Project

General

Profile

« Previous | Next » 

Revision 6d7bfe23

Added by Benoit Parmentier about 9 years ago

clean up of mosaicing main script and more testing for kriging of residuals at stations

View differences:

climate/research/oregon/interpolation/global_run_scalingup_mosaicing.R
5 5
#Analyses, figures, tables and data are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 04/14/2015  
8
#MODIFIED ON: 12/20/2015            
8
#MODIFIED ON: 12/19/2015            
9 9
#Version: 5
10 10
#PROJECT: Environmental Layers project     
11 11
#COMMENTS: analyses run for reg4 1992 for test of mosaicing using 1500x4500km and other tiles
......
307 307
  #r1 <- raster(lf_mosaic[[1]][1]) 
308 308
  #list_create_accuracy_residuals_raster_obj
309 309
  
310
  ##Run for data_day_s
311
  ##
312
  data_df <- data_day_s # data.frame table/spdf containing stations with residuals and variable
313

  
314
  num_cores_tmp <-num_cores
315
  lf_day_tiles  <- lf_mosaic #list of raster files by dates
316
  #data_df <- data_day_v # data.frame table/spdf containing stations with residuals and variable
317
  #df_tile_processed  #tiles processed during assessment usually by region
318
  #var_pred  #variable being modeled
319
  #if not list of models is provided generate one
320
  if(is.null(list_models)){
321
    list_models <- paste(var_pred,"~","1",sep=" ")
322
  }
323

  
324
  #use_autokrige #if TRUE use automap/gstat package
325
  #y_var_name  #"dailyTmax" #PARAM2
326
  #interpolation_method #c("gam_CAI") #PARAM3, need to select reg!!
327
  #date_processed #can be a monthly layer
328
  #num_cores #number of cores used
329
  #NA_flag_val 
330
  #file_format 
331
  out_dir_str <- out_dir
332
  out_suffix_str <- paste("data_day_s_",out_suffix,sep="") 
333
  days_to_process <- day_to_mosaic
334
  df_tile_processed$path_NEX <- as.character(df_tile_processed$path_NEX) 
335
  df_tile_processed$reg <- basename(dirname(df_tile_processed$path_NEX))
336

  
337
  ##By regions, selected earlier
338
  #for(k in 1:length(region_names)){
339
  df_tile_processed_reg <- subset(df_tile_processed,reg==region_selected)#use reg4
340
  #i<-1 #loop by days/date to process!!
341
  #test on the first day 
342
  list_param_create_accuracy_residuals_raster <- list(lf_day_tiles,data_df,df_tile_processed_reg,
343
                    var_pred,list_models,use_autokrige,y_var_name,interpolation_method,
344
                    days_to_process,num_cores_tmp,NA_flag_val,file_format,out_dir_str,
345
                    out_suffix_str) 
346
  names(list_param_create_accuracy_residuals_raster) <- c("lf_day_tiles","data_df","df_tile_processed_reg",
347
                    "var_pred","list_models","use_autokrige","y_var_name","interpolation_method",
348
                    "days_to_process","num_cores_tmp","NA_flag_val","file_format","out_dir_str",
349
                    "out_suffix_str") 
350

  
351
  list_create_accuracy_residuals_raster_obj <- lapply(1:length(day_to_mosaic),FUN=create_accuracy_residuals_raster,
352
                                  list_param=list_param_create_accuracy_residuals_raster)
353

  
354
  #undebug(create_accuracy_residuals_raster)
355
  #list_create_accuracy_residuals_raster_obj <- lapply(1:1,FUN=create_accuracy_residuals_raster,
356
  #                                list_param=list_param_create_accuracy_residuals_raster)
357

  
358
  #create_accuracy_residuals_raster_obj <- create_accuracy_metric_raster(1, list_param_create_accuracy_residuals_raster_obj)
359

  
360
  #note that three tiles did not produce a residuals surface!!! find out more later, join the output
361
  #to df_raste_tile to keep track of which one did not work...
362
  #lf_accuracy_residuals_raster <- as.character(unlist(lapply(1:length(list_create_accuracy_residuals_raster_obj),FUN=function(i,x){unlist(extract_from_list_obj(x[[i]]$list_pred_res_obj,"raster_name"))},x=list_create_accuracy_residuals_raster_obj))) 
363
  lf_accuracy_residuals_data_s_raster <- lapply(1:length(list_create_accuracy_residuals_raster_obj),FUN=function(i,x){as.character(unlist(extract_from_list_obj(x[[i]]$list_pred_res_obj,"raster_name")))},x=list_create_accuracy_residuals_raster_obj)
364

  
365
  ##took 31 minutes to generate the residuals maps for each tiles (28) for region 4
366
  
367 310
  ######################################################
368 311
  #### PART 2: GENETATE MOSAIC FOR LIST OF FILES #####
369 312
  #################################
......
418 361
    list_mosaic_obj[[i]] <- list(prediction=mosaic_edge_obj_prediction,accuracy=mosaic_edge_obj_accuracy)
419 362

  
420 363
    ### produce residuals mosaics
421
    #for now add data_day_s in the name!!
422 364
    mosaic_method <- "use_edge_weights" #this is distance from edge
423
    out_suffix_tmp <- paste(interpolation_method,"kriged_residuals","data_day_s",day_to_mosaic[i],out_suffix,sep="_")
365
    out_suffix_tmp <- paste(interpolation_method,"kriged_residuals",day_to_mosaic[i],out_suffix,sep="_")
424 366
    #lf_tmp<-list.files(pattern="*kriged_residuals.*.tif",full.names=T)
425 367
    lf_tmp <- lf_accuracy_residuals_raster[[i]]
426 368
    #lf_accuracy_residuals_raster[[i]]

Also available in: Unified diff