Revision 8374dddd
Added by Benoit Parmentier over 8 years ago
climate/research/oregon/interpolation/global_run_scalingup_mosaicing.R | ||
---|---|---|
5 | 5 |
#Analyses, figures, tables and data are also produced in the script. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 04/14/2015 |
8 |
#MODIFIED ON: 04/10/2016
|
|
8 |
#MODIFIED ON: 04/11/2016
|
|
9 | 9 |
#Version: 6 |
10 | 10 |
#PROJECT: Environmental Layers project |
11 | 11 |
#COMMENTS: analyses run for reg4 1991 for test of mosaicing using 1500x4500km and other tiles |
... | ... | |
60 | 60 |
#8) metric_name: metric or columns to use for additional mosaicing: "rmse" #RMSE, MAE etc. #PARAM 8 |
61 | 61 |
#9) pred_mod_name : model name used e.g. "mod1" #PARAM 9 |
62 | 62 |
#10) var_pred : variable for use in residuals mapping (e.g. "res_mod1") #PARAM 10 |
63 |
#11) create_out_dir_param: if TRUE then create a new dir #PARAM 11 |
|
64 |
#12) day_to_mosaic_range: start and end date for daily mosaics, if NULL then mosaic all days of the year #PARAM 12 |
|
65 |
#13) proj_str :porjection used by tiles e.g. CRS_WGS84 #PARAM 13 |
|
66 |
#14) file_format: output file format used for raster eg ".tif" #PARAM 14 |
|
67 |
#15) NA_value: NA value used e.g. -9999 #PARAM 15 |
|
68 |
#16) num_cores: number of cores #PARAM 16 |
|
69 |
#17) region_names: selected region names e.g. reg4 #PARAM 17 |
|
70 |
#18) use_autokrige: use_autokrige if FALSE use kriging from Fields package #PARAM 18 |
|
71 |
#19) infile_mask: input file mask used for the region under process #PARAM 19 |
|
72 |
#20) tb_accuracy_name: daily accuracy from testing/validation stations by tiles #PARAM 20 |
|
73 |
#21) data_month_s_name: training stations for climatology time steps #PARAM 21 |
|
74 |
#22) data_day_v_name: testing stations for daily predictions combined #PARAM 22 |
|
75 |
#23) data_day_s_name: training stations for daily predictions cominbed #PARAM 23 |
|
76 |
#24) df_tile_processed_name: processed tiles from the accuracy assessment ##PARAM 24 |
|
77 |
#25) mosaic_python: python script used in the mosoicing (gdalmerge script from Alberto Guzmann) #PARAM 25 |
|
78 |
#26) python_bin: directory for general python "/usr/bin" #PARAM 26 |
|
79 |
#27) algorithm: python or R, if R use mosaic function for R, if python use modified gdal merge, PARAM 27 |
|
80 |
#28) match_extent : if "FALSE" try without matching geographic extent #PARAM 28 |
|
81 |
#29) list_models : if NULL use y~1 formula #PARAM 29 |
|
82 |
#30) layers_option: mosaic to create as a layer from var_pred (e.g. TMax), res_training, res_testing, ac_testing |
|
83 |
#31) tmp_files: if TRUE keep temporary files generated during mosaicing |
|
63 |
#11) out_dir: output directory #PARAM 11 |
|
64 |
#12) create_out_dir_param: if TRUE then create a new dir #PARAM 12 |
|
65 |
#13) day_to_mosaic_range: start and end date for daily mosaics, if NULL then mosaic all days of the year #PARAM 12 |
|
66 |
#14) year_predicted: year of the prediction being mosaiced (process is done by year) |
|
67 |
#15) proj_str :porjection used by tiles e.g. CRS_WGS84 #PARAM 13 |
|
68 |
#16) file_format: output file format used for raster eg ".tif" #PARAM 14 |
|
69 |
#17) NA_value: NA value used e.g. -9999 #PARAM 15 |
|
70 |
#18) num_cores: number of cores #PARAM 16 |
|
71 |
#19) use_autokrige: use_autokrige if FALSE use kriging from Fields package #PARAM 18 |
|
72 |
#20) infile_mask: input file mask used for the region under process #PARAM 19 |
|
73 |
#21) tb_accuracy_name: daily accuracy from testing/validation stations by tiles #PARAM 20 |
|
74 |
#22) data_month_s_name: training stations for climatology time steps #PARAM 21 |
|
75 |
#23) data_day_v_name: testing stations for daily predictions combined #PARAM 22 |
|
76 |
#24) data_day_s_name: training stations for daily predictions cominbed #PARAM 23 |
|
77 |
#25) df_tile_processed_name: processed tiles from the accuracy assessment ##PARAM 24 |
|
78 |
#26) mosaic_python: python script used in the mosoicing (gdalmerge script from Alberto Guzmann) #PARAM 25 |
|
79 |
#27) python_bin: directory for general python "/usr/bin" #PARAM 26 |
|
80 |
#28) algorithm: python or R, if R use mosaic function for R, if python use modified gdal merge, PARAM 27 |
|
81 |
#29) match_extent : if "FALSE" try without matching geographic extent #PARAM 28 |
|
82 |
#30) list_models : if NULL use y~1 formula #PARAM 29 |
|
83 |
#31) layers_option: mosaic to create as a layer from var_pred (e.g. TMax), res_training, res_testing, ac_testing |
|
84 |
#32) tmp_files: if TRUE keep temporary files generated during mosaicing |
|
84 | 85 |
|
85 | 86 |
###OUTPUT |
86 | 87 |
# |
... | ... | |
127 | 128 |
metric_name <- list_param_run_mosaicing_prediction$metric_name # "rmse" #RMSE, MAE etc. #PARAM 8 |
128 | 129 |
pred_mod_name <- list_param_run_mosaicing_prediction$pred_mod_name #"mod1" #PARAM 9 |
129 | 130 |
var_pred <- list_param_run_mosaicing_prediction$var_pred # "res_mod1" #used in residuals mapping #PARAM 10 |
131 |
out_dir <- list_param_run_mosaicing_prediction$out_dir #PARAM 11 |
|
130 | 132 |
create_out_dir_param <- list_param_run_mosaicing_prediction$create_out_dir_param # FALSE #PARAM 12 |
131 | 133 |
|
132 | 134 |
#if daily mosaics NULL then mosaicas all days of the year #PARAM 13 |
133 | 135 |
day_to_mosaic_range <- list_param_run_mosaicing_prediction$day_to_mosaic_range # c("19920101","19920102","19920103") #,"19920104","19920105") #PARAM9, two dates note in /tiles for now on NEX |
134 |
|
|
136 |
year_processed <- list_param_run_mosaicing_prediction$year_predicted |
|
135 | 137 |
#CRS_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 #CONSTANT1 |
136 | 138 |
#CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
137 | 139 |
proj_str <- list_param_run_mosaicing_prediction$proj_str# CRS_WGS84 #PARAM 8 #check this parameter |
... | ... | |
552 | 554 |
#list of mosaiced files: get the list of files now to include in the output object!! |
553 | 555 |
mosaicing_prediction_obj <- list(list_mosaic_obj,layers_option) #debugged |
554 | 556 |
names(mosaicing_prediction_obj) <- c("list_mosaic_obj","layers_option") |
555 |
return(run_mosaicing_prediction_obj) |
|
556 |
|
|
557 |
fname_mosaicing_prediction_obj <- file.path(out_dir,paste("mosaicing_prediction_obj_",out_suffix_str,".RData",sep="")) |
|
558 |
save(mosaicing_prediction_obj,file= fname_mosaicing_prediction_obj) |
|
559 |
|
|
560 |
return(mosaicing_prediction_obj) |
|
557 | 561 |
} |
558 | 562 |
|
559 | 563 |
############### |
Also available in: Unified diff
mosaicing script shell script for job, modifications and clean up with comments