Revision 6cb81608
Added by Benoit Parmentier over 11 years ago
climate/research/oregon/interpolation/GAM_fusion_function_multisampling_validation_metrics.R | ||
---|---|---|
2 | 2 |
|
3 | 3 |
#The interpolation is done first at the monthly add delta. |
4 | 4 |
#AUTHOR: Benoit Parmentier |
5 |
#DATE: 03/12/2013
|
|
5 |
#DATE: 03/27/2013
|
|
6 | 6 |
|
7 | 7 |
#Change this to allow explicitly arguments... |
8 | 8 |
#Arguments: |
... | ... | |
38 | 38 |
} |
39 | 39 |
|
40 | 40 |
calc_val_metrics_rast <-function(df,y_ref,pred_names){ |
41 |
# |
|
41 |
#Input parameters: |
|
42 |
#1) df: data frame containing the observed and predicted variables (data_s or data_v) |
|
43 |
#2) y_ref: observed variable correspond to y_var_name?? |
|
44 |
#3) pred_names: models run containig predicted values |
|
45 |
|
|
46 |
# library |
|
47 |
library(maptools) |
|
48 |
|
|
49 |
## START SCRIPT |
|
42 | 50 |
|
43 | 51 |
list_metrics<-vector("list",length(pred_names)) |
44 | 52 |
list_residuals<-vector("list",length(pred_names)) |
... | ... | |
60 | 68 |
return(accuracy_obj) |
61 | 69 |
} |
62 | 70 |
|
63 |
## BEGIN ##
|
|
71 |
############### BEGIN SCRIPT ###########
|
|
64 | 72 |
|
65 | 73 |
#PARSING INPUT PARAMETERS |
66 | 74 |
day_list<- list_param$rast_day_year_list[[i]] |
... | ... | |
70 | 78 |
#Change to results_mod_obj[[i]]$data_s to make it less specific |
71 | 79 |
data_v <- method_mod_obj[[i]]$data_v |
72 | 80 |
data_s <- method_mod_obj[[i]]$data_s |
81 |
y_var_name <- list_param$y_var_name #missing--debugging |
|
73 | 82 |
|
74 | 83 |
## Now create the stack |
75 | 84 |
|
... | ... | |
124 | 133 |
|
125 | 134 |
boxplot_from_tb <-function(tb_diagnostic,metric_names,out_prefix){ |
126 | 135 |
#now boxplots and mean per models |
136 |
library(gdata) #Nesssary to use cbindX |
|
137 |
|
|
138 |
### Start script |
|
139 |
|
|
127 | 140 |
mod_names<-sort(unique(tb_diagnostic$pred_mod)) #models that have accuracy metrics |
128 | 141 |
t<-melt(tb_diagnostic, |
129 | 142 |
#measure=mod_var, |
... | ... | |
138 | 151 |
tb_mod_list<-lapply(mod_names, function(k) subset(tb, pred_mod==k)) #this creates a list of 5 based on models names |
139 | 152 |
names(tb_mod_list)<-mod_names |
140 | 153 |
#mod_metrics<-do.call(cbind,tb_mod_list) |
154 |
#debug here |
|
141 | 155 |
mod_metrics<-do.call(cbindX,tb_mod_list) |
142 | 156 |
test_names<-lapply(1:length(mod_names),function(k) paste(names(tb_mod_list[[1]]),mod_names[k],sep="_")) |
143 | 157 |
names(mod_metrics)<-unlist(test_names) |
... | ... | |
164 | 178 |
## Function to display metrics by months/seasons |
165 | 179 |
boxplot_month_from_tb <-function(tb_diagnostic,metric_names,out_prefix){ |
166 | 180 |
#Add code here... |
181 |
#d_month<-aggregate(TMax~month, data=tb_diagnostic, mean) #Calculate monthly mean for every station in OR |
|
182 |
#d_month<-aggregate(TMax~month, data=tb_diagnostic, legnth) #Calculate monthly mean for every station in OR |
|
183 |
|
|
184 |
|
|
167 | 185 |
} |
168 | 186 |
|
169 | 187 |
|
Also available in: Unified diff
Validation functions, degugging, missing parameters and library