i]),30),0)+count(aggregate(raster(Tiles[i]),30),-9999)
|
235
|
LandAgg[i]<- ncell(aggregate(raster(Tiles[i]),30))-Counts_Agg[i]
|
236
|
print( paste(round(100*i/l),"%",sep=""), quote=FALSE )
|
237
|
}
|
238
|
|
239
|
a<-sum(LandAgg)
|
240
|
AstRast<- raster("DEM/asterGdem/N59to81_W140to101/w140n90/W140N90_clipped.dem")
|
241
|
b<-ncell(AstRast)-cellStats(AstRast, "countNA") #Total # cells- cells with no value
|
242
|
1-(b/a) #Difference= 3.84%
|
243
|
#-----------------------------------------------------------------------
|
244
|
Tiles <- list.files("DEM/asterGdem/N59to81_W100to61", pattern="^ASTGTM.*_dem.tif$")
|
245
|
Tiles<- paste("DEM/asterGdem/N59to81_W100to61/", Tiles, sep="")
|
246
|
|
247
|
l<- length (Tiles)
|
248
|
Names<- c(1:l)*NA
|
249
|
PctNotLand<- c(1:l) * NA
|
250
|
PctOcean<- c(1:l)*NA
|
251
|
for (i in 1:l){
|
252
|
Names[i]<-sapply(strsplit(Tiles[i], '[/]'), '[[', 4)
|
253
|
PctOcean[i]<- count(raster(Tiles[i]),0)/ncell(raster(Tiles[i]))
|
254
|
}
|
255
|
|
256
|
data.frame (Names, PctOcean)
|
257
|
|
258
|
LandAgg<- c(1:l) * NA
|
259
|
Counts_Agg<- c(1:l)*NA
|
260
|
for (i in 1:l){
|
261
|
Counts_Agg[i]<- count(aggregate(raster(Tiles[i]),30),0)+count(aggregate(raster(Tiles[i]),30),-9999)
|
262
|
LandAgg[i]<- ncell(aggregate(raster(Tiles[i]),30))-Counts_Agg[i]
|
263
|
print( paste(round(100*i/l),"%",sep=""), quote=FALSE )
|
264
|
}
|
265
|
|
266
|
a<-sum(LandAgg)
|
267
|
AstRast<- raster("DEM/asterGdem/N59to81_W100to61/w100n90/W100N90_clipped.dem")
|
268
|
b<-ncell(AstRast)-cellStats(AstRast, "countNA") #Total # cells- cells with no value
|
269
|
1-(b/a) #Difference= 7.21% (lot's of coastline in this set of tiles!)
|
270
|
#-------------------------------------------------------------------
|
271
|
c<- raster("DEM/asterGdem/N59to81_E60to99/USGS_ErosDEM_N59to81E60to99/E060N90.DEM")
|
272
|
a<- raster("DEM/asterGdem/N59to81_E60to99/USGS_ErosDEM_N59to81E60to99/E060N90_clipped.dem")
|
273
|
b<- raster(nrow=82800, ncol=144000)
|
274
|
d<- raster("DEM/asterGdem/N59to81_E60to99/ASTGTM_N59E060_dem.tif")
|
275
|
s<- resample(a,b,method='ngb')
|
276
|
disaggregate(a,30)
|
277
|
e<-aggregate(d,30)
|
278
|
|
279
|
count(e, -9999)
|
280
|
count (e,0)
|