Project

General

Profile

Download (17.8 KB) Statistics
| Branch: | Revision:
1
## Figures associated with MOD35 Cloud Mask Exploration
2

    
3
setwd("~/acrobates/adamw/projects/MOD35C5")
4

    
5
library(raster);beginCluster(10)
6
library(rasterVis)
7
library(rgdal)
8
library(plotKML)
9
library(Cairo)
10
library(reshape)
11
library(rgeos)
12
library(splancs)
13

    
14
## get % cloudy
15
mod09=raster("data/MOD09_2009.tif")
16
names(mod09)="C5MOD09CF"
17
NAvalue(mod09)=0
18

    
19
mod35c5=raster("data/MOD35_2009.tif")
20
names(mod35c5)="C5MOD35CF"
21
NAvalue(mod35c5)=0
22

    
23
## mod35C6 annual
24
if(!file.exists("data/MOD35C6_2009.tif")){
25
  system("/usr/local/gdal-1.10.0/bin/gdalbuildvrt  -a_srs '+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs' -sd 1 -b 1 data/MOD35C6.vrt `find /home/adamw/acrobates/adamw/projects/interp/data/modis/mod35/summary/ -name '*h[1]*_mean.nc'` ")
26
  system("align.sh data/MOD35C6.vrt data/MOD09_2009.tif data/MOD35C6_2009.tif")
27
}
28
mod35c6=raster("data/MOD35C6_2009_v1.tif")
29
names(mod35c6)="C6MOD35CF"
30
NAvalue(mod35c6)=255
31

    
32
## landcover
33
if(!file.exists("data/MCD12Q1_IGBP_2009_051_wgs84_1km.tif")){
34
  system(paste("/usr/local/gdal-1.10.0/bin/gdalwarp -tr 0.008983153 0.008983153 -r mode -ot Byte -co \"COMPRESS=LZW\"",
35
               " /mnt/data/jetzlab/Data/environ/global/MODIS/MCD12Q1/051/MCD12Q1_051_2009_wgs84.tif ",
36
               " -t_srs \"+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs\" ",
37
               " -te -180.0044166 -60.0074610 180.0044166 90.0022083 ",
38
               "data/MCD12Q1_IGBP_2009_051_wgs84_1km.tif -overwrite ",sep=""))}
39
lulc=raster("data/MCD12Q1_IGBP_2009_051_wgs84_1km.tif")
40

    
41
#  lulc=ratify(lulc)
42
  data(worldgrids_pal)  #load palette
43
  IGBP=data.frame(ID=0:16,col=worldgrids_pal$IGBP[-c(18,19)],
44
    lulc_levels2=c("Water","Forest","Forest","Forest","Forest","Forest","Shrublands","Shrublands","Savannas","Savannas","Grasslands","Permanent wetlands","Croplands","Urban and built-up","Cropland/Natural vegetation mosaic","Snow and ice","Barren or sparsely vegetated"),stringsAsFactors=F)
45
  IGBP$class=rownames(IGBP);rownames(IGBP)=1:nrow(IGBP)
46
  levels(lulc)=list(IGBP)
47
#lulc=crop(lulc,mod09)
48
names(lulc)="MCD12Q1"
49

    
50
## make land mask
51
if(!file.exists("data/land.tif"))
52
  land=calc(lulc,function(x) ifelse(x==0,NA,1),file="data/land.tif",options=c("COMPRESS=LZW","ZLEVEL=9","PREDICTOR=2"),datatype="INT1U",overwrite=T)
53
land=raster("data/land.tif")
54

    
55
## mask cloud masks to land pixels
56
#mod09l=mask(mod09,land)
57
#mod35l=mask(mod35,land)
58

    
59
#####################################
60
### compare MOD43 and MOD17 products
61

    
62
## MOD17
63
#extent(mod17)=alignExtent(mod17,mod09)
64
if(!file.exists("data/MOD17.tif"))
65
system("align.sh ~/acrobates/adamw/projects/interp/data/modis/MOD17/MOD17A3_Science_NPP_mean_00_12.tif data/MOD09_2009.tif data/MOD17.tif")
66
mod17=raster("data/MOD17.tif",format="GTiff")
67
NAvalue(mod17)=65535
68
names(mod17)="MOD17_unscaled"
69

    
70
if(!file.exists("data/MOD17qc.tif"))
71
  system("align.sh ~/acrobates/adamw/projects/interp/data/modis/MOD17/MOD17A3_Science_NPP_Qc_mean_00_12.tif data/MOD09_2009.tif data/MOD17qc.tif")
72
mod17qc=raster("data/MOD17qc.tif",format="GTiff")
73
NAvalue(mod17qc)=255
74
names(mod17qc)="MOD17CF"
75

    
76
## MOD11 via earth engine
77
if(!file.exists("data/MOD11_2009.tif"))
78
  system("align.sh ~/acrobates/adamw/projects/interp/data/modis/mod11/2009/MOD11_LST_2009.tif data/MOD09_2009.tif data/MOD11_2009.tif")
79
mod11=raster("data/MOD11_2009.tif",format="GTiff")
80
names(mod11)="MOD11_unscaled"
81
NAvalue(mod11)=0
82
if(!file.exists("data/MOD11qc_2009.tif"))
83
  system("align.sh ~/acrobates/adamw/projects/interp/data/modis/mod11/2009/MOD11_Pmiss_2009.tif data/MOD09_2009.tif data/MOD11qc_2009.tif")
84
mod11qc=raster("data/MOD11qc_2009.tif",format="GTiff")
85
names(mod11qc)="MOD11CF"
86

    
87
### Processing path
88
if(!file.exists("data/MOD35pp.tif"))
89
system("align.sh data/MOD35_ProcessPath.tif data/MOD09_2009.tif data/MOD35pp.tif")
90
pp=raster("data/MOD35pp.tif")
91
NAvalue(pp)=255
92
names(pp)="MOD35pp"
93

    
94

    
95
#hist(dif,maxsamp=1000000)
96
## draw lulc-stratified random sample of mod35-mod09 differences 
97
#samp=sampleStratified(lulc, 1000, exp=10)
98
#save(samp,file="LULC_StratifiedSample_10000.Rdata")
99
#mean(dif[samp],na.rm=T)
100
#Stats(dif,function(x) c(mean=mean(x),sd=sd(x)))
101

    
102

    
103
###
104

    
105
n=100
106
at=seq(0,100,len=n)
107
cols=grey(seq(0,1,len=n))
108
cols=rainbow(n)
109
bgyr=colorRampPalette(c("blue","green","yellow","red"))
110
cols=bgyr(n)
111

    
112

    
113
### Transects
114
r1=Lines(list(
115
  Line(matrix(c(
116
                -61.688,4.098,
117
                -59.251,3.430
118
                ),ncol=2,byrow=T))),"Venezuela")
119
r2=Lines(list(
120
  Line(matrix(c(
121
                133.746,-31.834,
122
                134.226,-32.143
123
                ),ncol=2,byrow=T))),"Australia")
124
r3=Lines(list(
125
  Line(matrix(c(
126
                73.943,27.419,
127
                74.369,26.877
128
                ),ncol=2,byrow=T))),"India")
129
#r4=Lines(list(
130
#  Line(matrix(c(
131
#                -5.164,42.270,
132
#                -4.948,42.162
133
#                ),ncol=2,byrow=T))),"Spain")
134

    
135
r5=Lines(list(
136
  Line(matrix(c(
137
                33.195,12.512,
138
                33.802,12.894
139
                ),ncol=2,byrow=T))),"Sudan")
140

    
141
#r6=Lines(list(
142
#  Line(matrix(c(
143
#                -63.353,-10.746,
144
#                -63.376,-9.310
145
#                ),ncol=2,byrow=T))),"Brazil")
146

    
147

    
148
trans=SpatialLines(list(r1,r2,r3,r5),CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs "))
149
### write out shapefiles of transects
150
writeOGR(SpatialLinesDataFrame(trans,data=data.frame(ID=names(trans)),match.ID=F),"output",layer="transects",driver="ESRI Shapefile",overwrite=T)
151

    
152
## buffer transects to get regional values 
153
transb=gBuffer(trans,byid=T,width=0.4)
154

    
155
## make polygons of bounding boxes
156
bb0 <- lapply(slot(transb, "polygons"), bbox)
157
bb1 <- lapply(bb0, bboxx)
158
# turn these into matrices using a helper function in splancs
159
bb2 <- lapply(bb1, function(x) rbind(x, x[1,]))
160
# close the matrix rings by appending the first coordinate
161
rn <- row.names(transb)
162
# get the IDs
163
bb3 <- vector(mode="list", length=length(bb2))
164
# make somewhere to keep the output
165
for (i in seq(along=bb3)) bb3[[i]] <- Polygons(list(Polygon(bb2[[i]])),
166
                   ID=rn[i])
167
# loop over the closed matrix rings, adding the IDs
168
bbs <- SpatialPolygons(bb3, proj4string=CRS(proj4string(transb)))
169

    
170
trd1=lapply(1:length(transb),function(x) {
171
  td=crop(mod11,transb[x])
172
  tdd=lapply(list(mod35c5,mod35c6,mod09,mod17,mod17qc,mod11,mod11qc,lulc,pp),function(l) resample(crop(l,transb[x]),td,method="ngb"))
173
  ## normalize MOD11 and MOD17
174
  for(j in which(do.call(c,lapply(tdd,function(i) names(i)))%in%c("MOD11_unscaled","MOD17_unscaled"))){
175
    trange=cellStats(tdd[[j]],range)
176
    tscaled=100*(tdd[[j]]-trange[1])/(trange[2]-trange[1])
177
    tscaled@history=list(range=trange)
178
    names(tscaled)=sub("_unscaled","",names(tdd[[j]]))
179
    tdd=c(tdd,tscaled)
180
  }
181
  return(brick(tdd))
182
})
183

    
184
## bind all subregions into single dataframe for plotting
185
trd=do.call(rbind.data.frame,lapply(1:length(trd1),function(i){
186
  d=as.data.frame(as.matrix(trd1[[i]]))
187
  d[,c("x","y")]=coordinates(trd1[[i]])
188
  d$trans=names(trans)[i]
189
  d=melt(d,id.vars=c("trans","x","y"))
190
  return(d)
191
}))
192

    
193
transd=do.call(rbind.data.frame,lapply(1:length(trans),function(l) {
194
  td=as.data.frame(extract(trd1[[l]],trans[l],along=T,cellnumbers=F)[[1]])
195
  td$loc=extract(trd1[[l]],trans[l],along=T,cellnumbers=T)[[1]][,1]
196
  td[,c("x","y")]=xyFromCell(trd1[[l]],td$loc)
197
  td$dist=spDistsN1(as.matrix(td[,c("x","y")]), as.matrix(td[1,c("x","y")]),longlat=T)
198
  td$transect=names(trans[l])
199
  td2=melt(td,id.vars=c("loc","x","y","dist","transect"))
200
  td2=td2[order(td2$variable,td2$dist),]
201
  # get per variable ranges to normalize
202
  tr=cast(melt.list(tapply(td2$value,td2$variable,function(x) data.frame(min=min(x,na.rm=T),max=max(x,na.rm=T)))),L1~variable)
203
  td2$min=tr$min[match(td2$variable,tr$L1)]
204
  td2$max=tr$max[match(td2$variable,tr$L1)]
205
  print(paste("Finished ",names(trans[l])))
206
  return(td2)}
207
  ))
208

    
209
transd$type=ifelse(grepl("MOD35|MOD09|CF",transd$variable),"CF","Data")
210

    
211

    
212
## comparison of % cloudy days
213
if(!file.exists("data/dif_c5_09.tif"))
214
  overlay(mod35c5,mod09,fun=function(x,y) {return(x-y)},file="data/dif_c5_09.tif",format="GTiff",options=c("COMPRESS=LZW","ZLEVEL=9"),overwrite=T)
215
dif_c5_09=raster("data/dif_c5_09.tif",format="GTiff")
216

    
217
#dif_c6_09=mod35c6-mod09
218
#dif_c5_c6=mod35c5-mod35c6
219

    
220
## exploring various ways to compare cloud products along landcover or processing path edges
221
#t1=trd1[[1]]
222
#dif_p=calc(trd1[[1]], function(x) (x[1]-x[3])/(1-x[1]))
223
#edge=calc(edge(subset(t1,"MCD12Q1"),classes=T,type="inner"),function(x) ifelse(x==1,1,NA))
224
#edgeb=buffer(edge,width=5000)
225
#edgeb=calc(edgeb,function(x) ifelse(is.na(x),0,1))
226
#names(edge)="edge"
227
#names(edgeb)="edgeb"
228
#td1=as.data.frame(stack(t1,edge,edgeb))
229
#cor(td1$MOD17,td1$C6MOD35,use="complete",method="spearman")
230
#cor(td1$MOD17[td1$edgeb==1],td1$C5MOD35[td1$edgeb==1],use="complete",method="spearman")
231

    
232
### Correlations
233
#trdw=cast(trd,trans+x+y~variable,value="value")
234
#cor(trdw$MOD17,trdw$C5MOD35,use="complete",method="spearman")
235

    
236
#Across all pixels in the four regions analyzed in Figure 3 there is a much larger correlation between mean NPP and the C5 MOD35 CF (Spearman’s ρ = -0.61, n=58,756) than the C6 MOD35 CF (ρ = 0.00, n=58,756) or MOD09 (ρ = -0.07, n=58,756) products.  
237
#by(trdw,trdw$trans,function(x) cor(as.data.frame(na.omit(x[,c("C5MOD35CF","C6MOD35CF","C5MOD09CF","MOD17","MOD11")])),use="complete",method="spearman"))
238

    
239

    
240
## table of correlations
241
#trdw_cor=as.data.frame(na.omit(trdw[,c("C5MOD35CF","C6MOD35CF","C5MOD09CF","MOD17","MOD11")]))
242
#nrow(trdw_cor)
243
#round(cor(trdw_cor,method="spearman"),2)
244

    
245

    
246
## set up some graphing parameters
247
at=seq(0,100,leng=100)
248
bgyr=colorRampPalette(c("purple","blue","green","yellow","orange","red","red"))
249
bgrayr=colorRampPalette(c("purple","blue","grey","red","red"))
250
cols=bgyr(100)
251

    
252
## global map
253
library(maptools)
254
coast=map2SpatialLines(map("world", interior=FALSE, plot=FALSE),proj4string=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"))
255

    
256
g1=levelplot(stack(mod35c5,mod09),xlab=" ",scales=list(x=list(draw=F),y=list(alternating=1)),col.regions=cols,at=at)+layer(sp.polygons(bbs[1:4],lwd=2))+layer(sp.lines(coast,lwd=.5))
257

    
258
g2=levelplot(dif_c5_09,col.regions=bgrayr(100),at=seq(-70,70,len=100),margin=F,ylab=" ",colorkey=list("right"))+layer(sp.polygons(bbs[1:4],lwd=2))+layer(sp.lines(coast,lwd=.5))
259
g2$strip=strip.custom(var.name="Difference (C5MOD35-C5MOD09)",style=1,strip.names=T,strip.levels=F)  #update strip text
260
#g3=histogram(dif_c5_09,col="black",border=NA,scales=list(x=list(at=c(-50,0,50)),y=list(draw=F),cex=1))+layer(panel.abline(v=0,col="red",lwd=2))
261

    
262
### regional plots
263
p1=useOuterStrips(levelplot(value~x*y|variable+trans,data=trd[!trd$variable%in%c("MOD17_unscaled","MOD11_unscaled","MCD12Q1","MOD35pp"),],asp=1,scales=list(draw=F,rot=0,relation="free"),
264
                                       at=at,col.regions=cols,maxpixels=7e6,
265
                                       ylab="Latitude",xlab="Longitude"),strip = strip.custom(par.strip.text=list(cex=.7)))+layer(sp.lines(trans,lwd=2))
266

    
267
p2=useOuterStrips(
268
  levelplot(value~x*y|variable+trans,data=trd[trd$variable%in%c("MCD12Q1"),],
269
            asp=1,scales=list(draw=F,rot=0,relation="free"),colorkey=F,
270
            at=c(-1,IGBP$ID),col.regions=IGBP$col,maxpixels=7e7,
271
            legend=list(
272
              right=list(fun=draw.key(list(columns=1,#title="MCD12Q1 \n IGBP Land \n Cover",
273
                           rectangles=list(col=IGBP$col,size=1),
274
                           text=list(as.character(IGBP$ID),at=IGBP$ID-.5))))),
275
            ylab="",xlab=" "),strip = strip.custom(par.strip.text=list(cex=.7)),strip.left=F)+layer(sp.lines(trans,lwd=2))
276
p3=useOuterStrips(
277
  levelplot(value~x*y|variable+trans,data=trd[trd$variable%in%c("MOD35pp"),],
278
            asp=1,scales=list(draw=F,rot=0,relation="free"),colorkey=F,
279
            at=c(-1:4),col.regions=c("blue","cyan","tan","darkgreen"),maxpixels=7e7,
280
            legend=list(
281
              right=list(fun=draw.key(list(columns=1,#title="MOD35 \n Processing \n Path",
282
                           rectangles=list(col=c("blue","cyan","tan","darkgreen"),size=1),
283
                           text=list(c("Water","Coast","Desert","Land")))))),
284
            ylab="",xlab=" "),strip = strip.custom(par.strip.text=list(cex=.7)),strip.left=F)+layer(sp.lines(trans,lwd=2))
285

    
286
## transects
287
p4=xyplot(value~dist|transect,groups=variable,type=c("smooth","p"),
288
       data=transd,panel=function(...,subscripts=subscripts) {
289
         td=transd[subscripts,]
290
         ## mod09
291
         imod09=td$variable=="C5MOD09CF"
292
         panel.xyplot(td$dist[imod09],td$value[imod09],type=c("p","smooth"),span=0.2,subscripts=1:sum(imod09),col="red",pch=16,cex=.25)
293
         ## mod35C5
294
         imod35=td$variable=="C5MOD35CF"
295
         panel.xyplot(td$dist[imod35],td$value[imod35],type=c("p","smooth"),span=0.09,subscripts=1:sum(imod35),col="blue",pch=16,cex=.25)
296
         ## mod35C6
297
         imod35c6=td$variable=="C6MOD35CF"
298
         panel.xyplot(td$dist[imod35c6],td$value[imod35c6],type=c("p","smooth"),span=0.09,subscripts=1:sum(imod35c6),col="black",pch=16,cex=.25)
299
         ## mod17
300
         imod17=td$variable=="MOD17"
301
         panel.xyplot(td$dist[imod17],100*((td$value[imod17]-td$min[imod17][1])/(td$max[imod17][1]-td$min[imod17][1])),
302
                      type=c("smooth"),span=0.09,subscripts=1:sum(imod17),col="darkgreen",lty=5,pch=1,cex=.25)
303
         imod17qc=td$variable=="MOD17CF"
304
         panel.xyplot(td$dist[imod17qc],td$value[imod17qc],type=c("p","smooth"),span=0.09,subscripts=1:sum(imod17qc),col="darkgreen",pch=16,cex=.25)
305
         ## mod11
306
         imod11=td$variable=="MOD11"
307
         panel.xyplot(td$dist[imod11],100*((td$value[imod11]-td$min[imod11][1])/(td$max[imod11][1]-td$min[imod11][1])),
308
                      type=c("smooth"),span=0.09,subscripts=1:sum(imod17),col="orange",lty="dashed",pch=1,cex=.25)
309
         imod11qc=td$variable=="MOD11CF"
310
         qcspan=ifelse(td$transect[1]=="Australia",0.2,0.05)
311
         panel.xyplot(td$dist[imod11qc],td$value[imod11qc],type=c("p","smooth"),npoints=100,span=qcspan,subscripts=1:sum(imod11qc),col="orange",pch=16,cex=.25)
312
         ## land
313
         path=td[td$variable=="MOD35pp",]
314
         panel.segments(path$dist,-10,c(path$dist[-1],max(path$dist,na.rm=T)),-10,col=c("blue","cyan","tan","darkgreen")[path$value+1],subscripts=1:nrow(path),lwd=10,type="l")
315
         land=td[td$variable=="MCD12Q1",]
316
         panel.segments(land$dist,-20,c(land$dist[-1],max(land$dist,na.rm=T)),-20,col=IGBP$col[land$value+1],subscripts=1:nrow(land),lwd=10,type="l")
317
        },subscripts=T,par.settings = list(grid.pars = list(lineend = "butt")),
318
       scales=list(
319
         x=list(alternating=1,relation="free"),#, lim=c(0,70)),
320
         y=list(at=c(-18,-10,seq(0,100,len=5)),
321
           labels=c("MCD12Q1 IGBP","MOD35 path",seq(0,100,len=5)),
322
           lim=c(-25,100)),
323
         alternating=F),
324
       xlab="Distance Along Transect (km)", ylab="% Missing Data / % of Maximum Value",
325
       legend=list(
326
         bottom=list(fun=draw.key(list( rep=FALSE,columns=1,title=" ",
327
                      lines=list(type=c("b","b","b","b","b","l","b","l"),pch=16,cex=.5,
328
                        lty=c(0,1,1,1,1,5,1,5),
329
                        col=c("transparent","red","blue","black","darkgreen","darkgreen","orange","orange")),
330
                       text=list(
331
                         c("MODIS Products","C5 MOD09 % Cloudy","C5 MOD35 % Cloudy","C6 MOD35 % Cloudy","MOD17 % Missing","MOD17 (scaled)","MOD11 % Missing","MOD11 (scaled)")),
332
                       rectangles=list(border=NA,col=c(NA,"tan","darkgreen")),
333
                       text=list(c("C5 MOD35 Processing Path","Desert","Land")),
334
                       rectangles=list(border=NA,col=c(NA,IGBP$col[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])),
335
                       text=list(c("MCD12Q1 IGBP Land Cover",IGBP$class[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])))))),
336
  strip = strip.custom(par.strip.text=list(cex=.75)))
337
print(p4)
338

    
339

    
340

    
341
CairoPDF("output/mod35compare.pdf",width=11,height=7)
342
#CairoPNG("output/mod35compare_%d.png",units="in", width=11,height=8.5,pointsize=4000,dpi=1200,antialias="subpixel")
343
### Global Comparison
344
print(g1,position=c(0,.35,1,1),more=T)
345
print(g2,position=c(0,0,1,0.415),more=F)
346
#print(g3,position=c(0.31,0.06,.42,0.27),more=F)
347
         
348
### MOD35 Desert Processing path
349
levelplot(pp,asp=1,scales=list(draw=T,rot=0),maxpixels=1e6,
350
          at=c(-1:3),col.regions=c("blue","cyan","tan","darkgreen"),margin=F,
351
          colorkey=list(space="bottom",title="MOD35 Processing Path",labels=list(labels=c("Water","Coast","Desert","Land"),at=0:4-.5)))+layer(sp.polygons(bbs,lwd=2))+layer(sp.lines(coast,lwd=.5))
352
### levelplot of regions
353
print(p1,position=c(0,0,.62,1),more=T)
354
print(p2,position=c(0.6,0.21,0.78,0.79),more=T)
355
print(p3,position=c(0.76,0.21,1,0.79))
356
### profile plots
357
print(p4)
358
dev.off()
359

    
360
### summary stats for paper
361
td=cast(transect+loc+dist~variable,value="value",data=transd)
362
td2=melt.data.frame(td,id.vars=c("transect","dist","loc","MOD35pp","MCD12Q1"))
363

    
364
## function to prettyprint mean/sd's
365
msd= function(x) paste(round(mean(x,na.rm=T),1),"% ±",round(sd(x,na.rm=T),1),sep="")
366

    
367
cast(td2,transect+variable~MOD35pp,value="value",fun=msd)
368
cast(td2,transect+variable~MOD35pp+MCD12Q1,value="value",fun=msd)
369
cast(td2,transect+variable~.,value="value",fun=msd)
370

    
371
cast(td2,transect+variable~.,value="value",fun=msd)
372

    
373
cast(td2,variable~MOD35pp,value="value",fun=msd)
374
cast(td2,variable~.,value="value",fun=msd)
375

    
376
td[td$transect=="Venezuela",]
377

    
378

    
379
#### export KML
380
library(plotKML)
381

    
382
kml_open("output/modiscloud.kml")
383

    
384
readAll(mod35c5)
385

    
386
kml_layer.Raster(mod35c5,
387
     plot.legend = TRUE,raster_name="Collection 5 MOD35 Cloud Frequency",
388
    z.lim = c(0,100),colour_scale = get("colour_scale_numeric", envir = plotKML.opts),
389
#    home_url = get("home_url", envir = plotKML.opts),
390
#    metadata = NULL, html.table = NULL,
391
    altitudeMode = "clampToGround", balloon = FALSE
392
)
393

    
394
system(paste("gdal_translate -of KMLSUPEROVERLAY ",mod35c5@file@name," output/mod35c5.kmz -co FORMAT=JPEG"))
395

    
396
logo = "http://static.tumblr.com/t0afs9f/KWTm94tpm/yale_logo.png"
397
kml_screen(image.file = logo, position = "UL", sname = "YALE logo",size=c(.1,.1))
398
kml_close("modiscloud.kml")
399
kml_compress("modiscloud.kml",files=c(paste(month.name,".png",sep=""),"obj_legend.png"),zip="/usr/bin/zip")
(20-20/37)