Project

General

Profile

« Previous | Next » 

Revision 6c21df27

Added by Benoit Parmentier almost 12 years ago

Methods comp part7-task#491- function for residuals analyses comparison SNOTEL and GHCN through dates

View differences:

climate/research/oregon/interpolation/function_methods_comparison_assessment_part7.R
1
#for(i in 1:length(dates)){
2
accuracy_comp_CAI_fus_function <- function(i){
3
  date_selected<-dates[i]
4
  
5
  ## Get the relevant raster layers with prediction for fusion and CAI
6
  oldpath<-getwd()
7
  setwd(path_data_cai)
8
  file_pat<-glob2rx(paste("*tmax_predicted*",date_selected,"*_365d_GAM_CAI2_const_all_10312012.rst",sep="")) #Search for files in relation to fusion                  
9
  lf_cai2c<-list.files(pattern=file_pat) #Search for files in relation to fusion                  
10
  rast_cai2c<-stack(lf_cai2c)                   #lf_cai2c CAI results with constant sampling over 365 dates
11
  rast_cai2c<-mask(rast_cai2c,mask_ELEV_SRTM)
12
  
13
  oldpath<-getwd()
14
  setwd(path_data_fus)
15
  file_pat<-glob2rx(paste("*tmax_predicted*",date_selected,"*_365d_GAM_fusion_const_all_lstd_11022012.rst",sep="")) #Search for files in relation to fusion                  
16
  lf_fus1c<-list.files(pattern=file_pat) #Search for files in relation to fusion                        
17
  rast_fus1c<-stack(lf_fus1c)
18
  rast_fus1c<-mask(rast_fus1c,mask_ELEV_SRTM)
19
  
20
  #PLOT ALL MODELS
21
  #Prepare for plotting
22
  
23
  setwd(path) #set path to the output path
24
  
25
  rast_fus_pred<-raster(rast_fus1c,1)  # Select the first model from the stack i.e fusion with kriging for both steps
26
  rast_cai_pred<-raster(rast_cai2c,1)  
27
  layerNames(rast_cai_pred)<-paste("cai",date_selected,sep="_")
28
  layerNames(rast_fus_pred)<-paste("fus",date_selected,sep="_")
29
  rast_pred2<-stack(rast_fus_pred,rast_cai_pred)
30
  #function to extract training and test from object from object models created earlier during interpolation...
31
  
32
  #load training and testing date for the specified date for fusion and CAI
33
  data_vf<-station_data_interp(date_selected,file.path(path_data_fus,obj_mod_fus_name),training=FALSE,testing=TRUE)
34
  #data_sf<-station_data_interp(date_selected,file.path(path_data_fus,obj_mod_fus_name),training=TRUE,testing=FALSE)
35
  data_vc<-station_data_interp(date_selected,file.path(path_data_cai,obj_mod_cai_name),training=FALSE,testing=TRUE)
36
  #data_sc<-station_data_interp(date_selected,file.path(path_data_cai,obj_mod_cai_name),training=TRUE,testing=FALSE)
37
  
38
  date_selected_snot<-strptime(date_selected,"%Y%m%d")
39
  snot_selected <-snot_OR_2010_sp[snot_OR_2010_sp$date_formatted==date_selected_snot,]
40
  #snot_selected<-na.omit(as.data.frame(snot_OR_2010_sp[snot_OR_2010_sp$date==90110,]))
41
  rast_diff_fc<-rast_fus_pred-rast_cai_pred
42
  LC_stack<-stack(LC1,LC2,LC3,LC4,LC6,LC7)
43
  rast_pred3<-stack(rast_diff_fc,rast_pred2,ELEV_SRTM,LC_stack)
44
  layerNames(rast_pred3)<-c("diff_fc","fus","CAI","ELEV_SRTM","LC1","LC2","LC3","LC4","LC6","LC7")   #extract amount of veg...
45
  
46
  #extract predicted tmax corresponding to 
47
  extract_snot<-extract(rast_pred3,snot_selected)  #return value from extract is a matrix (with input SPDF)
48
  snot_data_selected<-cbind(as.data.frame(snot_selected),extract_snot)  #bind data together
49
  snot_data_selected$res_f<-snot_data_selected$fus-snot_data_selected$tmax #calculate the residuals for Fusion
50
  snot_data_selected$res_c<-snot_data_selected$CAI-snot_data_selected$tmax #calculate the residuals for CAI
51
  #snot_data_selected<-(na.omit(as.data.frame(snot_data_selected))) #remove rows containing NA, this may need to be modified later.
52
  
53
  ###fig3: Plot predicted vs observed tmax
54
  #fig3a: FUS
55
  png(paste("fig3_testing_scatterplot_pred_fus_CAI_observed_SNOT_GHCN_",date_selected,out_prefix,".png", sep=""))
56
  par(mfrow=c(1,2))
57
  x_range<-range(c(data_vf$pred_mod7,snot_data_selected$fus,data_vc$pred_mod9,snot_data_selected$CAI),na.rm=T)
58
  y_range<-range(c(data_vf$dailyTmax,snot_data_selected$tmax,data_vc$dailyTmax,snot_data_selected$tmax),na.rm=T)
59
  plot(data_vf$pred_mod7,data_vf$dailyTmax, ylab="Observed daily tmax (C)", xlab="Fusion predicted daily tmax (C)", 
60
       ylim=y_range,xlim=x_range)
61
  #text(data_vf$pred_mod7,data_vf$dailyTmax,labels=data_vf$idx,pos=3)
62
  abline(0,1) #takes intercept at 0 and slope as 1 so display 1:1 ine
63
  grid(lwd=0.5,col="black")
64
  points(snot_data_selected$fus,snot_data_selected$tmax,pch=2,co="red")
65
  title(paste("Testing stations tmax fusion vs daily tmax",date_selected,sep=" "))
66
  legend("topleft",legend=c("GHCN", "SNOT"), 
67
         cex=1.2, col=c("black","red"),
68
         pch=c(1,2))  
69
  #fig 3b: CAI
70
  #x_range<-range(c(data_vc$pred_mod9,snot_data_selected$CAI))
71
  #y_range<-range(c(data_vc$dailyTmax,snot_data_selected$tmax))
72
  plot(data_vc$pred_mod9,data_vc$dailyTmax, ylab="Observed daily tmax (C)", xlab="CAI predicted daily tmax (C)", 
73
       ylim=y_range,xlim=x_range)
74
  #text(data_vc$pred_mod9,data_vc$dailyTmax,labels=data_vf$idx,pos=3)
75
  abline(0,1) #takes intercept at 0 and slope as 1 so display 1:1 ine
76
  grid(lwd=0.5,col="black")
77
  points(snot_data_selected$CAI,snot_data_selected$tmax,pch=2,co="red") 
78
  #text(snot_data_selected$CAI,snot_data_selected$tmax,labels=1:nrow(snot_data_selected),pos=3)
79
  #title(paste("Testing stations tmax CAI vs daily tmax",date_selected,sep=" "))
80
  legend("topleft",legend=c("GHCN", "SNOT"), 
81
         cex=1.2, col=c("black","red"),
82
         pch=c(1,2))
83
  #savePlot(paste("fig3_testing_scatterplot_pred_fus_CAI_observed_SNOT_GHCN_",date_selected,out_prefix,".png", sep=""), type="png")
84
  dev.off()
85
  
86
  ##### Fig4a: ELEV-CAI
87
  png(paste("fig4_testing_scatterplot_pred_fus_CIA_elev_SNOT_GHCN_",date_selected,out_prefix,".png", sep="")) 
88
  par(mfrow=c(1,2)) 
89
  y_range<-range(c(data_vc$pred_mod9,snot_data_selected$CAI),na.rm=T)
90
  #y_range<-range(c(data_vc$pred_mod9,snot_data_selected$CAI),na.rm=T)
91
  x_range<-range(c(data_vc$ELEV_SRTM,snot_data_selected$ELEV_SRTM),na.rm=T)
92
  lm_mod1<-lm(data_vc$pred_mod9~data_vc$ELEV_SRTM)
93
  lm_mod2<-lm(snot_data_selected$CAI~snot_data_selected$ELEV_SRTM)
94
  plot(data_vc$ELEV_SRTM,data_vc$pred_mod9,ylab="Observed daily tmax (C)", xlab="Elevation (m)", 
95
       ylim=y_range,xlim=x_range)
96
  #text(data_vc$ELEV_SRTM,data_vc$pred_mod9,labels=data_vc$idx,pos=3)
97
  abline(lm_mod1) #takes intercept at 0 and slope as 1 so display 1:1 ine
98
  abline(lm_mod2,col="red") #takes intercept at 0 and slope as 1 so display 1:1 ine
99
  grid(lwd=0.5, col="black")
100
  points(snot_data_selected$ELEV_SRTM,snot_data_selected$CAI,pch=2,co="red")
101
  title(paste("Testing stations tmax CAI vs elevation",date_selected,sep=" "))
102
  legend("topleft",legend=c("GHCN", "SNOT"), 
103
         cex=1.2, col=c("black","red"),
104
         pch=c(1,2))
105
  
106
  #Fig4bELEV-FUS
107
  y_range<-range(c(data_vf$pred_mod7,snot_data_selected$fus),na.rm=T)
108
  x_range<-range(c(data_vf$ELEV_SRTM,snot_data_selected$ELEV_SRTM),na.rm=T)
109
  lm_mod1<-lm(data_vf$pred_mod7~data_vf$ELEV_SRTM)
110
  lm_mod2<-lm(snot_data_selected$fus~snot_data_selected$ELEV_SRTM)
111
  plot(data_vf$ELEV_SRTM,data_vf$pred_mod7,ylab="Observed daily tmax (C)", xlab="Elevation (m)", 
112
       ylim=y_range,xlim=x_range)
113
  #text(data_vc$ELEV_SRTM,data_vc$pred_mod9,labels=data_vc$idx,pos=3)
114
  abline(lm_mod1) #takes intercept at 0 and slope as 1 so display 1:1 ine
115
  abline(lm_mod2,col="red") #takes intercept at 0 and slope as 1 so display 1:1 ine
116
  grid(lwd=0.5, col="black")
117
  points(snot_data_selected$ELEV_SRTM,snot_data_selected$fus,pch=2,co="red")
118
  title(paste("Testing stations tmax  vs elevation",date_selected,sep=" "))
119
  legend("topleft",legend=c("GHCN", "SNOT"), 
120
         cex=1.2, col=c("black","red"),
121
         pch=c(1,2))
122
  #savePlot(paste("fig4_testing_scatterplot_pred_fus_CIA_elev_SNOT_GHCN_",date_selected,out_prefix,".png", sep=""), type="png") 
123
  dev.off()
124
  ############ ACCURACY METRICS AND RESIDUALS #############
125
  
126
  #START FIG 5
127
  #####Fig5a: CAI vs FUSION: difference by plotting on in terms of the other
128
  png(paste("fig5_testing_scatterplot_pred_fus_CAI_observed_SNOT_GHCN_",date_selected,out_prefix,".png", sep=""))
129
  par(mfrow=c(1,2)) 
130
  lm_mod<-lm(snot_data_selected$CAI~snot_data_selected$fus)
131
  y_range<-range(c(data_vc$pred_mod9,snot_data_selected$CAI),na.rm=T)
132
  x_range<-range(c(data_vf$pred_mod7,snot_data_selected$fus),na.rm=T)
133
  
134
  plot(data_vf$pred_mod7,data_vc$pred_mod9,ylab="Predicted CAI daily tmax (C)", xlab="Predicted fusion daily tmax (C)", 
135
       ylim=y_range,xlim=x_range)
136
  #text(data_vc$ELEV_SRTM,data_vc$dailyTmax,labels=data_vc$idx,pos=3)
137
  abline(0,1) #takes intercept at 0 and slope as 1 so display 1:1 ine
138
  abline(lm_mod,col="red")
139
  grid(lwd=0.5, col="black")
140
  points(snot_data_selected$fus,snot_data_selected$CAI,pch=2,co="red")
141
  title(paste("Testing stations predicted tmax fusion vs CAI tmax",date_selected,sep=" "))
142
  legend("topleft",legend=c("GHCN", "SNOT"), 
143
         cex=1.2, col=c("black","red"),
144
         pch=c(1,2))
145
  ####Fig5b: diff vs elev: difference by plotting on in terms of elev
146
  diff_fc<-data_vf$pred_mod7-data_vc$pred_mod9
147
  plot(snot_data_selected$ELEV_SRTM,snot_data_selected$diff_fc,pch=2,col="red")
148
  lm_mod<-lm(snot_data_selected$diff_fc~snot_data_selected$ELEV_SRTM)
149
  abline(lm_mod,col="red")
150
  points(data_vf$ELEV_SRTM,diff_fc)
151
  lm_mod<-lm(diff_fc~data_vf$ELEV_SRTM)
152
  abline(lm_mod)
153
  legend("topleft",legend=c("GHCN", "SNOT"), 
154
         cex=1.2, col=c("black","red"),
155
         pch=c(1,2))
156
  title(paste("Prediction tmax difference and elevation ",sep=""))
157
  dev.off()
158
  #savePlot(paste("fig5_testing_scatterplot_pred_fus_CAI_observed_SNOT_GHCN_",date_selected,out_prefix,".png", sep=""), type="png")
159
  
160
  #DO diff IN TERM OF ELEVATION CLASSES as well as diff..
161
  
162
  #### START FIG 6: difference fc vs elev
163
  #fig6a
164
  png(paste("fig6_elevation_classes_diff_SNOT_GHCN_network",date_selected,out_prefix,".png", sep=""))
165
  par(mfrow=c(1,2)) 
166
  brks<-c(0,500,1000,1500,2000,2500,4000)
167
  lab_brks<-1:6
168
  elev_rcstat<-cut(snot_data_selected$ELEV_SRTM,breaks=brks,labels=lab_brks,right=F)
169
  snot_data_selected$elev_rec<-elev_rcstat
170
  y_range<-range(c(snot_data_selected$diff_fc),na.rm=T)
171
  x_range<-range(c(elev_rcstat),na.rm=T)
172
  plot(elev_rcstat,snot_data_selected$diff_fc, ylab="diff_fc", xlab="ELEV_SRTM (m) ", 
173
       ylim=y_range, xlim=x_range)
174
  #text(elev_rcstat,diff_cf,labels=data_vf$idx,pos=3)
175
  grid(lwd=0.5,col="black")
176
  title(paste("SNOT stations diff f vs Elevation",date_selected,sep=" "))
177
  
178
  ###With fewer classes...fig6b
179
  brks<-c(0,1000,2000,3000,4000)
180
  lab_brks<-1:4
181
  elev_rcstat<-cut(snot_data_selected$ELEV_SRTM,breaks=brks,labels=lab_brks,right=F)
182
  snot_data_selected$elev_rec<-elev_rcstat
183
  y_range<-range(c(snot_data_selected$diff_fc),na.rm=T)
184
  x_range<-range(c(elev_rcstat),na.rm=T)
185
  plot(elev_rcstat,snot_data_selected$diff_fc, ylab="diff_fc", xlab="ELEV_SRTM (m) ", 
186
       ylim=y_range, xlim=x_range)
187
  #text(elev_rcstat,diff_cf,labels=data_vf$idx,pos=3)
188
  grid(lwd=0.5,col="black")
189
  title(paste("SNOT stations diff f vs Elevation",date_selected,sep=" "))
190
  #savePlot(paste("fig6_elevation_classes_diff_SNOT_GHCN_network",date_selected,out_prefix,".png", sep=""), type="png")
191
  dev.off()
192
  #START FIG 7 with residuals
193
  #fig 7a
194
  png(paste("fig7_elevation_classes_residuals_SNOT_GHCN_network",date_selected,out_prefix,".png", sep=""))
195
  par(mfrow=c(1,2)) 
196
  brks<-c(0,1000,2000,3000,4000)
197
  lab_brks<-1:4
198
  elev_rcstat<-cut(snot_data_selected$ELEV_SRTM,breaks=brks,labels=lab_brks,right=F)
199
  snot_data_selected$elev_rec<-elev_rcstat
200
  y_range<-range(c(snot_data_selected$res_f,snot_data_selected$res_c),na.rm=T)
201
  x_range<-range(c(elev_rcstat),na.rm=T)
202
  plot(elev_rcstat,snot_data_selected$res_f, ylab="res_f", xlab="ELEV_SRTM (m) ", 
203
       ylim=y_range, xlim=x_range)
204
  #text(elev_rcstat,diff_cf,labels=data_vf$idx,pos=3)
205
  grid(lwd=0.5,col="black")
206
  title(paste("SNOT stations residuals fusion vs Elevation",date_selected,sep=" "))
207
  #fig 7b
208
  elev_rcstat<-cut(snot_data_selected$ELEV_SRTM,breaks=brks,labels=lab_brks,right=F)
209
  y_range<-range(c(snot_data_selected$res_c,snot_data_selected$res_f),na.rm=T)
210
  x_range<-range(c(elev_rcstat))
211
  plot(elev_rcstat,snot_data_selected$res_c, ylab="res_c", xlab="ELEV_SRTM (m) ", 
212
       ylim=y_range, xlim=x_range)
213
  #text(elev_rcstat,diff_cf,labels=data_vf$idx,pos=3)
214
  grid(lwd=0.5,col="black")
215
  title(paste("SNOT stations residuals CAI vs Elevation",date_selected,sep=" "))
216
  #savePlot(paste("fig7_elevation_classes_residuals_SNOT_GHCN_network",date_selected,out_prefix,".png", sep=""), type="png")
217
  dev.off()
218
  ####### COMPARE CAI FUSION USING SNOTEL DATA WITH ACCURACY METRICS###############
219
  ################ RESIDUALS and MAE etc.  #####################
220
  browser()
221
  ### Run for full list of date? --365
222
  ac_tab_snot_fus<-calc_accuracy_metrics(snot_data_selected$tmax,snot_data_selected$fus) 
223
  ac_tab_snot_cai<-calc_accuracy_metrics(snot_data_selected$tmax,snot_data_selected$CAI) 
224
  ac_tab_ghcn_fus<-calc_accuracy_metrics(data_vf$dailyTmax,data_vf$pred_mod7) 
225
  ac_tab_ghcn_cai<-calc_accuracy_metrics(data_vc$dailyTmax,data_vc$pred_mod9)
226
  
227
  ac_tab<-do.call(rbind,list(ac_tab_snot_fus,ac_tab_snot_cai,ac_tab_ghcn_fus,ac_tab_ghcn_cai))
228
  ac_tab$mod_id<-c("snot_fus","snot_cai","ghcn_fus","ghcn_cai")
229
  ac_tab$date<-date_selected
230
   
231
  list_ac_tab[[i]]<-ac_tab  #storing the accuracy metric data.frame in a list...
232
  #save(list_ac_tab,)
233
  save(list_ac_tab,file= paste("list_ac_tab_", date_selected,out_prefix,".RData",sep=""))
234
  
235
  #FIG8: boxplot of residuals for methods (fus, cai) using SNOT and GHCN data
236
  #fig8a
237
  png(paste("fig8_residuals_boxplot_SNOT_GHCN_network",date_selected,out_prefix,".png", sep=""))
238
  par(mfrow=c(1,2)) 
239
  y_range<-range(c(snot_data_selected$res_f,snot_data_selected$res_c,data_vf$res_mod7,data_vc$res_mod9),na.rm=T)
240
  boxplot(snot_data_selected$res_f,snot_data_selected$res_c,names=c("FUS","CAI"),ylim=y_range,ylab="Residuals tmax degree C")
241
  title(paste("Residuals for fusion and CAI methods for SNOT data ",date_selected,sep=" "))
242
  #fig8b
243
  boxplot(data_vf$res_mod7,data_vc$res_mod9,names=c("FUS","CAI"),ylim=y_range,ylab="Residuals tmax degree C")
244
  title(paste("Residuals for fusion and CAI methods for GHCN data ",date_selected,sep=" "))
245
  #savePlot(paste("fig8_residuals_boxplot_SNOT_GHCN_network",date_selected,out_prefix,".png", sep=""), type="png")
246
  dev.off()
247
  mae_fun<-function(residuals){
248
    mean(abs(residuals),na.rm=T)
249
  }
250
  
251
  mean_diff_fc<-aggregate(diff_fc~elev_rec,data=snot_data_selected,mean)
252
  mean_mae_c<-aggregate(res_c~elev_rec,data=snot_data_selected,mae_fun)
253
  mean_mae_f<-aggregate(res_f~elev_rec,data=snot_data_selected,mae_fun)
254
  
255
  ####FIG 9: plot MAE for fusion and CAI as well as boxplots of both thechnique
256
  #fig 9a: boxplot of residuals for MAE and CAI
257
  png(paste("fig9_residuals_boxplot_MAE_SNOT_GHCN_network",date_selected,out_prefix,".png", sep=""))
258
  par(mfrow=c(1,2)) 
259
  height<-cbind(snot_data_selected$res_f,snot_data_selected$res_c)
260
  boxplot(height,names=c("FUS","CAI"),ylab="Residuals tmax degree C")
261
  title(paste("Residuals for fusion and CAI methods for SNOT data ",date_selected,sep=" "))
262
  #par(new=TRUE)
263
  #abline(h=ac_tab[1,1],col="red")
264
  points(1,ac_tab[1,1],pch=5,col="red")
265
  points(2,ac_tab[2,1],pch=5,col="black")
266
  legend("bottom",legend=c("FUS_MAE", "CAI_MAE"), 
267
         cex=0.8, col=c("red","black"),
268
         pch=c(2,1))
269
  #fig 9b: MAE per 3 elevation classes:0-1000,1000-2000,2000-3000,3000-4000
270
  y_range<-c(0,max(c(mean_mae_c[,2],mean_mae_f[,2]),na.rm=T))
271
  plot(1:3,mean_mae_c[,2],ylim=y_range,type="n",ylab="MAE in degree C",xlab="elevation classes")
272
  points(mean_mae_c,ylim=y_range)
273
  lines(1:3,mean_mae_c[,2],col="black")
274
  par(new=TRUE)              # key: ask for new plot without erasing old
275
  points(mean_mae_f,ylim=y_range)
276
  lines(1:3,mean_mae_f[,2],col="red")
277
  legend("bottom",legend=c("FUS_MAE", "CAI_MAE"), 
278
         cex=0.8, col=c("red","black"),
279
         pch=c(2,1))
280
  title(paste("MAE per elevation classes for SNOT data ",date_selected,sep=" "))
281
  #savePlot(paste("fig9_residuals_boxplot_MAE_SNOT_GHCN_network",date_selected,out_prefix,".png", sep=""), type="png")
282
  dev.off()
283
  ### LM MODELS for difference and elevation categories
284
  ## Are the differences plotted on fig 9 significant??
285
  diffelev_mod<-lm(diff_fc~elev_rec,data=snot_data_selected)
286
  summary(diffelev_mod)
287
  ##LM MODEL MAE PER ELEVATION CLASS: residuals for CAI
288
  diffelev_mod<-lm(res_c~elev_rec,data=snot_data_selected)
289
  summary(diffelev_mod)
290
  ##LM MODEL MAE PER ELEVATION CLASS: residuals for Fusions
291
  diffelev_mod<-lm(res_f~elev_rec,data=snot_data_selected)
292
  summary(diffelev_mod)
293
  
294
  ### LM MODELS for RESIDUALS BETWEEN CAI AND FUSION
295
  ## Are the differences plotted on fig 9 significant??
296
  ## STORE THE p values...?? overall and per cat?
297
  
298
  #diffelev_mod<-lm(res_f~elev_rec,data=snot_data_selected)
299
  #table(snot_data_selected$elev_rec) #Number of observation per class
300
  #max(snot_data_selected$E_STRM)
301
  
302
  #res
303
  
304
  #############################################
305
  #USING BOTH validation and training
306
  #This part is exploratory....
307
  ################## EXAMINING RESIDUALS AND DIFFERENCES IN LAND COVER......############
308
  ######
309
  
310
  #LC_names<-c("LC1_rec","LC2_rec","LC3_rec","LC4_rec","LC6_rec")
311
  suf_name<-c("rec1")
312
  sum_var<-c("diff_fc")
313
  LC_names<-c("LC1","LC2","LC3","LC4","LC6")
314
  brks<-c(-1,20,40,60,80,101)
315
  lab_brks<-seq(1,5,1)
316
  #var_name<-LC_names; suffix<-"rec1"; s_function<-"mean";df<-snot_data_selected;summary_var<-"diff_fc"
317
  #reclassify_df(snot_data_selected,LC_names,var_name,brks,lab_brks,suffix,summary_var)
318
  
319
  #Calculate mean per land cover percentage
320
  data_agg<-reclassify_df(snot_data_selected,LC_names,brks,lab_brks,suf_name,sum_var)
321
  data_lc<-data_agg[[1]]
322
  snot_data_selected<-data_agg[[2]]
323
  
324
  by_name<-"rec1"
325
  df_lc_diff_fc<-merge_multiple_df(data_lc,by_name)
326
  
327
  ###### FIG10: PLOT LAND COVER
328
  png(paste("fig10_diff_prediction_tmax_diff_res_f_land cover",date_selected,out_prefix,".png", sep=""))
329
  par(mfrow=c(1,2))
330
  zones_stat<-df_lc_diff_fc #first land cover
331
  #names(zones_stat)<-c("lab_brks","LC")
332
  y_range<-range(as.vector(t(zones_stat[,-1])),na.rm=T)
333
  lab_brks_mid<-c(10,30,50,70,90)
334
  plot(lab_brks_mid,zones_stat[,2],type="b",ylim=y_range,col="black", lwd=2,
335
       ylab="difference between fusion and CAI",xlab="land cover percent classes")
336
  lines(lab_brks_mid,zones_stat[,3],col="red",type="b")
337
  lines(lab_brks_mid,zones_stat[,4],col="blue",type="b")
338
  lines(lab_brks_mid,zones_stat[,5],col="darkgreen",type="b")
339
  lines(lab_brks_mid,zones_stat[,6],col="purple",type="b")
340
  legend("topleft",legend=c("LC1_forest", "LC2_shrub", "LC3_grass", "LC4_crop", "LC6_urban"), 
341
         cex=1.2, col=c("black","red","blue","darkgreen","purple"),
342
         lty=1,lwd=1.8)
343
  title(paste("Prediction tmax difference and land cover ",date_selected,sep=""))
344
  
345
  ###NOW USE RESIDUALS FOR FUSION
346
  sum_var<-"res_f"
347
  suf_name<-"rec2"
348
  data_agg2<-reclassify_df(snot_data_selected,LC_names,brks,lab_brks,suf_name,sum_var)
349
  data_resf_lc<-data_agg2[[1]]
350
  #snot_data_selected<-data_agg[[2]]
351
  
352
  by_name<-"rec2"
353
  df_lc_resf<-merge_multiple_df(data_resf_lc,by_name)
354
  
355
  zones_stat<-df_lc_resf #first land cover
356
  #names(zones_stat)<-c("lab_brks","LC")
357
  lab_brks_mid<-c(10,30,50,70,90)
358
  plot(lab_brks_mid,zones_stat[,2],type="b",ylim=y_range,col="black",lwd=2,
359
       ylab="tmax residuals fusion ",xlab="land cover percent classes")
360
  lines(lab_brks_mid,zones_stat[,3],col="red",type="b")
361
  lines(lab_brks_mid,zones_stat[,4],col="blue",type="b")
362
  lines(lab_brks_mid,zones_stat[,5],col="darkgreen",type="b")
363
  lines(lab_brks_mid,zones_stat[,6],col="purple",type="b")
364
  legend("topleft",legend=c("LC1_forest", "LC2_shrub", "LC3_grass", "LC4_crop", "LC6_urban"), 
365
         cex=1.2, col=c("black","red","blue","darkgreen","purple"),
366
         lty=1,lwd=1.2)
367
  title(paste("Prediction tmax residuals and land cover ",date_selected,sep=""))
368
  #savePlot(paste("fig10_diff_prediction_tmax_diff_res_f_land cover",date_selected,out_prefix,".png", sep=""), type="png")
369
  dev.off()
370
  #### FIGURE11: res_f and res_c per land cover
371
  
372
  sum_var<-"res_c"
373
  suf_name<-"rec3"
374
  data_agg3<-reclassify_df(snot_data_selected,LC_names,brks,lab_brks,suf_name,sum_var)
375
  data_resc_lc<-data_agg3[[1]]
376
  snot_data_selected<-data_agg3[[2]]
377
  
378
  by_name<-"rec3"
379
  df_lc_resc<-merge_multiple_df(data_resc_lc,by_name)
380
  
381
  zones_stat<-df_lc_resc #first land cover
382
  #names(zones_stat)<-c("lab_brks","LC")
383
  png(paste("fig11_prediction_tmax_res_f_res_c_land cover",date_selected,out_prefix,".png", sep=""))
384
  par(mfrow=c(1,2))
385
  y_range<-range(as.vector(t(zones_stat[,-1])),na.rm=T)
386
  lab_brks_mid<-c(10,30,50,70,90)
387
  plot(lab_brks_mid,zones_stat[,2],type="b",ylim=y_range,col="black",lwd=2,
388
       ylab="tmax residuals CAI",xlab="land cover percent classes")
389
  lines(lab_brks_mid,zones_stat[,3],col="red",type="b")
390
  lines(lab_brks_mid,zones_stat[,4],col="blue",type="b")
391
  lines(lab_brks_mid,zones_stat[,5],col="darkgreen",type="b")
392
  lines(lab_brks_mid,zones_stat[,6],col="purple",type="b")
393
  legend("topleft",legend=c("LC1_forest", "LC2_shrub", "LC3_grass", "LC4_crop", "LC6_urban"), 
394
         cex=1.2, col=c("black","red","blue","darkgreen","purple"),
395
         lty=1,lwd=1.2)
396
  title(paste("Prediction tmax residuals CAI and land cover ",date_selected,sep=""))
397
  
398
  #fig11b
399
  zones_stat<-df_lc_resf #first land cover
400
  #names(zones_stat)<-c("lab_brks","LC")
401
  y_range<-range(as.vector(t(zones_stat[,-1])),na.rm=T)
402
  lab_brks_mid<-c(10,30,50,70,90)
403
  plot(lab_brks_mid,zones_stat[,2],type="b",ylim=y_range,col="black",lwd=2,
404
       ylab="tmax residuals fusion ",xlab="land cover percent classes")
405
  lines(lab_brks_mid,zones_stat[,3],col="red",type="b")
406
  lines(lab_brks_mid,zones_stat[,4],col="blue",type="b")
407
  lines(lab_brks_mid,zones_stat[,5],col="darkgreen",type="b")
408
  lines(lab_brks_mid,zones_stat[,6],col="purple",type="b")
409
  legend("topleft",legend=c("LC1_forest", "LC2_shrub", "LC3_grass", "LC4_crop", "LC6_urban"), 
410
         cex=1.2, col=c("black","red","blue","darkgreen","purple"),
411
         lty=1,lwd=1.2)
412
  title(paste("Prediction tmax residuals and land cover ",date_selected,sep=""))
413
  #savePlot(paste("fig10_diff_prediction_tmax_diff_res_f_land cover",date_selected,out_prefix,".png", sep=""), type="png")
414
  #savePlot(paste("fig11_prediction_tmax_res_f_res_c_land cover",date_selected,out_prefix,".png", sep=""), type="png")
415
  dev.off()
416
  ac_data_obj<-list(snot_data_selected,data_vf,data_vc,ac_tab)
417
  names(ac_data_obj)<-c("snot_data_selected","data_vf", "data_vc","ac_tab")
418
  return(ac_data_obj)
419
} 

Also available in: Unified diff