Project

General

Profile

« Previous | Next » 

Revision 7b9aba64

Added by Benoit Parmentier about 11 years ago

running gam daily OR temp prediction with combination 5 for multi-time scale paper

View differences:

climate/research/oregon/interpolation/master_script_temp.R
10 10
#STAGE 5: Output analyses: assessment of results for specific dates...
11 11
#
12 12
#AUTHOR: Benoit Parmentier                                                                       
13
#DATE: 10/11/2013                                                                                 
13
#DATE: 11/01/2013                                                                                 
14 14

  
15 15
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363, TASK$568--   
16 16

  
......
81 81

  
82 82
var<-"TMAX" # variable being interpolated
83 83
#out_prefix<-"_365d_gam_cai_lst_comb3_10102013"                #User defined output prefix
84
out_prefix<-"_365d_gwr_daily_mults1_lst_comb3_10132013"                #User defined output prefix
84
out_prefix<-"_365d_gam_daily_lst_comb5_11012013"                #User defined output prefix
85 85

  
86
out_suffix<-"_OR_10132013"                                       #Regional suffix
86
out_suffix<-"_OR_11012013"                                       #Regional suffix
87 87
out_suffix_modis <-"_05302013"                       #pattern to find tiles produced previously     
88 88

  
89 89
#interpolation_method<-c("gam_fusion","gam_CAI","gam_daily") #other otpions to be added later
......
94 94
#interpolation_method<-c("gwr_CAI") #other otpions to be added later
95 95
#interpolation_method<-c("kriging_CAI") 
96 96

  
97
#interpolation_method<-c("gam_daily") #other otpions to be added later
97
interpolation_method<-c("gam_daily") #other otpions to be added later
98 98
#interpolation_method<-c("kriging_daily") #other otpions to be added later
99
interpolation_method<-c("gwr_daily") #other otpions to be added later
99
#interpolation_method<-c("gwr_daily") #other otpions to be added later
100 100

  
101 101
#out_path<-"/home/parmentier/Data/IPLANT_project/Oregon_interpolation/Oregon_03142013/output_data"
102 102
out_path <- "/data/project/layers/commons/Oregon_interpolation/output_data"
......
248 248
seed_number<- 100  #if seed zero then no seed?     
249 249

  
250 250
nb_sample<-1           #number of time random sampling must be repeated for every hold out proportion
251
step<- 0.1         
251
#step<- 0.1         
252
step<- 0         
252 253
constant<-0             #if value 1 then use the same samples as date one for the all set of dates
253
#prop_minmax<-c(0.3,0.3)  #if prop_min=prop_max and step=0 then predictions are done for the number of dates...
254
prop_minmax<-c(0.1,0.7)  #if prop_min=prop_max and step=0 then predictions are done for the number of dates...
254
prop_minmax<-c(0.3,0.3)  #if prop_min=prop_max and step=0 then predictions are done for the number of dates...
255
#prop_minmax<-c(0.1,0.7)  #if prop_min=prop_max and step=0 then predictions are done for the number of dates...
255 256

  
256 257
seed_number_month <- 100
257 258
nb_sample_month <-1           #number of time random sampling must be repeated for every hold out proportion
......
262 263
#dates_selected<-c("20100101","20100102","20100103","20100901") # Note that the dates set must have a specific format: yyymmdd
263 264
#dates_selected<-c("20100101","20100102","20100301","20100302","20100501","20100502","20100701","20100702","20100901","20100902","20101101","20101102")
264 265
dates_selected<-"" # if empty string then predict for the full year specified earlier
265
dates_selected <- 2 # if integer then predict for the evert n dat in the year specified earlier
266
#dates_selected <- 2 # if integer then predict for the evert n dat in the year specified earlier
266 267

  
267 268
screen_data_training<- FALSE #screen training data for NA and use same input training for all models fitted
268 269
use_clim_image <- TRUE # use predicted image as a base...rather than average Tmin at the station for delta
......
271 272
#Models to run...this can be changed for each run
272 273
#LC1: Evergreen/deciduous needleleaf trees
273 274

  
275
#Combination 5: for paper multi-timescale  paper
276
list_models<-c("y_var ~ s(lat,lon)",
277
               "y_var ~ s(lat,lon) + s(LST)",
278
               "y_var ~ s(lat,lon) + s(elev_s)",
279
               "y_var ~ s(lat,lon) + s(elev_s) + s(N_w,E_w)",
280
               "y_var ~ s(lat,lon) + s(elev_s) + s(DISTOC)",
281
               "y_var ~ s(lat,lon) + s(elev_s) + s(LST)",
282
               "y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,LC1)")
283

  
284

  
274 285
#Combination 3: for paper baseline=s(lat,lon)+s(elev)
275 286
#list_models<-c("y_var ~ s(lat,lon) + s(elev_s)",
276 287
#                "y_var ~ s(lat,lon) + s(elev_s) + s(N_w)",
......
309 320
interp_method2 <- NULL #other options are "gwr" and "kriging"
310 321

  
311 322
#interp_method2 <- "gam" #other options are "gwr" and "kriging"
312
list_models <- c("y_var ~ lat*lon + elev_s")
323
#list_models <- c("y_var ~ lat*lon + elev_s")
313 324

  
314 325
#list_models<-c("y_var ~ s(lat,lon) + s(elev_s)")
315 326

  

Also available in: Unified diff