Revision 760957d7
Added by Benoit Parmentier almost 12 years ago
climate/research/oregon/interpolation/GAM_fusion_analysis_raster_prediction_multisampling.R | ||
---|---|---|
10 | 10 |
#4)use seed number: use seed if random samples must be repeatable |
11 | 11 |
#5)GAM fusion: possibilty of running GAM+FUSION or GAM separately |
12 | 12 |
#AUTHOR: Benoit Parmentier |
13 |
#DATE: 02/06/2013
|
|
13 |
#DATE: 02/08/2013
|
|
14 | 14 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363-- |
15 | 15 |
################################################################################################### |
16 | 16 |
|
... | ... | |
29 | 29 |
library(plotrix) |
30 | 30 |
### Parameters and argument |
31 | 31 |
|
32 |
infile1<- "ghcn_or_tmax_covariates_06262012_OR83M.shp" #GHCN shapefile containing variables for modeling 2010 |
|
33 | 32 |
infile2<-"list_365_dates_04212012.txt" |
34 |
#infile3<-"LST_dates_var_names.txt" #LST dates name |
|
35 |
#infile4<-"models_interpolation_05142012.txt" #Interpolation model names |
|
36 |
#infile5<-"mean_day244_rescaled.rst" #Raster or grid for the locations of predictions |
|
37 |
#infile6<-"lst_climatology.txt" |
|
38 |
#infile6<-"LST_files_monthly_climatology.txt" |
|
39 |
#inlistf<-"list_files_05032012.txt" #Stack of images containing the Covariates |
|
40 |
|
|
41 |
infile_monthly<-"monthly_covariates_ghcn_data_TMAXy2010_2010_VE_02062013.shp" |
|
42 |
infile_daily<-"daily_covariates_ghcn_data_TMAXy2010_2010_VE_02062013.shp" |
|
43 |
infile_locs<-"stations_venezuela_region_y2010_2010_VE_02062013.shp" |
|
33 |
infile_monthly<-"monthly_covariates_ghcn_data_TMAXy2010_2010_VE_02082013.shp" |
|
34 |
infile_daily<-"daily_covariates_ghcn_data_TMAXy2010_2010_VE_02082013.shp" |
|
35 |
infile_locs<-"stations_venezuela_region_y2010_2010_VE_02082013.shp" |
|
44 | 36 |
infile3<-"covariates__venezuela_region__VE_01292013.tif" #this is an output from covariate script |
45 | 37 |
|
46 | 38 |
in_path<-"/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/input_data" |
47 | 39 |
out_path<-"/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/output_data" |
40 |
script_path<-"/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/" |
|
48 | 41 |
setwd(in_path) |
49 | 42 |
|
50 | 43 |
nmodels<-9 #number of models running |
51 | 44 |
y_var_name<-"dailyTmax" |
52 | 45 |
predval<-1 |
53 |
prop<-0.3 #Proportion of testing retained for validation |
|
54 |
#prop<-0.25 |
|
55 | 46 |
seed_number<- 100 #if seed zero then no seed? #Seed number for random sampling |
56 |
out_prefix<-"_10d_GAM_fus5_all_lstd_020632013" #User defined output prefix |
|
57 |
#out_prefix<-"_365d_GAM_12272012" #User defined output prefix |
|
47 |
out_prefix<-"_10d_GAM_fus5_all_lstd_02082013" #User defined output prefix |
|
58 | 48 |
|
59 | 49 |
bias_val<-0 #if value 1 then training data is used in the bias surface rather than the all monthly stations |
60 | 50 |
bias_prediction<-1 #if value 1 then use GAM for the BIAS prediction otherwise GAM direct repdiction for y_var (daily tmax) |
... | ... | |
64 | 54 |
step<-0 |
65 | 55 |
constant<-0 #if value 1 then use the same samples as date one for the all set of dates |
66 | 56 |
#projection used in the interpolation of the study area: should be read directly from the outline of the study area |
67 |
CRS_interp<-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
57 |
#CRS_interp<-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs";
|
|
68 | 58 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
69 | 59 |
|
70 |
source("GAM_fusion_function_multisampling_02062013.R")
|
|
60 |
source(file.path(script_path,"GAM_fusion_function_multisampling_02082013.R"))
|
|
71 | 61 |
|
72 | 62 |
###################### START OF THE SCRIPT ######################## |
73 | 63 |
|
74 | 64 |
###Reading the daily station data and setting up for models' comparison |
75 |
#filename<-sub(".shp","",infile1) #Removing the extension from file. |
|
76 |
#ghcn<-readOGR(".", filename) #reading shapefile |
|
77 | 65 |
ghcn<-readOGR(dsn=in_path,layer=sub(".shp","",infile_daily)) |
78 | 66 |
CRS_interp<-proj4string(ghcn) #Storing projection information (ellipsoid, datum,etc.) |
79 | 67 |
|
80 |
#mean_LST<- readGDAL(infile5) #Reading the whole raster in memory. This provides a grid for kriging |
|
81 |
#proj4string(mean_LST)<-CRS_interp #Assigning coordinate information to prediction grid. |
|
82 |
|
|
83 |
#Station location of the study area |
|
84 |
#stat_loc<-read.table(paste(path,"/","location_study_area_OR_0602012.txt",sep=""),sep=",", header=TRUE) |
|
85 | 68 |
stat_loc<-readOGR(dsn=in_path,layer=sub(".shp","",infile_locs)) |
86 | 69 |
|
87 |
#GHCN Database for 1980-2010 for study area (OR) |
|
88 |
#data3<-read.table(paste(path,"/","ghcn_data_TMAXy1980_2010_OR_0602012.txt",sep=""),sep=",", header=TRUE) |
|
89 |
#data3<-file.path(in_path,infile_monthly) |
|
90 | 70 |
data3<-readOGR(dsn=in_path,layer=sub(".shp","",infile_monthly)) |
91 | 71 |
|
92 |
#Remove NA for LC and CANHEIGHT: Need to check this part |
|
72 |
#Remove NA for LC and CANHEIGHT: Need to check this part after
|
|
93 | 73 |
ghcn$LC1[is.na(ghcn$LC1)]<-0 |
94 | 74 |
ghcn$LC3[is.na(ghcn$LC3)]<-0 |
95 | 75 |
ghcn$CANHEIGHT[is.na(ghcn$CANHEIGHT)]<-0 |
96 | 76 |
ghcn$LC4[is.na(ghcn$LC4)]<-0 |
97 | 77 |
ghcn$LC6[is.na(ghcn$LC6)]<-0 |
98 | 78 |
|
99 |
dates <-readLines(paste(file.path(in_path,infile2)) |
|
100 |
#LST_dates <-readLines(file.path(in_path,infile3)) |
|
101 |
#models <-readLines(paste(path,"/",infile4, sep="")) |
|
79 |
dates <-readLines(file.path(in_path,infile2)) #dates to be predicted |
|
102 | 80 |
|
103 | 81 |
##Extracting the variables values from the raster files |
104 | 82 |
|
105 | 83 |
#The names of covariates can be changed... |
106 |
rnames<-c("x","y","lon","lat","N","E","N_w","E_w","elev","slope","aspect","CANHEIGHT","DISTOC") |
|
84 |
rnames <-c("x","y","lon","lat","N","E","N_w","E_w","elev","slope","aspect","CANHEIGHT","DISTOC")
|
|
107 | 85 |
lc_names<-c("LC1","LC2","LC3","LC4","LC5","LC6","LC7","LC8","LC9","LC10","LC11","LC12") |
108 | 86 |
lst_names<-c("mm_01","mm_02","mm_03","mm_04","mm_05","mm_06","mm_07","mm_08","mm_09","mm_10","mm_11","mm_12", |
109 | 87 |
"nobs_01","nobs_02","nobs_03","nobs_04","nobs_05","nobs_06","nobs_07","nobs_08", |
... | ... | |
115 | 93 |
names(s_raster)<-covar_names #Assigning names to the raster layers: making sure it is included in the extraction |
116 | 94 |
|
117 | 95 |
#Deal with no data value and zero |
118 |
pos<-match("LC1",layerNames(s_raster)) #Find column with name "value" |
|
119 |
LC1<-raster(s_raster,layer=pos) #Select layer from stack |
|
120 |
s_raster<-dropLayer(s_raster,pos) |
|
121 |
LC1[is.na(LC1)]<-0 |
|
122 |
|
|
123 |
pos<-match("LC3",layerNames(s_raster)) #Find column with name "value" |
|
124 |
LC3<-raster(s_raster,layer=pos) #Select layer from stack |
|
125 |
s_raster<-dropLayer(s_raster,pos) |
|
126 |
LC3[is.na(LC3)]<-0 |
|
127 |
|
|
128 |
pos<-match("CANHEIGHT",layerNames(s_raster)) #Find column with name "value" |
|
129 |
CANHEIGHT<-raster(s_raster,layer=pos) #Select layer from stack |
|
130 |
s_raster<-dropLayer(s_raster,pos) |
|
131 |
CANHEIGHT[is.na(CANHEIGHT)]<-0 |
|
132 |
pos<-match("ELEV_SRTM",layerNames(s_raster)) #Find column with name "ELEV_SRTM" |
|
133 |
ELEV_SRTM<-raster(s_raster,layer=pos) #Select layer from stack on 10/30 |
|
134 |
s_raster<-dropLayer(s_raster,pos) |
|
135 |
ELEV_SRTM[ELEV_SRTM <0]<-NA |
|
96 |
#pos<-match("LC1",layerNames(s_raster)) #Find column with name "value"
|
|
97 |
#LC1<-raster(s_raster,layer=pos) #Select layer from stack
|
|
98 |
#s_raster<-dropLayer(s_raster,pos)
|
|
99 |
#LC1[is.na(LC1)]<-0
|
|
100 |
|
|
101 |
#pos<-match("LC3",layerNames(s_raster)) #Find column with name "value"
|
|
102 |
#LC3<-raster(s_raster,layer=pos) #Select layer from stack
|
|
103 |
#s_raster<-dropLayer(s_raster,pos)
|
|
104 |
#LC3[is.na(LC3)]<-0
|
|
105 |
|
|
106 |
#pos<-match("CANHEIGHT",layerNames(s_raster)) #Find column with name "value"
|
|
107 |
#CANHEIGHT<-raster(s_raster,layer=pos) #Select layer from stack
|
|
108 |
#s_raster<-dropLayer(s_raster,pos)
|
|
109 |
#CANHEIGHT[is.na(CANHEIGHT)]<-0
|
|
110 |
#pos<-match("ELEV_SRTM",layerNames(s_raster)) #Find column with name "ELEV_SRTM"
|
|
111 |
#ELEV_SRTM<-raster(s_raster,layer=pos) #Select layer from stack on 10/30
|
|
112 |
#s_raster<-dropLayer(s_raster,pos)
|
|
113 |
#ELEV_SRTM[ELEV_SRTM <0]<-NA
|
|
136 | 114 |
|
137 | 115 |
#s_sgdf<-as(s_raster,"SpatialGridDataFrame") #Conversion to spatial grid data frame |
138 | 116 |
|
139 |
####### Preparing LST stack of climatology... |
|
140 |
|
|
141 |
#l=list.files(pattern="mean_month.*rescaled.rst") |
|
142 |
l <-readLines(paste(path,"/",infile6, sep="")) |
|
143 |
molst<-stack(l) #Creating a raster stack... |
|
144 |
#setwd(old) |
|
145 |
molst<-molst-273.16 #K->C #LST stack of monthly average... |
|
146 |
idx <- seq(as.Date('2010-01-15'), as.Date('2010-12-15'), 'month') |
|
147 |
molst <- setZ(molst, idx) |
|
148 |
layerNames(molst) <- month.abb |
|
149 |
|
|
150 | 117 |
###### Preparing tables for model assessment: specific diagnostic/metrics |
151 | 118 |
|
152 | 119 |
#Model assessment: specific diagnostics/metrics |
... | ... | |
164 | 131 |
results_RMSE_f<- matrix(1,1,nmodels+4) #RMSE fit, RMSE for the training dataset |
165 | 132 |
results_MAE_f <- matrix(1,1,nmodels+4) |
166 | 133 |
|
167 |
######## Preparing monthly averages from the ProstGres database and extracting covarvariates from stack |
|
168 |
|
|
169 |
# do this work outside of (before) this function |
|
170 |
# to avoid making a copy of the data frame inside the function call |
|
171 |
# date1<-ISOdate(data3$year,data3$month,data3$day) #Creating a date object from 3 separate column |
|
172 |
# date2<-as.POSIXlt(as.Date(date1)) |
|
173 |
# data3$date<-date2 |
|
174 |
# d<-subset(data3,year>=2000 & mflag=="0" ) #Selecting dataset 2000-2010 with good quality: 193 stations |
|
175 |
# #May need some screeing??? i.e. range of temp and elevation... |
|
176 |
# d1<-aggregate(value~station+month, data=d, mean) #Calculate monthly mean for every station in OR |
|
177 |
# id<-as.data.frame(unique(d1$station)) #Unique station in OR for year 2000-2010: 193 but 7 loss of monthly avg |
|
178 |
# |
|
179 |
# dst<-merge(d1, stat_loc, by.x="station", by.y="STAT_ID") #Inner join all columns are retained |
|
180 |
# |
|
181 |
# #This allows to change only one name of the data.frame |
|
182 |
# pos<-match("value",names(dst)) #Find column with name "value" |
|
183 |
# names(dst)[pos]<-c("TMax") |
|
184 |
# dst$TMax<-dst$TMax/10 #TMax is the average max temp for monthy data |
|
185 |
# #dstjan=dst[dst$month==9,] #dst contains the monthly averages for tmax for every station over 2000-2010 |
|
186 |
# |
|
187 |
# #Extracting covariates from stack |
|
188 |
# coords<- dst[c('lon','lat')] #Define coordinates in a data frame |
|
189 |
# coordinates(dst)<-coords #Assign coordinates to the data frame |
|
190 |
# proj4string(dst)<-CRS_locs_WGS84 #Assign coordinates reference system in PROJ4 format |
|
191 |
# dst_month<-spTransform(dst,CRS(CRS_interp)) #Project from WGS84 to new coord. system |
|
192 |
# |
|
193 |
# stations_val<-extract(s_raster,dst_month) #extraction of the infomration at station location |
|
194 |
# stations_val<-as.data.frame(stations_val) |
|
195 |
# dst_extract<-cbind(dst_month,stations_val) |
|
196 |
# dst<-dst_extract |
|
197 |
|
|
198 |
#Now clean and screen monthly values |
|
199 |
#dst_all<-dst |
|
200 |
dst_all<-data3 |
|
201 |
dst<-data3 |
|
202 |
#dst<-subset(dst,dst$TMax>-15 & dst$TMax<45) #may choose different threshold?? |
|
203 |
#dst<-subset(dst,dst$ELEV_SRTM>0) #This will drop two stations...or 24 rows |
|
204 |
|
|
205 |
######### Preparing daily values for training and testing |
|
134 |
######### Preparing daily and monthly values for training and testing |
|
206 | 135 |
|
207 |
#Screening for bad values: value is tmax in this case |
|
136 |
#Screening for daily bad values: value is tmax in this case
|
|
208 | 137 |
#ghcn$value<-as.numeric(ghcn$value) |
209 | 138 |
#ghcn_all<-ghcn |
210 | 139 |
#ghcn_test<-subset(ghcn,ghcn$value>-150 & ghcn$value<400) |
... | ... | |
213 | 142 |
#ghcn<-ghcn_test2 |
214 | 143 |
#coords<- ghcn[,c('x_OR83M','y_OR83M')] |
215 | 144 |
|
145 |
#Now clean and screen monthly values |
|
146 |
#dst_all<-dst |
|
147 |
dst_all<-data3 |
|
148 |
dst<-data3 |
|
149 |
#dst<-subset(dst,dst$TMax>-15 & dst$TMax<45) #may choose different threshold?? |
|
150 |
#dst<-subset(dst,dst$ELEV_SRTM>0) #This will drop two stations...or 24 rows |
|
151 |
|
|
216 | 152 |
##Sampling: training and testing sites. |
217 | 153 |
|
218 | 154 |
#Make this a a function |
Also available in: Unified diff
GAM fusion raster prediction, further modificationfor Venzuela tmax interp