Project

General

Profile

« Previous | Next » 

Revision 71539f11

Added by Benoit Parmentier over 10 years ago

assessment NEX run part1: debugging extraction of training and testing info function

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part1.R
5 5
#Part 1 create summary tables and inputs for figure in part 2 and part 3.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 05/29/2014            
8
#MODIFIED ON: 06/19/2014            
9 9
#Version: 3
10 10
#PROJECT: Environmental Layers project  
11 11
#TO DO:
......
232 232
    
233 233
    pred_data_day_info$method_interp <- rep(method_interp,nrow(pred_data_day_info)) 
234 234
    pred_data_day_info$var_interp <- rep(var_interp,nrow(pred_data_day_info)) 
235
    pred_data_day_info$tile_id <- rep(tile_id,nrow(pred_data_day_info)) 
236

  
237
    #pred_data_day_s_info$method_interp <- rep(method_interp,nrow(pred_data_day_s_info)) 
238
    #pred_data_day_s_info$var_interp <- rep(var_interp,nrow(pred_data_day_s_info)) 
239
    #pred_data_day_s_info$tile_id <- rep(tile_id,nrow(pred_data_day_s_info)) 
240
    #pred_data_day_v_info <- do.call(rbind,list_pred_data_day_v_info)
241
    #pred_data_day_v_info$method_interp <- rep(method_interp,nrow(pred_data_day_v_info)) 
242
    #pred_data_day_v_info$var_interp <- rep(var_interp,nrow(pred_data_day_v_info)) 
243
    #pred_data_day_v_info$tile_id <- rep(tile_id,nrow(pred_data_day_v_info)) 
244
                                      
235
    pred_data_day_info$tile_id <- rep(tile_id,nrow(pred_data_day_info))                                       
245 236
  }
246 237
  
247 238
  if(use_month==TRUE){
......
265 256
    pred_data_month_info$method_interp <- rep(method_interp,nrow(pred_data_month_info)) 
266 257
    pred_data_month_info$var_interp <- rep(var_interp,nrow(pred_data_month_info)) 
267 258
    pred_data_month_info$tile_id <- rep(tile_id,nrow(pred_data_month_info)) 
268

  
269
    #pred_data_month_s_info$method_interp <- rep(method_interp,nrow(pred_data_month_s_info)) 
270
    #pred_data_month_s_info$var_interp <- rep(var_interp,nrow(pred_data_month_s_info)) 
271
    #pred_data_month_s_info$tile_id <- rep(tile_id,nrow(pred_data_month_s_info)) 
272
    #pred_data_month_v_info$method_interp <- rep(method_interp,nrow(pred_data_month_v_info)) 
273
    #pred_data_month_v_info$var_interp <- rep(var_interp,nrow(pred_data_month_v_info)) 
274
    #pred_data_month_v_info$tile_id <- rep(tile_id,nrow(pred_data_month_v_info)) 
275

  
276 259
  }    
277 260
    
278 261
  if(use_month==FALSE){
......
320 303

  
321 304
#in_dir1 <- "/data/project/layers/commons/NEX_data/test_run1_03232014/output" #On Atlas
322 305
in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/" #On NEX
323

  
324
#in_dir_list <- list.dirs(path=in_dir1) #get the list of directories with resutls by 10x10 degree tiles
306
#/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/finished.txt
307
in_dir_list <- list.dirs(path=in_dir1,recursive=FALSE) #get the list of directories with resutls by 10x10 degree tiles
325 308
#use subset for now:
326 309

  
327
in_dir_list <- c(
328
"/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/40.0_-120.0/",
329
"/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/35.0_-115.0/")
310
#in_dir_list <- c(
311
#"/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/40.0_-120.0/",
312
#"/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/35.0_-115.0/")
330 313
  
331 314
#in_dir_list <- file.path(in_dir1,read.table(file.path(in_dir1,"processed.txt"))$V1)
332 315
#in_dir_list <- as.list(in_dir_list[-1])
333 316
#in_dir_list <- in_dir_list[grep("bak",basename(basename(in_dir_list)),invert=TRUE)] #the first one is the in_dir1
334 317
#in_dir_shp <- in_dir_list[grep("shapefiles",basename(in_dir_list),invert=FALSE)] #select directory with shapefiles...
335 318
in_dir_shp <- "/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/subset/shapefiles/"
319
in_dir_shp_list <- list.files(in_dir_shp,".shp")
320

  
336 321
#in_dir_list <- in_dir_list[grep("shapefiles",basename(in_dir_list),invert=TRUE)] 
337 322
#the first one is the in_dir1
338 323
# the last directory contains shapefiles 
339 324
y_var_name <- "dailyTmax"
340 325
interpolation_method <- c("gam_CAI")
341
out_prefix<-"run3_global_analyses_05292014"
326
out_prefix<-"run3_global_analyses_06192014"
342 327

  
343 328
#out_dir<-"/data/project/layers/commons/NEX_data/" #On NCEAS Atlas
344 329
out_dir <- "/nobackup/bparmen1/" #on NEX
......
366 351

  
367 352
##raster_prediction object : contains testing and training stations with RMSE and model object
368 353

  
354
#l_shp <- lapply(1:length(in_dir_shp_list),FUN=function(i){paste(strsplit(in_dir_shp_list[i],"_")[[1]][2:3],collapse="_")})
355
#match(l_shp,in_dir_list)
356
#in_dir_list[match(in_dir_list,l_shp]
357

  
369 358
list_raster_obj_files <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="^raster_prediction_obj.*.RData",full.names=T)})
370 359
basename(dirname(list_raster_obj_files[[1]]))
371 360
list_names_tile_coord <- lapply(list_raster_obj_files,FUN=function(x){basename(dirname(x))})
......
406 395
#### Table 1: Average accuracy metrics
407 396

  
408 397
#can use a maximum of 6 cores on the NEX Bridge
398
#summary_metrics_v_list <- mclapply(list_raster_obj_files[5:6],FUN=function(x){try( x<- load_obj(x)); try(x[["summary_metrics_v"]]$avg)},mc.preschedule=FALSE,mc.cores = 2)                           
399

  
409 400
summary_metrics_v_list <- mclapply(list_raster_obj_files,FUN=function(x){try( x<- load_obj(x)); try(x[["summary_metrics_v"]]$avg)},mc.preschedule=FALSE,mc.cores = 6)                           
410 401
names(summary_metrics_v_list) <- list_names_tile_id
411 402

  
......
499 490
pred_pattern_str <- paste(".*predicted_mod",mod_id,"_0_1.*",sep="")
500 491
#,".*predicted_mod2_0_1.*",".*predicted_mod3_0_1.*",".*predicted_mod_kr_0_1.*")
501 492
#l_pattern_models <- lapply(c(".*predicted_mod1_0_1.*",".*predicted_mod2_0_1.*",".*predicted_mod3_0_1.*",".*predicted_mod_kr_0_1.*"),
502
                           FUN=function(x){paste(x,dates_l,".*.tif",sep="")})
493
#                           FUN=function(x){paste(x,dates_l,".*.tif",sep="")})
503 494
l_pattern_models <- lapply(pred_pattern_str,
504 495
                           FUN=function(x){paste(x,dates_l,".*.tif",sep="")})
505 496
#gam_CAI_dailyTmax_predicted_mod_kr_0_1_20101231_30_145.0_-120.0.tif
......
510 501
lf_pred_tif <- vector("list",length=length(l_pattern_models)) #number of models is 3
511 502
for (i in 1:length(l_pattern_models)){
512 503
  l_pattern_mod <- l_pattern_models[[i]] #365 dates
513
  list_tif_files_dates <-lapply(1:length(l_pattern_mod),FUN=list_tif_fun, 
514
                              in_dir_list=in_dir_list,pattern_str=l_pattern_models[[i]])
504
  #list_tif_files_dates <-lapply(1:length(l_pattern_mod),FUN=list_tif_fun, 
505
  #                            in_dir_list=in_dir_list,pattern_str=l_pattern_models[[i]])
506
  list_tif_files_dates <-mclapply(1:length(l_pattern_mod),FUN=list_tif_fun, 
507
                              in_dir_list=in_dir_list,pattern_str=l_pattern_models[[i]],mc.preschedule=FALSE,mc.cores = 6)
508
  
515 509
  lf_pred_tif[[i]] <- list_tif_files_dates
516 510
}
517 511

  
......
523 517
lf_clim_tif <- vector("list",length=nb_mod) #number of models is 3
524 518
for (i in 1:length(l_pattern_models)){
525 519
  l_pattern_mod <- l_pattern_models[[i]] #12 dates
526
  list_tif_files_dates <- lapply(1:length(l_pattern_mod),FUN=list_tif_fun, 
527
                              in_dir_list=in_dir_list,pattern_str=l_pattern_models[[i]])
520
  list_tif_files_dates <- mclapply(1:length(l_pattern_mod),FUN=list_tif_fun, 
521
                              in_dir_list=in_dir_list,pattern_str=l_pattern_models[[i]],mc.preschedule=FALSE,mc.cores = 6)
528 522
  lf_clim_tif[[i]] <- list_tif_files_dates
529 523
}
530 524

  
......
538 532
lf_delta_tif <- vector("list",length=nb_mod) #number of models is 3
539 533
for (i in 1:length(l_pattern_models)){
540 534
  l_pattern_mod <- l_pattern_models[[i]]
541
  list_tif_files_dates <- lapply(1:length(l_pattern_mod),FUN=list_tif_fun, 
542
                              in_dir_list=in_dir_list,pattern_str=l_pattern_models[[i]])
535
  list_tif_files_dates <- mclapply(1:length(l_pattern_mod),FUN=list_tif_fun, 
536
                              in_dir_list=in_dir_list,pattern_str=l_pattern_models[[i]],mc.preschedule=FALSE,mc.cores = 6)
543 537
  lf_delta_tif[[i]] <- list_tif_files_dates
544 538
}
545 539

  
......
703 697
# use_day=TRUE
704 698
# use_month=TRUE
705 699
# 
700

  
706 701
# list_param_training_testing_info <- list(list_raster_obj_files,use_month,use_day,list_names_tile_id)
707 702
# names(list_param_training_testing_info) <- c("list_raster_obj_files","use_month","use_day","list_names_tile_id")
708 703
# 
......
719 714
#in_dir_shp <- "/nobackupp4/aguzman4/climateLayers/output4/subset/shapefiles/"
720 715

  
721 716
#get shape files for the region being assessed:
722
list_shp_global_tiles_files <- list.files(path=in_dir_shp,pattern="*.shp")
717
#list_shp_global_tiles_files <- list.files(path=in_dir_shp,pattern="*.shp")
718
#l_shp<-lapply(1:length(in_dir_shp_list),FUN=function(i){paste(strsplit(in_dir_shp_list[i],"_")[[1]][2:3],collapse="_")})
719
list_shp_global_tiles_files <- l_shp
723 720
pattern_str <- basename(in_dir_list)
721
#list_shp_global_tiles_files
724 722
list_shp_reg_files <- lapply(pattern_str,function(x){list_shp_global_tiles_files[grep(x,invert=FALSE,list_shp_global_tiles_files)]}) #select directory with shapefiles...
725 723
df_tile_processed$shp_files <- unlist(list_shp_reg_files)
726 724

  
......
797 795
#copy shapefiles defining regions
798 796
Atlas_dir <- file.path("/data/project/layers/commons/NEX_data/",basename(out_dir),"output/subset/shapefiles")
799 797
Atlas_hostname <- "parmentier@atlas.nceas.ucsb.edu"
800
lf_cp_shp <- list.files(in_dir_shp, ".shp",full.names=T)
798
lf_cp_shp <- list.files(in_dir_shp,full.names=T) #get all the files...
799
#lf_cp_shp <- list.files(in_dir_shp, ".shp",full.names=T)
800

  
801 801
filenames_NEX <- paste(lf_cp_shp,collapse=" ")  #copy raster prediction object
802 802
cmd_str <- paste("scp -p",filenames_NEX,paste(Atlas_hostname,Atlas_dir,sep=":"), sep=" ")
803 803
system(cmd_str)
......
811 811
cmd_str <- paste("scp -p",filenames_NEX,paste(Atlas_hostname,Atlas_dir,sep=":"), sep=" ")
812 812
system(cmd_str)
813 813

  
814
system("scp -p ./*.txt parmentier@atlas.nceas.ucsb.edu:/data/project/layers/commons/NEX_data/output_run2_global_analyses_05122014")
815
system("scp -p ./*.txt ./*.tif parmentier@atlas.nceas.ucsb.edu:/data/project/layers/commons/NEX_data/output_run2_global_analyses_05122014")
814
#system("scp -p ./*.txt parmentier@atlas.nceas.ucsb.edu:/data/project/layers/commons/NEX_data/output_run2_global_analyses_05122014")
815
#system("scp -p ./*.txt ./*.tif parmentier@atlas.nceas.ucsb.edu:/data/project/layers/commons/NEX_data/output_run2_global_analyses_05122014")
816 816

  
817 817
system("scp -p /nobackupp4/aguzman4/climateLayers/output4/subset/shapefiles/* parmentier@atlas.nceas.ucsb.edu:/data/project/layers/commons/NEX_data/shapefiles")
818 818

  

Also available in: Unified diff