Project

General

Profile

« Previous | Next » 

Revision 75b4e894

Added by Benoit Parmentier almost 9 years ago

adding figures 8 related to summary of accuracy

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R
5 5
#Analyses, figures, tables and data are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 02/03/2016            
8
#MODIFIED ON: 02/07/2016            
9 9
#Version: 5
10 10
#PROJECT: Environmental Layers project     
11 11
#COMMENTS: analyses for run 10 global analyses,all regions 1500x4500km with additional tiles to increase overlap 
......
196 196
  tb_month_s <- read.table(file.path(in_dir,basename(df_assessment_files$files[3])),sep=",")
197 197
  pred_data_month_info <- read.table(file.path(in_dir, basename(df_assessment_files$files[10])),sep=",")
198 198
  pred_data_day_info <- read.table(file.path(in_dir, basename(df_assessment_files$files[11])),sep=",")
199
  df_tile_processed <- read.table(file.path(in_dir, basename(df_assessment_files$files[12])),sep=",")
199
  df_tile_processed <- read.table(file.path(in_dir, basename(df_assessment_files$files[12])),stringsAsFactors=F,sep=",")
200 200
  
201
  ##Screen for non shapefiles tiles due to dir
202
  df_tile_processed <- df_tile_processed[!is.na(df_tile_processed$shp_files),] 
201 203
  #add column for tile size later on!!!
202 204
  
203 205
  tb$pred_mod <- as.character(tb$pred_mod)
......
308 310
  png(filename=paste("Figure1_tile_processed_region_",region_name,"_",out_suffix,".png",sep=""),
309 311
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
310 312
  
311
  plot(reg_layer)
313
  plot(reg_layer,border="black",usePolypath = FALSE)
312 314
  #Add polygon tiles...
313 315
  for(i in 1:length(shps_tiles)){
314 316
    shp1 <- shps_tiles[[i]]
......
635 637
  as.character(unique(test$tile_id)) #141 tiles
636 638
  
637 639
  dim(subset(test,test$predicted==365 & test$pred_mod=="mod1"))
638
  histogram(subset(test, test$pred_mod=="mod1")$predicted)
640
  #histogram(subset(test, test$pred_mod=="mod1")$predicted)
639 641
  unique(subset(test, test$pred_mod=="mod1")$predicted)
640 642
  table((subset(test, test$pred_mod=="mod1")$predicted))
641 643
  
......
678 680
  col_mfrow <- 1
679 681
  row_mfrow <- 1
680 682
  
681
  png(filename=paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_",out_suffix,".png",sep=""),
683
  fig_filename <- paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_",out_suffix,".png",sep="")
684
  png(filename=fig_filename,
682 685
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
683 686
  
684 687
  p<- bwplot(rmse~pred_mod | reg, data=tb,
......
686 689
  print(p)
687 690
  dev.off()
688 691
  
689
  list_outfiles[[counter_fig+1]] <- paste("Figure8a_boxplot_overall_accuracy_by_model_separated_by_region_with_oultiers_",out_suffix,".png",sep="")
692
  list_outfiles[[counter_fig+1]] <- fig_filename
690 693
  counter_fig <- counter_fig + 1
691 694
  
692 695
  ## Figure 8b
693
  png(filename=paste("Figure8b_boxplot_overall_separated_by_region_scaling_",out_suffix,".png",sep=""),
696
  fig_filename <- paste("Figure8b_boxplot_overall_separated_by_region_scaling_",out_suffix,".png",sep="")
697
  png(filename=fig_filename,
694 698
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
695 699
  
696 700
  #boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
......
700 704
  print(p)
701 705
  dev.off()
702 706
  
703
  list_outfiles[[counter_fig+1]] <- paste("Figure8b_boxplot_overall_accuracy_by_model_separated_by_region_scaling_",out_suffix,".png",sep="")
707
  list_outfiles[[counter_fig+1]] <- fig_filename
704 708
  counter_fig <- counter_fig + 1
705 709
  
706 710
  
......
748 752

  
749 753
  }
750 754
  
751
  r22 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[20]])  
752
  r23 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[21]])  
753
  r24 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[20]])  
754
  r25 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[21]])  
755
  r22 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[22]])  
756
  r23 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[23]])  
757
  r24 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[24]])  
758
  r25 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[25]])  
755 759

  
756 760
  #####################################################
757 761
  #### Figure 9: plotting boxplot by year and regions ###########

Also available in: Unified diff