Project

General

Profile

« Previous | Next » 

Revision 8188ecd6

Added by Benoit Parmentier about 9 years ago

plotting assessment figure function, collecting output figures into table

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R
5 5
#Analyses, figures, tables and data are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 01/03/2016            
8
#MODIFIED ON: 01/04/2016            
9 9
#Version: 5
10 10
#PROJECT: Environmental Layers project     
11 11
#COMMENTS: analyses for run 10 global analyses,all regions 1500x4500km with additional tiles to increase overlap 
......
164 164
  mosaic_plot <- list_param_run_assessment_plotting$mosaic_plot #FALSE #PARAM7
165 165
  proj_str<- list_param_run_assessment_plotting$proj_str #CRS_WGS84 #PARAM 8 #check this parameter
166 166
  file_format <- list_param_run_assessment_plotting$file_format #".rst" #PARAM 9
167
  NA_value <- list_param_run_assessment_plotting$NA_value #-9999 #PARAM10
167
  NA_flag_val <- list_param_run_assessment_plotting$NA_flag_val #-9999 #PARAM10
168 168
  multiple_region <- list_param_run_assessment_plotting$multiple_region # <- TRUE #PARAM 11
169 169
  countries_shp <- list_param_run_assessment_plotting$countries_shp #<- "world" #PARAM 12
170 170
  plot_region <- list_param_run_assessment_plotting$plot_region # PARAM13 
......
173 173
  df_assessment_files_name <- list_param_run_assessment_plotting$df_assessment_files_name #PARAM 16
174 174
  threshold_missing_day <- list_param_run_assessment_plotting$threshold_missing_day #PARM17
175 175
 
176
  NA_flag_val <- NA_value
176
  NA_value <- NA_flag_val 
177 177

  
178 178
  ##################### START SCRIPT #################
179 179
  
......
220 220
  tb_s$tile_id <- as.character(tb_s$tile_id)
221 221
  
222 222
  #multiple regions? #this needs to be included in the previous script!!!
223
  if(multiple_region==TRUE){
224
    df_tile_processed$reg <- basename(dirname(as.character(df_tile_processed$path_NEX)))
225
    tb <- merge(tb,df_tile_processed,by="tile_id")
226
    tb_s <- merge(tb_s,df_tile_processed,by="tile_id")
227
    tb_month_s<- merge(tb_month_s,df_tile_processed,by="tile_id")
228
    summary_metrics_v <- merge(summary_metrics_v,df_tile_processed,by="tile_id")
229
  }
230
  
231
  tb_all <- tb
223
  #if(multiple_region==TRUE){
224
  df_tile_processed$reg <- as.character(df_tile_processed$reg)
225
  tb <- merge(tb,df_tile_processed,by="tile_id")
226
  tb_s <- merge(tb_s,df_tile_processed,by="tile_id")
227
  tb_month_s<- merge(tb_month_s,df_tile_processed,by="tile_id")
228
  summary_metrics_v <- merge(summary_metrics_v,df_tile_processed,by="tile_id")
229
  #}
232 230
  
233
  summary_metrics_v_all <- summary_metrics_v 
231
  #tb_all <- tb
232
  #summary_metrics_v_all <- summary_metrics_v 
234 233
  
235 234
  #table(summary_metrics_v_all$reg)
236 235
  #table(summary_metrics_v$reg)
......
345 344
    res_pix <- 480
346 345
    col_mfrow <- 1
347 346
    row_mfrow <- 1
348
    fig_name <- paste("Figure2a_boxplot_with_oultiers_by_tiles_",model_name[i],"_",out_suffix,".png",sep="")
347
    fig_filename <-  paste("Figure2a_boxplot_with_oultiers_by_tiles_",model_name[i],"_",out_suffix,".png",sep="")
349 348
    png(filename=paste("Figure2a_boxplot_with_oultiers_by_tiles_",model_name[i],"_",out_suffix,".png",sep=""),
350 349
        width=col_mfrow*res_pix,height=row_mfrow*res_pix)
351 350
    
......
355 354
    dev.off()
356 355
    list_outfiles[[counter_fig+i]] <- fig_filename
357 356
  }
358
  
357
  counter_fig <- counter_fig + length(model_name)
359 358
  ## Figure 2b
360 359
  #with ylim and removing trailing...
361 360
  for(i in  1:length(model_name)){ #there are two models!!
......
381 380
  ###############
382 381
  ### Figure 3: boxplot of average RMSE by model acrosss all tiles
383 382
  
384
  ## Figure 3a
385
  res_pix <- 480
386
  col_mfrow <- 1
387
  row_mfrow <- 1
388
  
389
  png(filename=paste("Figure3a_boxplot_overall_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""),
390
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
391
  
392
  boxplot(rmse~pred_mod,data=tb)#,names=tb$pred_mod)
393
  title("RMSE per model over all tiles")
394
  dev.off()
395
  list_outfiles[[counter_fig+1]] <- paste("Figure3a_boxplot_overall_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="")
396

  
397
  ## Figure 3b
398
  png(filename=paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep=""),
399
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
400
  
401
  boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
402
  title("RMSE per model over all tiles")
403
  
404
  dev.off()
405
  list_outfiles[[counter_fig+2]] <- paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep="")
406
  counter_fig <- counter_fig + 2
383
  for(i in  1:length(model_name)){ #there are two models!!
384
    ## Figure 3a
385
    res_pix <- 480
386
    col_mfrow <- 1
387
    row_mfrow <- 1
388
    
389
    png(filename=paste("Figure3a_boxplot_overall_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""),
390
        width=col_mfrow*res_pix,height=row_mfrow*res_pix)
391
    
392
    boxplot(rmse~pred_mod,data=tb)#,names=tb$pred_mod)
393
    title("RMSE per model over all tiles")
394
    dev.off()
395
    list_outfiles[[counter_fig+1]] <- paste("Figure3a_boxplot_overall_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="")
396
    
397
    ## Figure 3b
398
    png(filename=paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep=""),
399
        width=col_mfrow*res_pix,height=row_mfrow*res_pix)
400
    
401
    boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
402
    title("RMSE per model over all tiles")
403
    
404
    dev.off()
405
    list_outfiles[[counter_fig+2]] <- paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep="")
406
  }
407
  counter_fig <- counter_fig + length(model_name)
407 408
  
408 409
  ################ 
409 410
  ### Figure 4: plot predicted tiff for specific date per model
......
472 473
    list_outfiles[[counter_fig+i]] <- fig_filename
473 474
  }
474 475
  
475
  counter_fig <- counter_fig+length(model_name)
476
  counter_fig <- counter_fig + length(model_name)
476 477

  
477 478
  ######################
478 479
  ### Figure 6: plot map of average RMSE per tile at centroids
......
527 528
  sum(df_tile_processed$metrics_v)/length(df_tile_processed$metrics_v) #80 of tiles with info
528 529
  
529 530
  #coordinates
530
  #coordinates(summary_metrics_v) <- c("lon","lat")
531
  coordinates(summary_metrics_v) <- c("lon.y","lat.y")
531
  #try(coordinates(summary_metrics_v) <- c("lon","lat"))
532
  try(coordinates(summary_metrics_v) <- c("lon.y","lat.y"))
532 533
  
533 534
  #threshold_missing_day <- c(367,365,300,200)
534 535
  
......
539 540
  
540 541
  #plot(summary_metrics_v)
541 542
  #Make this a function later so that we can explore many thresholds...
542
  
543
  #Problem here
544
  #Browse[3]> c
545
   #Error in grid.Call.graphics(L_setviewport, pvp, TRUE) : 
546
  #non-finite location and/or size for viewport
547

  
543 548
  j<-1 #for model name 1
544 549
  for(i in 1:length(threshold_missing_day)){
545 550
    
......
571 576
    
572 577
    list_outfiles[[counter_fig+i]] <- fig_filename
573 578
  }
574
  counter_fig <- counter_fig+length(threshold_missing_day)
579
  counter_fig <- counter_fig+length(threshold_missing_day) #currently 4 days...
575 580
  
576
 png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""),
581
  png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""),
577 582
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
578 583
  
579 584
  xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
......
662 667
  #####################################################
663 668
  #### Figure 9: plotting boxplot by year and regions ###########
664 669
  
665
  ## Figure 9a
666
  res_pix <- 480
667
  col_mfrow <- 1
668
  row_mfrow <- 1
669
  
670
  png(filename=paste("Figure9a_boxplot_overall_separated_by_region_year_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""),
671
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
672
  
673
  p<- bwplot(rmse~pred_mod | reg + year, data=tb,
674
             main="RMSE per model and region over all tiles")
675
  print(p)
676
  dev.off()
677
  
678
  ## Figure 9b
679
  png(filename=paste("Figure8b_boxplot_overall_separated_by_region_year_scaling_",model_name[i],"_",out_suffix,".png",sep=""),
680
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
681
  
682
  boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
683
  title("RMSE per model over all tiles")
684
  p<- bwplot(rmse~pred_mod | reg, data=tb,ylim=c(0,5),
685
             main="RMSE per model and region over all tiles")
686
  print(p)
687
  dev.off()
688

  
689
  list_outfiles[[counter_fig+1]] <- paste("Figure9a_boxplot_overall_separated_by_region_year_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="")
690
  counter_fig <- counter_fig + 1
670
#   ## Figure 9a
671
#   res_pix <- 480
672
#   col_mfrow <- 1
673
#   row_mfrow <- 1
674
#   
675
#   png(filename=paste("Figure9a_boxplot_overall_separated_by_region_year_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""),
676
#       width=col_mfrow*res_pix,height=row_mfrow*res_pix)
677
#   
678
#   p<- bwplot(rmse~pred_mod | reg + year, data=tb,
679
#              main="RMSE per model and region over all tiles")
680
#   print(p)
681
#   dev.off()
682
#   
683
#   ## Figure 9b
684
#   png(filename=paste("Figure8b_boxplot_overall_separated_by_region_year_scaling_",model_name[i],"_",out_suffix,".png",sep=""),
685
#       width=col_mfrow*res_pix,height=row_mfrow*res_pix)
686
#   
687
#   boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
688
#   title("RMSE per model over all tiles")
689
#   p<- bwplot(rmse~pred_mod | reg, data=tb,ylim=c(0,5),
690
#              main="RMSE per model and region over all tiles")
691
#   print(p)
692
#   dev.off()
693
# 
694
#   list_outfiles[[counter_fig+1]] <- paste("Figure9a_boxplot_overall_separated_by_region_year_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="")
695
#   counter_fig <- counter_fig + 1
691 696

  
692 697
  ##############################################################
693 698
  ############## Prepare object to return
694 699
  ############## Collect information from assessment ##########
695 700
  
701
  # #comments                                                                    
702
 comments_str <- c("tile processed for the region",
703
  "boxplot with outlier",                                                          
704
  "boxplot with outlier",
705
  "boxplot scaling by tiles",
706
  "boxplot scaling by tiles",
707
  "boxplot overall region with outliers",
708
  "boxplot overall region with scaling",
709
  "Barplot of metrics ranked by tile",
710
  "Barplot of metrics ranked by tile",
711
  "Average metrics map centroids",
712
  "Average metrics map centroids",
713
  "Number of missing day threshold1 map centroids",
714
  "Number of missing day threshold1 map centroids",
715
  "Number of missing day threshold1 map centroids",
716
  "Number of missing day threshold1 map centroids",
717
  "number_daily_predictions_per_model",
718
  "histogram number_daily_predictions_per_models",
719
  "boxplot overall separated by region with_outliers",
720
  "boxplot overall separated by region with_scaling")
721
  
722
# c("figure_1","figure_2a","figure_2a","figure_2b","figure_2b","figure_3a","figure_3b","figure_5",
723
#   "figure_5","figure_6","figure_6",
724
#                             Figure_7a
725
#                                    Figure_7a
726
#Number of missing day threshold1 map centroids                                    Figure_7a
727
#Number of missing day threshold1 map centroids                                    Figure_7a
728
#number_daily_predictions_per_model                                                        Figure_7b
729
#histogram number_daily_predictions_per_models                                    Figure_7c
730
#boxplot_overall_separated_by_region_with_oultiers_                              Figure 8a
731
#boxplot_overall_separated_by_region_with_scaling                                 Figure 8b
732

  
696 733
  outfiles_names <- c("summary_metrics_v_names","tb_v_accuracy_name","tb_month_s_name","tb_s_accuracy_name", 
697 734
  "data_month_s_name","data_day_v_name","data_day_s_name","data_month_v_name", "tb_month_v_name",
698 735
  "pred_data_month_info_name","pred_data_day_info_name","df_tile_processed_name","df_tiles_all_name", 
......
741 778
# histogram number_daily_predictions_per_models                                    Figure_7c
742 779
# boxplot_overall_separated_by_region_with_oultiers_                              Figure 8a
743 780
# boxplot_overall_separated_by_region_with_scaling                                 Figure 8b
781

  
782
# Browse[3]> c
783
# Error in text.default(coordinates(pt)[1], coordinates(pt)[2], labels = i,  : 
784
#                         X11 font -adobe-helvetica-%s-%s-*-*-%d-*-*-*-*-*-*-*, face 2 at size 16 could not be loaded
785
#                       In addition: Warning message:
786
#                         In polypath(x = mcrds[, 1], y = mcrds[, 2], border = border, col = col,  :
787
#                                       Path drawing not available for this device
788

  
789

  
790

  
791
# Browse[2]>   for(i in 1:length(threshold_missing_day)){
792
# +     
793
# +     #summary_metrics_v$n_missing <- summary_metrics_v$n == 365
794
# +     #summary_metrics_v$n_missing <- summary_metrics_v$n < 365
795
# +     summary_metrics_v$n_missing <- summary_metrics_v$n < threshold_missing_day[i]
796
# +     summary_metrics_v_subset <- subset(summary_metrics_v,model_name=="mod1")
797
# +     
798
# +     #res_pix <- 1200
799
# +     res_pix <- 960
800
# +     
801
# +     col_mfrow <- 1
802
# +     row_mfrow <- 1
803
# +     fig_filename <- paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i],
804
# +                        "_",out_suffix,".png",sep="")
805
# +     png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i],
806
# +                        "_",out_suffix,".png",sep=""),
807
# +         width=col_mfrow*res_pix,height=row_mfrow*res_pix)
808
# +     
809
# +     model_name[j]
810
# +     
811
# +     p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black'))
812
# +     #title("(a) Mean for 1 January")
813
# +     p <- bubble(summary_metrics_v_subset,"n_missing",main=paste("Missing per tile and by ",model_name[j]," for ",
814
# +                                                                 threshold_missing_day[i]))
815
# +     p1 <- p+p_shp
816
# +     try(print(p1)) #error raised if number of missing values below a threshold does not exist
817
# +     dev.off()
818
# +     
819
# +     list_outfiles[[counter_fig+i]] <- fig_filename
820
# +   }
821
# debug at /nobackupp8/bparmen1/env_layers_scripts/global_run_scalingup_assessment_part2_01042016.R#272: i
822
# Browse[3]>   counter_fig <- counter_fig+length(threshold_missing_day) #currently 4 days...
823
# Browse[3]> c
824
# Error in grid.Call.graphics(L_setviewport, pvp, TRUE) : 
825
#   non-finite location and/or size for viewport

Also available in: Unified diff