Project

General

Profile

« Previous | Next » 

Revision 75151566

Added by Benoit Parmentier over 12 years ago

GAM LST, adding lines to assess RMSE per month over 365 dates, task #406

View differences:

climate/research/oregon/interpolation/GAM_LST_reg.R
1 1
####################Interpolation of Tmax for 10 dates.#####################
2
#This script interpolates station values for the Oregon case study. This program loads the station data from a csv file 
3
#and perform two types  of regression: multiple linear model and general additive model (GAM). Note that this program:
4
#1)assumes that the csv file is in the current working 
2
#This script interpolates station values for the Oregon case study. This program loads the station data from a shapefile
3
#and perform 8 regressions using the general additive model (GAM). Note that this program:
4
#1)assumes that the shapefile in the current working 
5 5
#2)extract relevant variables from raster images before performing the regressions. 
6 6
#This scripts predicts tmas xsing GAM and LST derived from MOD11A1.
7 7
#Interactions terms are also included and assessed using the RMSE from validation dataset.
......
202 202

  
203 203
results_table_RMSE<-as.data.frame(results_RMSEnum)
204 204
results_table_AIC<-as.data.frame(results_AICnum)
205
colnames(results_table_RMSE)<-c("dates","ns","mod1", "mod2","mod3", "mod4", "mod5", "mod6", "mod7")
206
colnames(results_table_AIC)<-c("dates","ns","mod1", "mod2","mod3", "mod4", "mod5", "mod6", "mod7")
205
colnames(results_table_RMSE)<-c("dates","ns","mod1", "mod2","mod3", "mod4", "mod5", "mod6", "mod7", "mod8")
206
colnames(results_table_AIC)<-c("dates","ns","mod1", "mod2","mod3", "mod4", "mod5", "mod6", "mod7", "mod8")
207 207

  
208 208
#results_table_RMSE
209
#write.csv(results_table_RMSE, file= paste(path,"/","results_GAM_Assessment",out_prefix,".txt",sep=""))
210
#write.csv(results_table_AIC, file= paste(path,"/","results_GAM_Assessment",out_prefix,".txt",sep=""),append=TRUE)
211

  
212 209
write.table(results_table_RMSE, file= paste(path,"/","results_GAM_Assessment",out_prefix,".txt",sep=""), sep=",")
213 210
write.table(results_table_AIC, file= paste(path,"/","results_GAM_Assessment",out_prefix,".txt",sep=""),sep=",", append=TRUE)
214 211

  
215
#Can also use file connection
216
f<-file(paste(path,"/","results_GAM_Assessment",out_prefix,"2.txt",sep=""),"w")
217
write(results_table_RMSE, file=f)
218
close(f)
219
# End of script##########
212
###Analysing the results from the 365 days run: Summarize by month
213

  
214
for(i in 1:nrow(results_table_RMSE)){
215
  date<-results_table_RMSE$dates[i]
216
  date<-strptime(date, "%Y%m%d")
217
  results_table_RMSE$month[i]<-as.integer(strftime(date, "%m"))
218
}
219

  
220
average<-aggregate(cbind(mod1,mod2,mod3,mod4,mod5,mod6,mod7,mod8)~month,data=results_table_RMSE,mean, na.rm=TRUE)
221
average<-aggregate(cbind(mod1,mod2,mod3,mod4,mod5,mod6,mod7,mod8)~month,data=results_table_RMSE, FUN=mean)
222
#average on all the data.frame
223
averaget<-aggregate(results_table_RMSE, by=list(results_table_RMSE$month),FUN=mean, na.rm=TRUE)
224
#mediant<-aggregate(results_table_RMSE, by=list(results_table_RMSE$month),FUN=median, na.rm=TRUE)
225
#average_lowt<-aggregate(results_table_RMSE, by=list(results_table_RMSE$month), FUN=function(v) t.test(v)$conf.int[1])
226
#average_up<-aggregate(cbind(mod1,mod2,mod3,mod4,mod5,mod6,mod7,mod8)~month,data=results_table_RMSE, function(v) t.test(v)$conf.int[2])
227

  
228
median<-aggregate(cbind(mod1,mod2,mod3,mod4,mod5,mod6,mod7,mod8)~month,data=results_table_RMSE, median, na.rm=TRUE)
229
average_low<-aggregate(cbind(mod1,mod2,mod3,mod4,mod5,mod6,mod7,mod8)~month,data=results_table_RMSE, function(v) t.test(v)$conf.int[1])
230
average_up<-aggregate(cbind(mod1,mod2,mod3,mod4,mod5,mod6,mod7,mod8)~month,data=results_table_RMSE, function(v) t.test(v)$conf.int[2])
220 231

  
221
#Selecting dates and files based on names
222
#cor_LST_LC<-matrix(1,10,1)
223
# for(i in 1:length(dates)){
224
#   cor_LST_LC1[i]<-cor(ghcn.subsets[[i]]$LST,ghcn.subsets[[i]]$LC1)
225
# }
226
# for(i in 1:length(dates)){
227
#   cor_LST_LC3[i]<-cor(ghcn.subsets[[i]]$LST,ghcn.subsets[[i]]$LC3)
228
# }
232
mod<-names(averaget)
233
mod<-mod[4:11]
234
#Saving graphic plots
235
for(i in 1:length(mod)){
236
  X11(width=14,height=10)
237
  name<-mod[i]
238
  barplot2(average[[name]],plot.ci=TRUE, ci.l=average_low[[name]], ci.u=average_up[[name]],main="Mean RMSE per month", names.arg=c("Jan", "Feb", "Mar", "Apr", "May", "Jun","Jul", "Aug", "Sep","Oct", "Nov", "Dec"),ylim=c(20,30),ylab="RMSE in tenth deg C",xlab=name)
239
  #title(paste("Sampling RMSE for mod",i,sep=""))
240
  savePlot(paste("barplot_results_RMSE_month_",name,out_prefix,".png", sep=""), type="png")
241
  dev.off() 
242
}
243

  
244

  
245
for(i in 1:length(mod)){
246
  X11(width=14,height=10)
247
  name<-mod[i]
248
  barplot2(average[[name]],plot.ci=TRUE, ci.l=average_low[[name]], ci.u=average_up[[name]],main=paste(" Mean RMSE per month ",name, sep=""), names.arg=c("Jan", "Feb", "Mar", "Apr", "May", "Jun","Jul", "Aug", "Sep","Oct", "Nov", "Dec"),ylim=c(20,30),ylab="RMSE in tenth deg C",xlab=name)
249
  #title(paste("Sampling RMSE for mod",i,sep=""))
250
  savePlot(paste("barplot_results_RMSE_month_",name,out_prefix,".png", sep=""), type="png")
251
  dev.off() 
252

  
253
  X11(width=14,height=10)
254
  name<-mod[i]
255
  hist(results_table_RMSE[[name]],breaks=15, main=paste(" Histogram RMSE_",name, sep=""),xlab=paste("RMSE ",name, sep=""))
256
  savePlot(paste("Hist_results_RMSE_365_",name,out_prefix,".png", sep=""), type="png")
257
  dev.off()
258
  
259
}
260

  
261
for(i in 1:length(mod)){
262
  X11(width=14,height=10)
263
  name<-mod[i]
264
  hist(results_table_RMSE[[name]],breaks=15, main=paste(" Histogram RMSE_",name, sep=""),xlab=paste("RMSE ",name, sep=""))
265
  savePlot(paste("Hist_results_RMSE_365_",name,out_prefix,".png", sep=""), type="png")
266
  dev.off()
267
}
268

  
269
r<-(results_table_RMSE[,3:10]) #selecting only the columns related to models...
270

  
271
mean_r<-mean(r)
272
median_r<-sapply(r, median)
273
sd_r<-sapply(r, sd)
274

  
275
barplot(mean_r,ylim=c(23,26),ylab="RMSE in tenth deg C")
276
barplot(median_r,ylim=c(23,26),ylab="RMSE in tenth deg C",add=TRUE,inside=FALSE,beside=TRUE) # put both on the same plot
277
barplot(sd_r,ylim=c(6,8),ylab="RMSE in tenth deg C") # put both on the same plot
278

  
279
height<-rbind(mean_r,median_r)
280
barplot(height,ylim=c(23,26),ylab="RMSE in tenth deg C",beside=TRUE,legend=rownames(height))
281
barplot(height,ylim=c(23,26),ylab="RMSE in tenth deg C",beside=TRUE, col=c("darkblue","red"),legend=rownames(height)) # put both on the same plot
282

  
283
barplot2(mean_r,median_r,ylim=c(23,26),ylab="RMSE in tenth deg C") # put both on the same plot
284
#Collect var explained and p values for each var...
285

  
286
# End of script##########
229 287

  
230
#mod9<- gam(tmax~ te(lat,lon,ELEV_SRTM), data=ghcn_s_20101031)
288
names(results_table_RMSE)

Also available in: Unified diff