Revision 7363c085
Added by Benoit Parmentier over 12 years ago
climate/research/oregon/interpolation/fusion_gam_reg.R | ||
---|---|---|
1 |
################## CLIMATE INTERPOLATION FUSION METHOD ####################################### |
|
2 |
############################ Merging LST and station data ########################################## |
|
3 |
#This script interpolates tmax values using MODIS LST and GHCND station data # |
|
4 |
#interpolation area. It requires the text file of stations and a shape file of the study area. # |
|
5 |
#Note that the projection for both GHCND and study area is lonlat WGS84. # |
|
6 |
#AUTHOR: Brian McGill # |
|
7 |
#DATE: 06/19/212 # |
|
8 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363-- # |
|
9 |
################################################################################################### |
|
10 |
|
|
11 |
###Loading R library and packages |
|
12 |
library(gtools) # loading some useful tools |
|
13 |
library(mgcv) # GAM package by Simon Wood |
|
14 |
library(sp) # Spatial pacakge with class definition by Bivand et al. |
|
15 |
library(spdep) # Spatial pacakge with methods and spatial stat. by Bivand et al. |
|
16 |
library(rgdal) # GDAL wrapper for R, spatial utilities |
|
17 |
library(gstat) # Kriging and co-kriging by Pebesma et al. |
|
18 |
library(fields) # NCAR Spatial Interpolation methods such as kriging, splines |
|
19 |
library(raster) # Hijmans et al. package for raster processing |
|
20 |
### Parameters and argument |
|
21 |
|
|
22 |
infile1<- "ghcn_or_tmax_covariates_06262012_OR83M.shp" #GHCN shapefile containing variables for modeling 2010 |
|
23 |
#infile2<-"list_10_dates_04212012.txt" #List of 10 dates for the regression |
|
24 |
infile2<-"list_365_dates_04212012.txt" |
|
25 |
infile3<-"LST_dates_var_names.txt" #LST dates name |
|
26 |
infile4<-"models_interpolation_05142012.txt" #Interpolation model names |
|
27 |
infile5<-"mean_day244_rescaled.rst" #Raster or grid for the locations of predictions |
|
28 |
|
|
29 |
#path<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations" |
|
30 |
path<-"M:/Data/IPLANT_project/data_Oregon_stations" #Locations on Atlas |
|
31 |
|
|
32 |
#Station location of the study area |
|
33 |
stat_loc<-read.table(paste(path,"/","location_study_area_OR_0602012.txt",sep=""),sep=",", header=TRUE) |
|
34 |
#GHCN Database for 1980-2010 for study area (OR) |
|
35 |
data3<-read.table(paste(path,"/","ghcn_data_TMAXy1980_2010_OR_0602012.txt",sep=""),sep=",", header=TRUE) |
|
36 |
|
|
37 |
prop<-0.3 #Proportion of testing retained for validation |
|
38 |
#prop<-0.25 |
|
39 |
seed_number<- 100 #Seed number for random sampling |
|
40 |
out_prefix<-"_07022012_10d_fusion14" #User defined output prefix |
|
41 |
setwd(path) |
|
42 |
############ START OF THE SCRIPT ################## |
|
43 |
|
|
44 |
# |
|
45 |
### Step 0/Step 6 in Brian's code...preparing year 2010 data for modeling |
|
46 |
# |
|
47 |
|
|
48 |
|
|
49 |
###Reading the station data and setting up for models' comparison |
|
50 |
filename<-sub(".shp","",infile1) #Removing the extension from file. |
|
51 |
ghcn<-readOGR(".", filename) #reading shapefile |
|
52 |
|
|
53 |
CRS<-proj4string(ghcn) #Storing projection information (ellipsoid, datum,etc.) |
|
54 |
|
|
55 |
mean_LST<- readGDAL(infile5) #Reading the whole raster in memory. This provides a grid for kriging |
|
56 |
proj4string(mean_LST)<-CRS #Assigning coordinate information to prediction grid. |
|
57 |
|
|
58 |
ghcn = transform(ghcn,Northness = cos(ASPECT*pi/180)) #Adding a variable to the dataframe |
|
59 |
#ghcn = transform(ghcn,Northness = cos(ASPECT)) #Adding a variable to the dataframe |
|
60 |
#ghcn = transform(ghcn,Eastness = sin(ASPECT)) #adding variable to the dataframe. |
|
61 |
ghcn = transform(ghcn,Eastness = sin(ASPECT*pi/180)) #adding variable to the dataframe. |
|
62 |
#ghcn = transform(ghcn,Northness_w = sin(slope)*cos(ASPECT)) #Adding a variable to the dataframe |
|
63 |
#ghcn = transform(ghcn,Eastness_w = sin(slope)*sin(ASPECT)) #adding variable to the dataframe. |
|
64 |
ghcn = transform(ghcn,Northness_w = sin(slope*pi/180)*cos(ASPECT*pi/180)) #Adding a variable to the dataframe |
|
65 |
ghcn = transform(ghcn,Eastness_w = sin(slope*pi/180)*sin(ASPECT*pi/180)) #adding variable to the dataframe. |
|
66 |
|
|
67 |
#Remove NA for LC and CANHEIGHT |
|
68 |
ghcn$LC1[is.na(ghcn$LC1)]<-0 |
|
69 |
ghcn$LC3[is.na(ghcn$LC3)]<-0 |
|
70 |
ghcn$CANHEIGHT[is.na(ghcn$CANHEIGHT)]<-0 |
|
71 |
detach(ghcn) |
|
72 |
|
|
73 |
set.seed(seed_number) #Using a seed number allow results based on random number to be compared... |
|
74 |
|
|
75 |
dates <-readLines(paste(path,"/",infile2, sep="")) |
|
76 |
LST_dates <-readLines(paste(path,"/",infile3, sep="")) |
|
77 |
models <-readLines(paste(path,"/",infile4, sep="")) |
|
78 |
|
|
79 |
#Model assessment: specific diagnostic/metrics for GAM |
|
80 |
results_AIC<- matrix(1,length(dates),length(models)+3) |
|
81 |
results_GCV<- matrix(1,length(dates),length(models)+3) |
|
82 |
results_DEV<- matrix(1,length(dates),length(models)+3) |
|
83 |
results_RMSE_f<- matrix(1,length(dates),length(models)+3) |
|
84 |
|
|
85 |
#Model assessment: general diagnostic/metrics |
|
86 |
results_RMSE <- matrix(1,length(dates),length(models)+4) |
|
87 |
results_MAE <- matrix(1,length(dates),length(models)+4) |
|
88 |
results_ME <- matrix(1,length(dates),length(models)+4) #There are 8+1 models |
|
89 |
results_R2 <- matrix(1,length(dates),length(models)+4) #Coef. of determination for the validation dataset |
|
90 |
results_RMSE_f<- matrix(1,length(dates),length(models)+4) #RMSE fit, RMSE for the training dataset |
|
91 |
results_RMSE_f_kr<- matrix(1,length(dates),length(models)+4) |
|
92 |
|
|
93 |
# #Tracking relationship between LST AND LC |
|
94 |
# cor_LST_LC1<-matrix(1,10,1) #correlation LST-LC1 |
|
95 |
# cor_LST_LC3<-matrix(1,10,1) #correlation LST-LC3 |
|
96 |
# cor_LST_tmax<-matrix(1,10,1) #correlation LST-tmax |
|
97 |
|
|
98 |
#Screening for bad values: value is tmax in this case |
|
99 |
#ghcn$value<-as.numeric(ghcn$value) |
|
100 |
ghcn_all<-ghcn |
|
101 |
ghcn_test<-subset(ghcn,ghcn$value>-150 & ghcn$value<400) |
|
102 |
ghcn_test2<-subset(ghcn_test,ghcn_test$ELEV_SRTM>0) |
|
103 |
ghcn<-ghcn_test2 |
|
104 |
#coords<- ghcn[,c('x_OR83M','y_OR83M')] |
|
105 |
|
|
106 |
month_var<-c("mm_01","mm_02","mm_03","mm_04","mm_05","mm_06","mm_07","mm_08","mm_09", "mm_10", "mm_11", "mm_12") |
|
107 |
ghcn.subsets <-lapply(dates, function(d) subset(ghcn, date==d)) #this creates a list of 10 or 365 subsets dataset based on dates |
|
108 |
|
|
109 |
|
|
110 |
#Start loop here... |
|
111 |
|
|
112 |
## looping through the dates...this is the main part of the code |
|
113 |
#i=1 #for debugging |
|
114 |
#j=1 #for debugging |
|
115 |
for(i in 1:length(dates)){ # start of the for loop #1 |
|
116 |
|
|
117 |
date<-strptime(dates[i], "%Y%m%d") # interpolation date being processed |
|
118 |
month<-strftime(date, "%m") # current month of the date being processed |
|
119 |
LST_month<-paste("mm_",month,sep="") # name of LST month to be matched |
|
120 |
|
|
121 |
###Regression part 1: Creating a validation dataset by creating training and testing datasets |
|
122 |
|
|
123 |
mod_LST <-ghcn.subsets[[i]][,match(LST_month, names(ghcn.subsets[[i]]))] #Match interpolation date and monthly LST average |
|
124 |
ghcn.subsets[[i]] = transform(ghcn.subsets[[i]],LST = mod_LST) #Add the variable LST to the subset dataset |
|
125 |
n<-nrow(ghcn.subsets[[i]]) |
|
126 |
ns<-n-round(n*prop) #Create a sample from the data frame with 70% of the rows |
|
127 |
nv<-n-ns #create a sample for validation with prop of the rows |
|
128 |
ind.training <- sample(nrow(ghcn.subsets[[i]]), size=ns, replace=FALSE) #This selects the index position for 70% of the rows taken randomly |
|
129 |
ind.testing <- setdiff(1:nrow(ghcn.subsets[[i]]), ind.training) |
|
130 |
data_s <- ghcn.subsets[[i]][ind.training, ] #Training dataset currently used in the modeling |
|
131 |
data_v <- ghcn.subsets[[i]][ind.testing, ] #Testing/validation dataset |
|
132 |
|
|
133 |
#i=1 |
|
134 |
date_proc<-dates[i] |
|
135 |
date_proc<-strptime(dates[i], "%Y%m%d") # interpolation date being processed |
|
136 |
mo<-as.integer(strftime(date_proc, "%m")) # current month of the date being processed |
|
137 |
day<-as.integer(strftime(date_proc, "%d")) |
|
138 |
year<-as.integer(strftime(date_proc, "%Y")) |
|
139 |
|
|
140 |
#setup |
|
141 |
|
|
142 |
#mo=9 #Commented out by Benoit on June 14 |
|
143 |
#day=2 |
|
144 |
#year=2010 |
|
145 |
datelabel=format(ISOdate(year,mo,day),"%b %d, %Y") |
|
146 |
|
|
147 |
########### |
|
148 |
# STEP 1 - 10 year monthly averages |
|
149 |
########### |
|
150 |
|
|
151 |
#library(raster) |
|
152 |
#old<-getwd() |
|
153 |
#setwd("c:/data/benoit/data_Oregon_stations_Brian_04242012") |
|
154 |
#l=list.files(pattern="mean_month.*rescaled.tif") |
|
155 |
l=list.files(pattern="mean_month.*rescaled.rst") |
|
156 |
molst<-stack(l) #Creating a raster stack... |
|
157 |
#setwd(old) |
|
158 |
molst=molst-273.16 #K->C |
|
159 |
idx <- seq(as.Date('2010-01-15'), as.Date('2010-12-15'), 'month') |
|
160 |
molst <- setZ(molst, idx) |
|
161 |
layerNames(molst) <- month.abb |
|
162 |
themolst<-raster(molst,mo) #current month being processed saved in a raster image |
|
163 |
plot(themolst) |
|
164 |
|
|
165 |
########### |
|
166 |
# STEP 2 - Weather station means across same days: Monthly mean calculation |
|
167 |
########### |
|
168 |
|
|
169 |
# ??? which years & what quality flags??? |
|
170 |
#select ghcn.id, lat,lon, elev, month, avg(value/10) as "TMax", count(*) as "NumDays" from ghcn, stations where ghcn.id in (select id from stations where state=='OR') and ghcn.id==stations.id and value<>-9999 and year>=2000 and element=='TMAX' group by stations.id, month;select ghcn.id, lat,lon, elev, month, avg(value/10) as "TMax", count(*) as "NumDays" from ghcn, stations where ghcn.id in (select id from stations where state=='OR') and ghcn.id==stations.id and value<>-9999 and year>=2000 and element=='TMAX' group by stations.id, month; |
|
171 |
#below table from above SQL query |
|
172 |
#dst<-read.csv('/data/benoit/data_oregon_stations_brian_04242012/station_means.csv',h=T) |
|
173 |
|
|
174 |
##Added by Benoit ###### |
|
175 |
date1<-ISOdate(data3$year,data3$month,data3$day) #Creating a date object from 3 separate column |
|
176 |
date2<-as.POSIXlt(as.Date(date1)) |
|
177 |
data3$date<-date2 |
|
178 |
d<-subset(data3,year>=2000 & mflag=="0" ) #Selecting dataset 2000-2010 with good quality |
|
179 |
#May need some screeing??? i.e. range of temp and elevation... |
|
180 |
d1<-aggregate(value~station+month, data=d, mean) #Calculate monthly mean for every station in OR |
|
181 |
id<-as.data.frame(unique(d1$station)) #Unique station in OR for year 2000-2010 |
|
182 |
|
|
183 |
dst<-merge(d1, stat_loc, by.x="station", by.y="STAT_ID") #Inner join all columns are retained |
|
184 |
|
|
185 |
#This allows to change only one name of the data.frame |
|
186 |
pos<-match("value",names(dst)) #Find column with name "value" |
|
187 |
names(dst)[pos]<-c("TMax") |
|
188 |
dst$TMax<-dst$TMax/10 #TMax is the average max temp for months |
|
189 |
#dstjan=dst[dst$month==9,] #dst contains the monthly averages for tmax for every station over 2000-2010 |
|
190 |
############## |
|
191 |
|
|
192 |
modst=dst[dst$month==mo,] #Subsetting dataset for the relevnat month of the date being processed |
|
193 |
|
|
194 |
########## |
|
195 |
# STEP 3 - get LST at stations |
|
196 |
########## |
|
197 |
|
|
198 |
sta_lola=modst[,c("lon","lat")] #Extracting locations of stations for the current month... |
|
199 |
library(rgdal) |
|
200 |
proj_str="+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
201 |
lookup<-function(r,lat,lon) { |
|
202 |
xy<-project(cbind(lon,lat),proj_str); |
|
203 |
cidx<-cellFromXY(r,xy); |
|
204 |
return(r[cidx]) |
|
205 |
} |
|
206 |
sta_tmax_from_lst=lookup(themolst,sta_lola$lat,sta_lola$lon) #Extracted values of LST for the stations |
|
207 |
|
|
208 |
######### |
|
209 |
# STEP 4 - bias at stations |
|
210 |
######### |
|
211 |
|
|
212 |
sta_bias=sta_tmax_from_lst-modst$TMax; #That is the difference between the monthly LST mean and monthly station mean |
|
213 |
#Added by Benoit |
|
214 |
modst$LSTD_bias<-sta_bias #Adding bias to data frame modst containning the monthly average for 10 years |
|
215 |
|
|
216 |
bias_xy=project(as.matrix(sta_lola),proj_str) |
|
217 |
# windows() |
|
218 |
X11() |
|
219 |
plot(modst$TMax,sta_tmax_from_lst,xlab="Station mo Tmax",ylab="LST mo Tmax",main=paste("LST vs TMax for",datelabel,sep=" ")) |
|
220 |
abline(0,1) |
|
221 |
savePlot(paste("LST_TMax_scatterplot_",dates[i],out_prefix,".png", sep=""), type="png") |
|
222 |
dev.off() |
|
223 |
|
|
224 |
######## |
|
225 |
# STEP 5 - interpolate bias |
|
226 |
######## |
|
227 |
|
|
228 |
# ?? include covariates like elev, distance to coast, cloud frequency, tree height |
|
229 |
#library(fields) |
|
230 |
#windows() |
|
231 |
quilt.plot(sta_lola,sta_bias,main="Bias at stations",asp=1) |
|
232 |
US(add=T,col="magenta",lwd=2) |
|
233 |
#fitbias<-Tps(bias_xy,sta_bias) #use TPS or krige |
|
234 |
fitbias<-Krig(bias_xy,sta_bias,theta=1e5) #use TPS or krige |
|
235 |
#The output is a krig object using fields |
|
236 |
# Creating plot of bias surface and saving it |
|
237 |
X11() |
|
238 |
datelabel2=format(ISOdate(year,mo,day),"%B ") #added by Benoit, label |
|
239 |
surface(fitbias,col=rev(terrain.colors(100)),asp=1,main=paste("Interpolated bias for",datelabel2,sep=" ")) |
|
240 |
savePlot(paste("Bias_surface_LST_TMax_",dates[i],out_prefix,".png", sep=""), type="png") |
|
241 |
dev.off() |
|
242 |
|
|
243 |
#US(add=T,col="magenta",lwd=2) |
|
244 |
|
|
245 |
########## |
|
246 |
# STEP 6 - return to daily station data & calcualate delta=daily T-monthly T from stations |
|
247 |
########## |
|
248 |
|
|
249 |
#Commmented out by Benoit 06/14 |
|
250 |
# library(RSQLite) |
|
251 |
# m<-dbDriver("SQLite") |
|
252 |
# con<-dbConnect(m,dbname='c:/data/ghcn_tmintmax.db') |
|
253 |
# querystr=paste("select ghcn.id, value as 'dailyTmax' from ghcn where ghcn.id in (select id from stations where state=='OR') and value<>-9999", |
|
254 |
# "and year==",year,"and month==",mo,"and day==",day, |
|
255 |
# "and element=='TMAX' ") |
|
256 |
# rs<-dbSendQuery(con,querystr) |
|
257 |
# d<-fetch(rs,n=-1) |
|
258 |
# dbClearResult(rs) |
|
259 |
# dbDisconnect(con) |
|
260 |
# |
|
261 |
# d$dailyTmax=d$dailyTmax/10 #stored as 1/10 degree C to allow integer storage |
|
262 |
# dmoday=merge(modst,d,by="id") |
|
263 |
##########################Commented out by Benoit |
|
264 |
|
|
265 |
#added by Benoit |
|
266 |
x<-data_v |
|
267 |
d<-data_s |
|
268 |
|
|
269 |
pos<-match("value",names(d)) #Find column with name "value" |
|
270 |
names(d)[pos]<-c("dailyTmax") |
|
271 |
names(x)[pos]<-c("dailyTmax") |
|
272 |
d$dailyTmax=(as.numeric(d$dailyTmax))/10 #stored as 1/10 degree C to allow integer storage |
|
273 |
x$dailyTmax=(as.numeric(x$dailyTmax))/10 #stored as 1/10 degree C to allow integer storage |
|
274 |
pos<-match("station",names(d)) #Find column with name "value" |
|
275 |
names(d)[pos]<-c("id") |
|
276 |
names(x)[pos]<-c("id") |
|
277 |
names(modst)[1]<-c("id") #modst contains the average tmax per month for every stations... |
|
278 |
dmoday=merge(modst,d,by="id") #LOOSING DATA HERE!!! from 113 t0 103 |
|
279 |
xmoday=merge(modst,x,by="id") #LOOSING DATA HERE!!! from 48 t0 43 |
|
280 |
names(dmoday)[4]<-c("lat") |
|
281 |
names(dmoday)[5]<-c("lon") #dmoday contains all the the information: BIAS, monn |
|
282 |
names(xmoday)[4]<-c("lat") |
|
283 |
names(xmoday)[5]<-c("lon") #dmoday contains all the the information: BIAS, monn |
|
284 |
|
|
285 |
data_v<-xmoday |
|
286 |
|
|
287 |
|
|
288 |
# windows() |
|
289 |
X11() |
|
290 |
plot(dailyTmax~TMax,data=dmoday,xlab="Mo Tmax",ylab=paste("Daily for",datelabel),main="across stations in OR") |
|
291 |
savePlot(paste("Daily_tmax_monthly_TMax_scatterplot_",dates[i],out_prefix,".png", sep=""), type="png") |
|
292 |
dev.off() |
|
293 |
########## |
|
294 |
# STEP 7 - interpolate delta across space |
|
295 |
########## |
|
296 |
|
|
297 |
daily_sta_lola=dmoday[,c("lon","lat")] #could be same as before but why assume merge does this - assume not |
|
298 |
daily_sta_xy=project(as.matrix(daily_sta_lola),proj_str) |
|
299 |
daily_delta=dmoday$dailyTmax-dmoday$TMax |
|
300 |
#windows() |
|
301 |
quilt.plot(daily_sta_lola,daily_delta,asp=1,main="Station delta for Jan 15") |
|
302 |
US(add=T,col="magenta",lwd=2) |
|
303 |
#fitdelta<-Tps(daily_sta_xy,daily_delta) #use TPS or krige |
|
304 |
fitdelta<-Krig(daily_sta_xy,daily_delta,theta=1e5) #use TPS or krige |
|
305 |
#Kriging using fields package |
|
306 |
|
|
307 |
# Creating plot of bias surface and saving it |
|
308 |
X11() |
|
309 |
surface(fitdelta,col=rev(terrain.colors(100)),asp=1,main=paste("Interpolated delta for",datelabel,sep=" ")) |
|
310 |
savePlot(paste("Delta_surface_LST_TMax_",dates[i],out_prefix,".png", sep=""), type="png") |
|
311 |
dev.off() |
|
312 |
#US(add=T,col="magenta",lwd=2) |
|
313 |
# |
|
314 |
|
|
315 |
#### Added by Benoit on 06/19 |
|
316 |
data_s<-dmoday #put the |
|
317 |
data_s$daily_delta<-daily_delta |
|
318 |
#data_s$y_var<-daily_delta #y_var is the variable currently being modeled, may be better with BIAS!! |
|
319 |
data_s$y_var<-data_s$dailyTmax |
|
320 |
#data_s$y_var<-(data_s$dailyTmax)*10 |
|
321 |
#Model and response variable can be changed without affecting the script |
|
322 |
|
|
323 |
mod1<- gam(y_var~ s(lat) + s (lon) + s (ELEV_SRTM), data=data_s) |
|
324 |
mod2<- gam(y_var~ s(lat,lon)+ s(ELEV_SRTM), data=data_s) #modified nesting....from 3 to 2 |
|
325 |
mod3<- gam(y_var~ s(lat) + s (lon) + s (ELEV_SRTM) + s (Northness)+ s (Eastness) + s(DISTOC), data=data_s) |
|
326 |
mod4<- gam(y_var~ s(lat) + s (lon) + s(ELEV_SRTM) + s(Northness) + s (Eastness) + s(DISTOC) + s(LST), data=data_s) |
|
327 |
mod5<- gam(y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST), data=data_s) |
|
328 |
mod6<- gam(y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST)+s(LC1), data=data_s) |
|
329 |
mod7<- gam(y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST)+s(LC3), data=data_s) |
|
330 |
mod8<- gam(y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST) + s(LC1), data=data_s) |
|
331 |
#### Added by Benoit ends |
|
332 |
|
|
333 |
######### |
|
334 |
# STEP 8 - assemble final answer - T=LST+Bias(interpolated)+delta(interpolated) |
|
335 |
######### |
|
336 |
|
|
337 |
bias_rast=interpolate(themolst,fitbias) #interpolation using function from raster package |
|
338 |
#themolst is raster layer, fitbias is "Krig" object from bias surface |
|
339 |
plot(bias_rast,main="Raster bias") #This not displaying... |
|
340 |
|
|
341 |
daily_delta_rast=interpolate(themolst,fitdelta) #Interpolation of the bias surface... |
|
342 |
|
|
343 |
plot(daily_delta_rast,main="Raster Daily Delta") |
|
344 |
|
|
345 |
tmax_predicted=themolst+daily_delta_rast-bias_rast #Final surface?? but daily_rst |
|
346 |
#tmax_predicted=themolst+daily_delta_rast+bias_rast #Added by Benoit, why is it -bias_rast |
|
347 |
plot(tmax_predicted,main="Predicted daily") |
|
348 |
|
|
349 |
######## |
|
350 |
# check: assessment of results: validation |
|
351 |
######## |
|
352 |
RMSE<-function(x,y) {return(mean((x-y)^2)^0.5)} |
|
353 |
|
|
354 |
#FIT ASSESSMENT |
|
355 |
sta_pred_data_s=lookup(tmax_predicted,data_s$lat,data_s$lon) |
|
356 |
rmse_fit=RMSE(sta_pred_data_s,data_s$dailyTmax) |
|
357 |
|
|
358 |
sta_pred=lookup(tmax_predicted,data_v$lat,data_v$lon) |
|
359 |
#sta_pred=lookup(tmax_predicted,daily_sta_lola$lat,daily_sta_lola$lon) |
|
360 |
#rmse=RMSE(sta_pred,dmoday$dailyTmax) |
|
361 |
#pos<-match("value",names(data_v)) #Find column with name "value" |
|
362 |
#names(data_v)[pos]<-c("tmax") |
|
363 |
#tmax<-data_v$tmax/ |
|
364 |
tmax<-data_v$dailyTmax |
|
365 |
rmse=RMSE(sta_pred,tmax) |
|
366 |
#plot(sta_pred~dmoday$dailyTmax,xlab=paste("Actual daily for",datelabel),ylab="Pred daily",main=paste("RMSE=",rmse)) |
|
367 |
X11() |
|
368 |
plot(sta_pred~tmax,xlab=paste("Actual daily for",datelabel),ylab="Pred daily",main=paste("RMSE=",rmse)) |
|
369 |
abline(0,1) |
|
370 |
savePlot(paste("Predicted_tmax_versus_observed_scatterplot_",dates[i],out_prefix,".png", sep=""), type="png") |
|
371 |
dev.off() |
|
372 |
#resid=sta_pred-dmoday$dailyTmax |
|
373 |
resid=sta_pred-tmax |
|
374 |
quilt.plot(daily_sta_lola,resid) |
|
375 |
|
|
376 |
### END OF BRIAN's code |
|
377 |
|
|
378 |
### Added by benoit |
|
379 |
#Store results using TPS |
|
380 |
j=9 |
|
381 |
results_RMSE[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
382 |
results_RMSE[i,2]<- ns #number of stations used in the training stage |
|
383 |
results_RMSE[i,3]<- "RMSE" |
|
384 |
results_RMSE[i,j+3]<- rmse #Storing RMSE for the model j |
|
385 |
|
|
386 |
results_RMSE_f[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
387 |
results_RMSE_f[i,2]<- ns #number of stations used in the training stage |
|
388 |
results_RMSE_f[i,3]<- "RMSE" |
|
389 |
results_RMSE_f[i,j+3]<- rmse_fit #Storing RMSE for the model j |
|
390 |
|
|
391 |
ns<-nrow(data_s) #This is added to because some loss of data might have happened because of the averaging... |
|
392 |
nv<-ns<-nrow(data_v) |
|
393 |
|
|
394 |
for (j in 1:length(models)){ |
|
395 |
|
|
396 |
##Model assessment: specific diagnostic/metrics for GAM |
|
397 |
|
|
398 |
name<-paste("mod",j,sep="") #modj is the name of The "j" model (mod1 if j=1) |
|
399 |
mod<-get(name) #accessing GAM model ojbect "j" |
|
400 |
results_AIC[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
401 |
results_AIC[i,2]<- ns #number of stations used in the training stage |
|
402 |
results_AIC[i,3]<- "AIC" |
|
403 |
results_AIC[i,j+3]<- AIC (mod) |
|
404 |
|
|
405 |
results_GCV[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
406 |
results_GCV[i,2]<- ns #number of stations used in the training |
|
407 |
results_GCV[i,3]<- "GCV" |
|
408 |
results_GCV[i,j+3]<- mod$gcv.ubre |
|
409 |
|
|
410 |
results_DEV[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
411 |
results_DEV[i,2]<- ns #number of stations used in the training stage |
|
412 |
results_DEV[i,3]<- "DEV" |
|
413 |
results_DEV[i,j+3]<- mod$deviance |
|
414 |
|
|
415 |
results_RMSE_f[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
416 |
results_RMSE_f[i,2]<- ns #number of stations used in the training stage |
|
417 |
results_RMSE_f[i,3]<- "RSME" |
|
418 |
results_RMSE_f[i,j+3]<- sqrt(sum((mod$residuals)^2)/ns) |
|
419 |
|
|
420 |
##Model assessment: general diagnostic/metrics |
|
421 |
##validation: using the testing data |
|
422 |
|
|
423 |
#This was modified on 06192012 |
|
424 |
|
|
425 |
#data_v$y_var<-data_v$tmax/10 |
|
426 |
data_v$y_var<-tmax |
|
427 |
y_mod<- predict(mod, newdata=data_v, se.fit = TRUE) #Using the coeff to predict new values. |
|
428 |
|
|
429 |
#sta_LST=lookup(themolst,data_v$lat,data_v$lon) |
|
430 |
#sta_bias=lookup(bias_rast,data_v$lat,data_v$lon) |
|
431 |
#tmax_predicted=sta_LST+sta_bias-y_mod$fit |
|
432 |
|
|
433 |
#data_v$tmax<-(data_v$tmax)/10 |
|
434 |
#res_mod<- data_v$tmax - tmax_predicted #Residuals for the model for fusion |
|
435 |
res_mod<- data_v$y_var - y_mod$fit #Residuals for the model |
|
436 |
|
|
437 |
RMSE_mod <- sqrt(sum(res_mod^2)/nv) #RMSE FOR REGRESSION STEP 1: GAM |
|
438 |
MAE_mod<- sum(abs(res_mod))/nv #MAE, Mean abs. Error FOR REGRESSION STEP 1: GAM |
|
439 |
ME_mod<- sum(res_mod)/nv #ME, Mean Error or bias FOR REGRESSION STEP 1: GAM |
|
440 |
R2_mod<- cor(data_v$dailyTmax,y_mod$fit)^2 #R2, coef. of var FOR REGRESSION STEP 1: GAM |
|
441 |
|
|
442 |
results_RMSE[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
443 |
results_RMSE[i,2]<- ns #number of stations used in the training stage |
|
444 |
results_RMSE[i,3]<- "RMSE" |
|
445 |
results_RMSE[i,j+3]<- RMSE_mod #Storing RMSE for the model j |
|
446 |
results_MAE[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
447 |
results_MAE[i,2]<- ns #number of stations used in the training stage |
|
448 |
results_MAE[i,3]<- "MAE" |
|
449 |
results_MAE[i,j+3]<- MAE_mod #Storing MAE for the model j |
|
450 |
results_ME[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
451 |
results_ME[i,2]<- ns #number of stations used in the training stage |
|
452 |
results_ME[i,3]<- "ME" |
|
453 |
results_ME[i,j+3]<- ME_mod #Storing ME for the model j |
|
454 |
results_R2[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
455 |
results_R2[i,2]<- ns #number of stations used in the training stage |
|
456 |
results_R2[i,3]<- "R2" |
|
457 |
results_R2[i,j+3]<- R2_mod #Storing R2 for the model j |
|
458 |
|
|
459 |
#Saving residuals and prediction in the dataframes: tmax predicted from GAM |
|
460 |
pred<-paste("pred_mod",j,sep="") |
|
461 |
data_v[[pred]]<-as.numeric(y_mod$fit) |
|
462 |
data_s[[pred]]<-as.numeric(mod$fit) #Storing model fit values (predicted on training sample) |
|
463 |
|
|
464 |
name2<-paste("res_mod",j,sep="") |
|
465 |
data_v[[name2]]<-as.numeric(res_mod) |
|
466 |
data_s[[name2]]<-as.numeric(mod$residuals) |
|
467 |
#end of loop calculating RMSE |
|
468 |
|
|
469 |
} |
|
470 |
|
|
471 |
# end of the for loop1 |
|
472 |
|
|
473 |
} |
|
474 |
|
|
475 |
|
|
476 |
## Plotting and saving diagnostic measures |
|
477 |
|
|
478 |
#Specific diagnostic measures related to the testing datasets |
|
479 |
|
|
480 |
results_table_RMSE<-as.data.frame(results_RMSE) |
|
481 |
results_table_MAE<-as.data.frame(results_MAE) |
|
482 |
results_table_ME<-as.data.frame(results_ME) |
|
483 |
results_table_R2<-as.data.frame(results_R2) |
|
484 |
|
|
485 |
results_table_RMSE_f<-as.data.frame(results_RMSE_f) |
|
486 |
|
|
487 |
cname<-c("dates","ns","metric","mod1", "mod2","mod3", "mod4", "mod5", "mod6", "mod7","mod8","mod9") |
|
488 |
colnames(results_table_RMSE)<-cname |
|
489 |
colnames(results_table_RMSE_f)<-cname |
|
490 |
|
|
491 |
#tb_diagnostic1<-rbind(results_table_RMSE,results_table_MAE, results_table_ME, results_table_R2) # |
|
492 |
tb_diagnostic1<-results_table_RMSE #measures of validation |
|
493 |
tb_diagnostic2<-results_table_RMSE_f #measures of fit |
|
494 |
|
|
495 |
tb<-tb_diagnostic1[1:361,] |
|
496 |
#tb<-tb_diagnostic1[,4:12] |
|
497 |
for(p in 4:12){ |
|
498 |
tb[,p]<-as.numeric(as.character(tb[,p])) |
|
499 |
} |
|
500 |
date1<-subset(tb, dates=="20101016") |
|
501 |
date2<-subset(tb, dates=="20100224") |
|
502 |
date1<-subset(tb, dates=="20101016") |
|
503 |
|
|
504 |
tb1<-results_RMSE[1:361,4:12] |
|
505 |
write.table(tb_diagnostic1, file= paste(path,"/","results_fusion_Assessment_measure1",out_prefix,".txt",sep=""), sep=",") |
|
506 |
write.table(tb_diagnostic2, file= paste(path,"/","results_fusion_Assessment_measure2",out_prefix,".txt",sep=""), sep=",") |
|
507 |
|
|
508 |
#### END OF SCRIPT |
Also available in: Unified diff
FUSION, comparison to GAM models using the same testing and training data