1
|
## Figures associated with MOD35 Cloud Mask Exploration
|
2
|
|
3
|
setwd("~/acrobates/adamw/projects/MOD35C5")
|
4
|
|
5
|
library(raster);beginCluster(10)
|
6
|
library(rasterVis)
|
7
|
library(rgdal)
|
8
|
library(plotKML)
|
9
|
library(Cairo)
|
10
|
library(reshape)
|
11
|
library(rgeos)
|
12
|
library(splancs)
|
13
|
|
14
|
## get % cloudy
|
15
|
mod09=raster("data/MOD09_2009.tif")
|
16
|
names(mod09)="C5MOD09CF"
|
17
|
NAvalue(mod09)=0
|
18
|
|
19
|
mod35c5=raster("data/MOD35_2009.tif")
|
20
|
names(mod35c5)="C5MOD35CF"
|
21
|
NAvalue(mod35c5)=0
|
22
|
|
23
|
## mod35C6 annual
|
24
|
if(!file.exists("data/MOD35C6_2009.tif")){
|
25
|
system("/usr/local/gdal-1.10.0/bin/gdalbuildvrt -a_srs '+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs' -sd 1 -b 1 data/MOD35C6.vrt `find /home/adamw/acrobates/adamw/projects/interp/data/modis/mod35/summary/ -name '*h[1-9]*_mean.nc'` ")
|
26
|
# system("gdalbuildvrt data/MOD35C6.vrt `find /home/adamw/acrobates/adamw/projects/interp/data/modis/mod35/summary/ -name '*h[1-9]*_mean.nc'` ")
|
27
|
|
28
|
# system("/usr/local/gdal-1.10.0/bin/gdalbuildvrt -a_srs '+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs' -sd 4 -b 1 data/MOD35C6_CFday_pmiss.vrt `find /home/adamw/acrobates/adamw/projects/interp/data/modis/mod35/summary/ -name '*h[1]*.nc'` ")
|
29
|
# system("gdalwarp data/MOD35C6_CFday_pmiss.vrt data/MOD35C6_CFday_pmiss.tif -r bilinear")
|
30
|
|
31
|
system("align.sh data/MOD35C6.vrt data/MOD09_2009.tif data/MOD35C6_2009.tif")
|
32
|
# system("align.sh data/MOD35C6_CFday_pmiss.vrt data/MOD09_2009.tif data/MOD35C6_CFday_pmiss.tif")
|
33
|
}
|
34
|
mod35c6=raster("data/MOD35C6_2009.tif")
|
35
|
names(mod35c6)="C6MOD35CF"
|
36
|
NAvalue(mod35c6)=255
|
37
|
|
38
|
## landcover
|
39
|
if(!file.exists("data/MCD12Q1_IGBP_2009_051_wgs84_1km.tif")){
|
40
|
system(paste("/usr/local/gdal-1.10.0/bin/gdalwarp -tr 0.008983153 0.008983153 -r mode -ot Byte -co \"COMPRESS=LZW\"",
|
41
|
" /mnt/data/jetzlab/Data/environ/global/MODIS/MCD12Q1/051/MCD12Q1_051_2009_wgs84.tif ",
|
42
|
" -t_srs \"+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs\" ",
|
43
|
" -te -180.0044166 -60.0074610 180.0044166 90.0022083 ",
|
44
|
"data/MCD12Q1_IGBP_2009_051_wgs84_1km.tif -overwrite ",sep=""))}
|
45
|
lulc=raster("data/MCD12Q1_IGBP_2009_051_wgs84_1km.tif")
|
46
|
|
47
|
# lulc=ratify(lulc)
|
48
|
data(worldgrids_pal) #load palette
|
49
|
IGBP=data.frame(ID=0:16,col=worldgrids_pal$IGBP[-c(18,19)],
|
50
|
lulc_levels2=c("Water","Forest","Forest","Forest","Forest","Forest","Shrublands","Shrublands","Savannas","Savannas","Grasslands","Permanent wetlands","Croplands","Urban and built-up","Cropland/Natural vegetation mosaic","Snow and ice","Barren or sparsely vegetated"),stringsAsFactors=F)
|
51
|
IGBP$class=rownames(IGBP);rownames(IGBP)=1:nrow(IGBP)
|
52
|
levels(lulc)=list(IGBP)
|
53
|
#lulc=crop(lulc,mod09)
|
54
|
names(lulc)="MCD12Q1"
|
55
|
|
56
|
## make land mask
|
57
|
if(!file.exists("data/land.tif"))
|
58
|
land=calc(lulc,function(x) ifelse(x==0,NA,1),file="data/land.tif",options=c("COMPRESS=LZW","ZLEVEL=9","PREDICTOR=2"),datatype="INT1U",overwrite=T)
|
59
|
land=raster("data/land.tif")
|
60
|
|
61
|
## mask cloud masks to land pixels
|
62
|
#mod09l=mask(mod09,land)
|
63
|
#mod35l=mask(mod35,land)
|
64
|
|
65
|
#####################################
|
66
|
### compare MOD43 and MOD17 products
|
67
|
|
68
|
## MOD17
|
69
|
#extent(mod17)=alignExtent(mod17,mod09)
|
70
|
if(!file.exists("data/MOD17.tif"))
|
71
|
system("align.sh ~/acrobates/adamw/projects/interp/data/modis/MOD17/MOD17A3_Science_NPP_mean_00_12.tif data/MOD09_2009.tif data/MOD17.tif")
|
72
|
mod17=raster("data/MOD17.tif",format="GTiff")
|
73
|
NAvalue(mod17)=65535
|
74
|
names(mod17)="MOD17_unscaled"
|
75
|
|
76
|
if(!file.exists("data/MOD17qc.tif"))
|
77
|
system("align.sh ~/acrobates/adamw/projects/interp/data/modis/MOD17/MOD17A3_Science_NPP_Qc_mean_00_12.tif data/MOD09_2009.tif data/MOD17qc.tif")
|
78
|
mod17qc=raster("data/MOD17qc.tif",format="GTiff")
|
79
|
NAvalue(mod17qc)=255
|
80
|
names(mod17qc)="MOD17CF"
|
81
|
|
82
|
## MOD11 via earth engine
|
83
|
if(!file.exists("data/MOD11_2009.tif"))
|
84
|
system("align.sh ~/acrobates/adamw/projects/interp/data/modis/mod11/2009/MOD11_LST_2009.tif data/MOD09_2009.tif data/MOD11_2009.tif")
|
85
|
mod11=raster("data/MOD11_2009.tif",format="GTiff")
|
86
|
names(mod11)="MOD11_unscaled"
|
87
|
NAvalue(mod11)=0
|
88
|
if(!file.exists("data/MOD11qc_2009.tif"))
|
89
|
system("align.sh ~/acrobates/adamw/projects/interp/data/modis/mod11/2009/MOD11_Pmiss_2009.tif data/MOD09_2009.tif data/MOD11qc_2009.tif")
|
90
|
mod11qc=raster("data/MOD11qc_2009.tif",format="GTiff")
|
91
|
names(mod11qc)="MOD11CF"
|
92
|
|
93
|
### Processing path
|
94
|
if(!file.exists("data/MOD35pp.tif"))
|
95
|
system("align.sh data/C5MOD35_ProcessPath.tif data/MOD09_2009.tif data/MOD35pp.tif")
|
96
|
pp=raster("data/MOD35pp.tif")
|
97
|
NAvalue(pp)=255
|
98
|
names(pp)="MOD35pp"
|
99
|
|
100
|
|
101
|
#hist(dif,maxsamp=1000000)
|
102
|
## draw lulc-stratified random sample of mod35-mod09 differences
|
103
|
#samp=sampleStratified(lulc, 1000, exp=10)
|
104
|
#save(samp,file="LULC_StratifiedSample_10000.Rdata")
|
105
|
#mean(dif[samp],na.rm=T)
|
106
|
#Stats(dif,function(x) c(mean=mean(x),sd=sd(x)))
|
107
|
|
108
|
|
109
|
###
|
110
|
|
111
|
n=100
|
112
|
at=seq(0,100,len=n)
|
113
|
cols=grey(seq(0,1,len=n))
|
114
|
cols=rainbow(n)
|
115
|
bgyr=colorRampPalette(c("blue","green","yellow","red"))
|
116
|
cols=bgyr(n)
|
117
|
|
118
|
|
119
|
### Transects
|
120
|
r1=Lines(list(
|
121
|
Line(matrix(c(
|
122
|
-61.688,4.098,
|
123
|
-59.251,3.430
|
124
|
),ncol=2,byrow=T))),"Venezuela")
|
125
|
r2=Lines(list(
|
126
|
Line(matrix(c(
|
127
|
133.746,-31.834,
|
128
|
134.226,-32.143
|
129
|
),ncol=2,byrow=T))),"Australia")
|
130
|
r3=Lines(list(
|
131
|
Line(matrix(c(
|
132
|
73.943,27.419,
|
133
|
74.369,26.877
|
134
|
),ncol=2,byrow=T))),"India")
|
135
|
r4=Lines(list(
|
136
|
Line(matrix(c(
|
137
|
33.195,12.512,
|
138
|
33.802,12.894
|
139
|
),ncol=2,byrow=T))),"Sudan")
|
140
|
|
141
|
|
142
|
|
143
|
trans=SpatialLines(list(r1,r2,r3,r4),CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs "))
|
144
|
### write out shapefiles of transects
|
145
|
writeOGR(SpatialLinesDataFrame(trans,data=data.frame(ID=names(trans)),match.ID=F),"output",layer="transects",driver="ESRI Shapefile",overwrite=T)
|
146
|
|
147
|
## buffer transects to get regional values
|
148
|
transb=gBuffer(trans,byid=T,width=0.4)
|
149
|
|
150
|
## make polygons of bounding boxes
|
151
|
bb0 <- lapply(slot(transb, "polygons"), bbox)
|
152
|
bb1 <- lapply(bb0, bboxx)
|
153
|
# turn these into matrices using a helper function in splancs
|
154
|
bb2 <- lapply(bb1, function(x) rbind(x, x[1,]))
|
155
|
# close the matrix rings by appending the first coordinate
|
156
|
rn <- row.names(transb)
|
157
|
# get the IDs
|
158
|
bb3 <- vector(mode="list", length=length(bb2))
|
159
|
# make somewhere to keep the output
|
160
|
for (i in seq(along=bb3)) bb3[[i]] <- Polygons(list(Polygon(bb2[[i]])),
|
161
|
ID=rn[i])
|
162
|
# loop over the closed matrix rings, adding the IDs
|
163
|
bbs <- SpatialPolygons(bb3, proj4string=CRS(proj4string(transb)))
|
164
|
|
165
|
trd1=lapply(1:length(transb),function(x) {
|
166
|
td=crop(mod11,transb[x])
|
167
|
tdd=lapply(list(mod35c5,mod35c6,mod09,mod17,mod17qc,mod11,mod11qc,lulc,pp),function(l) resample(crop(l,transb[x]),td,method="ngb"))
|
168
|
## normalize MOD11 and MOD17
|
169
|
for(j in which(do.call(c,lapply(tdd,function(i) names(i)))%in%c("MOD11_unscaled","MOD17_unscaled"))){
|
170
|
trange=cellStats(tdd[[j]],range)
|
171
|
tscaled=100*(tdd[[j]]-trange[1])/(trange[2]-trange[1])
|
172
|
tscaled@history=list(range=trange)
|
173
|
names(tscaled)=sub("_unscaled","",names(tdd[[j]]))
|
174
|
tdd=c(tdd,tscaled)
|
175
|
}
|
176
|
return(brick(tdd))
|
177
|
})
|
178
|
|
179
|
## bind all subregions into single dataframe for plotting
|
180
|
trd=do.call(rbind.data.frame,lapply(1:length(trd1),function(i){
|
181
|
d=as.data.frame(as.matrix(trd1[[i]]))
|
182
|
d[,c("x","y")]=coordinates(trd1[[i]])
|
183
|
d$trans=names(trans)[i]
|
184
|
d=melt(d,id.vars=c("trans","x","y"))
|
185
|
return(d)
|
186
|
}))
|
187
|
|
188
|
transd=do.call(rbind.data.frame,lapply(1:length(trans),function(l) {
|
189
|
td=as.data.frame(extract(trd1[[l]],trans[l],along=T,cellnumbers=F)[[1]])
|
190
|
td$loc=extract(trd1[[l]],trans[l],along=T,cellnumbers=T)[[1]][,1]
|
191
|
td[,c("x","y")]=xyFromCell(trd1[[l]],td$loc)
|
192
|
td$dist=spDistsN1(as.matrix(td[,c("x","y")]), as.matrix(td[1,c("x","y")]),longlat=T)
|
193
|
td$transect=names(trans[l])
|
194
|
td2=melt(td,id.vars=c("loc","x","y","dist","transect"))
|
195
|
td2=td2[order(td2$variable,td2$dist),]
|
196
|
# get per variable ranges to normalize
|
197
|
tr=cast(melt.list(tapply(td2$value,td2$variable,function(x) data.frame(min=min(x,na.rm=T),max=max(x,na.rm=T)))),L1~variable)
|
198
|
td2$min=tr$min[match(td2$variable,tr$L1)]
|
199
|
td2$max=tr$max[match(td2$variable,tr$L1)]
|
200
|
print(paste("Finished ",names(trans[l])))
|
201
|
return(td2)}
|
202
|
))
|
203
|
|
204
|
transd$type=ifelse(grepl("MOD35|MOD09|CF",transd$variable),"CF","Data")
|
205
|
|
206
|
|
207
|
## comparison of % cloudy days
|
208
|
if(!file.exists("data/dif_c5_09.tif"))
|
209
|
overlay(mod35c5,mod09,fun=function(x,y) {return(x-y)},file="data/dif_c5_09.tif",format="GTiff",options=c("COMPRESS=LZW","ZLEVEL=9"),overwrite=T)
|
210
|
dif_c5_09=raster("data/dif_c5_09.tif",format="GTiff")
|
211
|
|
212
|
#dif_c6_09=mod35c6-mod09
|
213
|
#dif_c5_c6=mod35c5-mod35c6
|
214
|
|
215
|
##################################################################################
|
216
|
## Identify problematic areas with hard edges in cloud frequency
|
217
|
############################
|
218
|
library(multicore)
|
219
|
|
220
|
## set up processing chunks
|
221
|
nrw=nrow(mod35c5)
|
222
|
nby=10
|
223
|
nrwg=seq(1,nrw,by=nby)
|
224
|
writeLines(paste("Processing ",length(nrwg)," groups and",nrw,"lines"))
|
225
|
|
226
|
## Parallel loop to conduct moving window analysis and quantify pixels with significant shifts across pp or lulc boundaries
|
227
|
output=mclapply(nrwg,function(ti){
|
228
|
## Extract focal areas
|
229
|
ngb=5
|
230
|
vals=getValuesFocal(mod35c5,ngb=ngb,row=ti,nrows=nby)
|
231
|
vals_mod09=getValuesFocal(mod09,ngb=ngb,row=ti,nrows=nby)
|
232
|
pp_ind=getValuesFocal(pp,ngb=ngb,row=ti,nrows=nby)
|
233
|
lulc_ind=getValuesFocal(lulc,ngb=ngb,row=ti,nrows=nby)
|
234
|
## processing path
|
235
|
pp_bias=raster(matrix(do.call(rbind,lapply(1:nrow(vals),function(i) {
|
236
|
tind1=pp_ind[i,] #vector of indices
|
237
|
tval1=vals[i,] # vector of values
|
238
|
tind2=tind1[!is.na(tind1)&!is.na(tval1)] #which classes exist without NAs?
|
239
|
if(length(unique(tind2))<2) return(255) #if only one class, return 255
|
240
|
if(sort(table(tind2),dec=T)[2]<5) return(254) # if too few observations of class 2, return 254
|
241
|
return(round(kruskal.test(tval1,tind1)$p.value*100)) # if it works, return p.value*100
|
242
|
})),nrow=nby,ncol=ncol(mod35c5),byrow=T)) # turn it back into a raster
|
243
|
## udpate raster and write it
|
244
|
extent(pp_bias)=extent(mod35c5[ti:(ti+nby-1),1:ncol(mod35c5),drop=F])
|
245
|
projection(pp_bias)=projection(mod35c5)
|
246
|
NAvalue(pp_bias) <- 255
|
247
|
writeRaster(pp_bias,file=paste("data/tiles/pp_bias_",ti,".tif",sep=""),
|
248
|
format="GTiff",dataType="INT1U",overwrite=T,NAflag=255) #,options=c("COMPRESS=LZW","ZLEVEL=9")
|
249
|
## landcover
|
250
|
lulc_bias=raster(matrix(do.call(rbind,lapply(1:nrow(vals),function(i) {
|
251
|
tind1=lulc_ind[i,] #vector of indices
|
252
|
tval1=vals[i,] # vector of values
|
253
|
tind2=tind1[!is.na(tind1)&!is.na(tval1)] #which classes exist without NAs?
|
254
|
if(length(unique(tind2))<2) return(255) #if only one class, return 255
|
255
|
if(sort(table(tind2),dec=T)[2]<5) return(254) # if too few observations of class 2, return 254
|
256
|
return(round(kruskal.test(tval1,tind1)$p.value*100)) # if it works, get p.value*100
|
257
|
})),nrow=nby,ncol=ncol(mod35c5),byrow=T)) # turn it back into a raster
|
258
|
## udpate raster and write it
|
259
|
extent(lulc_bias)=extent(mod35c5[ti:(ti+nby-1),1:ncol(mod35c5),drop=F])
|
260
|
projection(lulc_bias)=projection(mod35c5)
|
261
|
NAvalue(lulc_bias) <- 255
|
262
|
writeRaster(lulc_bias,file=paste("data/tiles/lulc_bias_",ti,".tif",sep=""),
|
263
|
format="GTiff",dataType="INT1U",overwrite=T,NAflag=255)#,options=c("COMPRESS=LZW","ZLEVEL=9")
|
264
|
|
265
|
## MOD09
|
266
|
mod09_lulc_bias=raster(matrix(do.call(rbind,lapply(1:nrow(vals_mod09),function(i) {
|
267
|
tind1=lulc_ind[i,] #vector of indices
|
268
|
tval1=vals_mod09[i,] # vector of values
|
269
|
tind2=tind1[!is.na(tind1)&!is.na(tval1)] #which classes exist without NAs?
|
270
|
if(length(unique(tind2))<2) return(255) #if only one class, return 255
|
271
|
if(sort(table(tind2),dec=T)[2]<5) return(254) # if too few observations of class 2, return 254
|
272
|
return(round(kruskal.test(tval1,tind1)$p.value*100)) # if it works, get p.value*100
|
273
|
})),nrow=nby,ncol=ncol(mod35c5),byrow=T)) # turn it back into a raster
|
274
|
## udpate raster and write it
|
275
|
extent(mod09_lulc_bias)=extent(mod09[ti:(ti+nby-1),1:ncol(mod09),drop=F])
|
276
|
projection(mod09_lulc_bias)=projection(mod09)
|
277
|
NAvalue(mod09_lulc_bias) <- 255
|
278
|
writeRaster(mod09_lulc_bias,file=paste("data/tiles/mod09_lulc_bias_",ti,".tif",sep=""),
|
279
|
format="GTiff",dataType="INT1U",overwrite=T,NAflag=255)#,options=c("COMPRESS=LZW","ZLEVEL=9")
|
280
|
|
281
|
return(ti)
|
282
|
},mc.cores=15)
|
283
|
|
284
|
|
285
|
### check raster temporary files
|
286
|
showTmpFiles()
|
287
|
#removeTmpFiles(h=1)
|
288
|
|
289
|
## merge all the files back again
|
290
|
system("gdalbuildvrt -srcnodata 255 -vrtnodata 255 data/lulc_bias.vrt `find data/tiles -name 'lulc_bias*tif'` ")
|
291
|
system("gdalwarp -srcnodata 255 -dstnodata 255 -multi -r bilinear -co 'COMPRESS=LZW' -co 'ZLEVEL=9' data/lulc_bias.vrt data/lulc_bias.tif -r near")
|
292
|
# system("align.sh data/lulc_bias.vrt data/MOD09_2009.tif data/lulc_bias.tif")
|
293
|
|
294
|
system("gdalbuildvrt data/pp_bias.vrt `find data/tiles -name 'pp_bias*tif'` ")
|
295
|
system("gdalwarp -srcnodata 255 -dstnodata 255 -multi -r bilinear -co 'COMPRESS=LZW' -co 'ZLEVEL=9' data/pp_bias.vrt data/pp_bias.tif -r near")
|
296
|
system("align.sh -srcnodata 255 -dstnodata 255 -multi -r bilinear data/pp_bias.vrt data/MOD09_2009.tif data/pp_bias_align.tif &")
|
297
|
|
298
|
system("gdalbuildvrt data/mod09_lulc_bias.vrt `find data/tiles -name 'mod09_lulc_bias*tif'` ")
|
299
|
system("gdalwarp -srcnodata 255 -dstnodata 255 -multi -r bilinear -co 'COMPRESS=LZW' -co 'ZLEVEL=9' data/mod09_lulc_bias.vrt data/mod09_lulc_bias.tif -r near")
|
300
|
|
301
|
### read them back in
|
302
|
pp_bias=raster("data/pp_bias.tif")
|
303
|
names(pp_bias)="Processing Path"
|
304
|
lulc_bias=raster("data/lulc_bias.tif")
|
305
|
names(lulc_bias)="Land Use Land Cover"
|
306
|
|
307
|
pat=c(0,0.05,1)#seq(0,0.-5,len=2) #,seq(0.05,.1,len=50))
|
308
|
grayr2=colorRampPalette(c("red","transparent"))#grey(c(.75,.5,.25))))
|
309
|
levelplot(stack(pp_bias,lulc_bias),col.regions=c(grayr2(2)),at=pat,
|
310
|
colorkey=F,margin=F,maxpixels=1e6)+layer(sp.lines(coast,lwd=.5))
|
311
|
|
312
|
cor(td1$MOD17,td1$C6MOD35,use="complete",method="spearman")
|
313
|
cor(td1$MOD17[td1$edgeb==1],td1$C5MOD35[td1$edgeb==1],use="complete",method="spearman")
|
314
|
|
315
|
bwplot(value~MOD35pp|variable,data=td1l[td1l$pedgeb==1,],horizontal=F)
|
316
|
|
317
|
crosstab(dif_c5_09,pp)
|
318
|
### Correlations
|
319
|
#trdw=cast(trd,trans+x+y~variable,value="value")
|
320
|
#cor(trdw$MOD17,trdw$C5MOD35,use="complete",method="spearman")
|
321
|
|
322
|
#Across all pixels in the four regions analyzed in Figure 3 there is a much larger correlation between mean NPP and the C5 MOD35 CF (Spearman’s ρ = -0.61, n=58,756) than the C6 MOD35 CF (ρ = 0.00, n=58,756) or MOD09 (ρ = -0.07, n=58,756) products.
|
323
|
#by(trdw,trdw$trans,function(x) cor(as.data.frame(na.omit(x[,c("C5MOD35CF","C6MOD35CF","C5MOD09CF","MOD17","MOD11")])),use="complete",method="spearman"))
|
324
|
|
325
|
|
326
|
## table of correlations
|
327
|
#trdw_cor=as.data.frame(na.omit(trdw[,c("C5MOD35CF","C6MOD35CF","C5MOD09CF","MOD17","MOD11")]))
|
328
|
#nrow(trdw_cor)
|
329
|
#round(cor(trdw_cor,method="spearman"),2)
|
330
|
|
331
|
|
332
|
## set up some graphing parameters
|
333
|
at=seq(0,100,leng=100)
|
334
|
bgyr=colorRampPalette(c("purple","blue","green","yellow","orange","red","red"))
|
335
|
bgray=colorRampPalette(c("purple","blue","deepskyblue4"))
|
336
|
grayr=colorRampPalette(c("grey","red","darkred"))
|
337
|
bgrayr=colorRampPalette(c("darkblue","blue","grey","red","purple"))
|
338
|
|
339
|
cols=bgyr(100)
|
340
|
|
341
|
strip=strip.custom(par.strip.text=list(cex=.7),bg="transparent")
|
342
|
|
343
|
## global map
|
344
|
library(maptools)
|
345
|
coast=map2SpatialLines(map("world", interior=FALSE, plot=FALSE),proj4string=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"))
|
346
|
|
347
|
g1=levelplot(stack(mod35c5,mod35c6,mod09),xlab=" ",scales=list(x=list(draw=F),y=list(alternating=1)),
|
348
|
col.regions=cols,at=at,cuts=length(at),maxpixels=1e6,
|
349
|
colorkey=list(at=at))+
|
350
|
# layer(sp.polygons(bbs,lwd=5,col="black"))+
|
351
|
layer(sp.lines(coast,lwd=.5))+
|
352
|
layer(sp.points(coordinates(bbs),col="black",cex=2,pch=13,lwd=2))
|
353
|
|
354
|
### Plot of differences between MOD09 adn MOD35 masks
|
355
|
#system("gdalinfo -stats /home/adamw/acrobates/adamw/projects/MOD35C5/data/dif_c5_09.tif")
|
356
|
## get quantiles for color bar of differences
|
357
|
#qs=unique(quantile(as.vector(as.matrix(dif_c5_09)),seq(0,1,len=100),na.rm=T))
|
358
|
#c(bgray(sum(qs<0)),grayr(sum(qs>=0)+1))
|
359
|
qs=seq(-80,80,len=100)
|
360
|
g2=levelplot(dif_c5_09,col.regions=bgrayr(100),cuts=100,at=qs,margin=F,ylab=" ",colorkey=list("right",at=qs),maxpixels=1e6)+
|
361
|
layer(sp.points(coordinates(bbs),col="black",cex=2,pch=13,lwd=2))+
|
362
|
#layer(sp.polygons(bbs,lwd=2))+
|
363
|
layer(sp.lines(coast,lwd=.5))
|
364
|
|
365
|
g2$strip=strip.custom(var.name="Difference (C5MOD35-C5MOD09)",style=1,strip.names=T,strip.levels=F) #update strip text
|
366
|
#g3=histogram(dif_c5_09,col="black",border=NA,scales=list(x=list(at=c(-50,0,50)),y=list(draw=F),cex=1))+layer(panel.abline(v=0,col="red",lwd=2))
|
367
|
|
368
|
### regional plots
|
369
|
p1=useOuterStrips(levelplot(value~x*y|variable+trans,data=trd[!trd$variable%in%c("MOD17_unscaled","MOD11_unscaled","MCD12Q1","MOD35pp"),],asp=1,scales=list(draw=F,rot=0,relation="free"),
|
370
|
at=at,col.regions=cols,maxpixels=7e6,
|
371
|
ylab="Latitude",xlab="Longitude"),strip.left=strip,strip = strip)+layer(sp.lines(trans,lwd=2))
|
372
|
|
373
|
p2=useOuterStrips(
|
374
|
levelplot(value~x*y|variable+trans,data=trd[trd$variable%in%c("MCD12Q1"),],
|
375
|
asp=1,scales=list(draw=F,rot=0,relation="free"),colorkey=F,
|
376
|
at=c(-1,IGBP$ID),col.regions=IGBP$col,maxpixels=7e7,
|
377
|
legend=list(
|
378
|
right=list(fun=draw.key(list(columns=1,#title="MCD12Q1 \n IGBP Land \n Cover",
|
379
|
rectangles=list(col=IGBP$col,size=1),
|
380
|
text=list(as.character(IGBP$ID),at=IGBP$ID-.5))))),
|
381
|
ylab="",xlab=" "),strip = strip,strip.left=F)+layer(sp.lines(trans,lwd=2))
|
382
|
p3=useOuterStrips(
|
383
|
levelplot(value~x*y|variable+trans,data=trd[trd$variable%in%c("MOD35pp"),],
|
384
|
asp=1,scales=list(draw=F,rot=0,relation="free"),colorkey=F,
|
385
|
at=c(-1:4),col.regions=c("blue","cyan","tan","darkgreen"),maxpixels=7e7,
|
386
|
legend=list(
|
387
|
right=list(fun=draw.key(list(columns=1,#title="MOD35 \n Processing \n Path",
|
388
|
rectangles=list(col=c("blue","cyan","tan","darkgreen"),size=1),
|
389
|
text=list(c("Water","Coast","Desert","Land")))))),
|
390
|
ylab="",xlab=" "),strip = strip,strip.left=F)+layer(sp.lines(trans,lwd=2))
|
391
|
|
392
|
## transects
|
393
|
p4=xyplot(value~dist|transect,groups=variable,type=c("smooth","p"),
|
394
|
data=transd,panel=function(...,subscripts=subscripts) {
|
395
|
td=transd[subscripts,]
|
396
|
## mod09
|
397
|
imod09=td$variable=="C5MOD09CF"
|
398
|
panel.xyplot(td$dist[imod09],td$value[imod09],type=c("p","smooth"),span=0.2,subscripts=1:sum(imod09),col="red",pch=16,cex=.25)
|
399
|
## mod35C5
|
400
|
imod35=td$variable=="C5MOD35CF"
|
401
|
panel.xyplot(td$dist[imod35],td$value[imod35],type=c("p","smooth"),span=0.09,subscripts=1:sum(imod35),col="blue",pch=16,cex=.25)
|
402
|
## mod35C6
|
403
|
imod35c6=td$variable=="C6MOD35CF"
|
404
|
panel.xyplot(td$dist[imod35c6],td$value[imod35c6],type=c("p","smooth"),span=0.09,subscripts=1:sum(imod35c6),col="black",pch=16,cex=.25)
|
405
|
## mod17
|
406
|
imod17=td$variable=="MOD17"
|
407
|
panel.xyplot(td$dist[imod17],100*((td$value[imod17]-td$min[imod17][1])/(td$max[imod17][1]-td$min[imod17][1])),
|
408
|
type=c("smooth"),span=0.09,subscripts=1:sum(imod17),col="darkgreen",lty=5,pch=1,cex=.25)
|
409
|
imod17qc=td$variable=="MOD17CF"
|
410
|
panel.xyplot(td$dist[imod17qc],td$value[imod17qc],type=c("p","smooth"),span=0.09,subscripts=1:sum(imod17qc),col="darkgreen",pch=16,cex=.25)
|
411
|
## mod11
|
412
|
imod11=td$variable=="MOD11"
|
413
|
panel.xyplot(td$dist[imod11],100*((td$value[imod11]-td$min[imod11][1])/(td$max[imod11][1]-td$min[imod11][1])),
|
414
|
type=c("smooth"),span=0.09,subscripts=1:sum(imod17),col="orange",lty="dashed",pch=1,cex=.25)
|
415
|
imod11qc=td$variable=="MOD11CF"
|
416
|
qcspan=ifelse(td$transect[1]=="Australia",0.2,0.05)
|
417
|
panel.xyplot(td$dist[imod11qc],td$value[imod11qc],type=c("p","smooth"),npoints=100,span=qcspan,subscripts=1:sum(imod11qc),col="orange",pch=16,cex=.25)
|
418
|
## land
|
419
|
path=td[td$variable=="MOD35pp",]
|
420
|
panel.segments(path$dist,-10,c(path$dist[-1],max(path$dist,na.rm=T)),-10,col=c("blue","cyan","tan","darkgreen")[path$value+1],subscripts=1:nrow(path),lwd=10,type="l")
|
421
|
land=td[td$variable=="MCD12Q1",]
|
422
|
panel.segments(land$dist,-20,c(land$dist[-1],max(land$dist,na.rm=T)),-20,col=IGBP$col[land$value+1],subscripts=1:nrow(land),lwd=10,type="l")
|
423
|
},subscripts=T,par.settings = list(grid.pars = list(lineend = "butt")),
|
424
|
scales=list(
|
425
|
x=list(alternating=1,relation="free"),#, lim=c(0,70)),
|
426
|
y=list(at=c(-20,-10,seq(0,100,len=5)),
|
427
|
labels=c("MCD12Q1 IGBP","MOD35 path",seq(0,100,len=5)),
|
428
|
lim=c(-25,100)),
|
429
|
alternating=F),
|
430
|
xlab="Distance Along Transect (km)", ylab="% Missing Data / % of Maximum Value",
|
431
|
legend=list(
|
432
|
bottom=list(fun=draw.key(list( rep=FALSE,columns=1,title=" ",
|
433
|
lines=list(type=c("b","b","b","b","b","l","b","l"),pch=16,cex=.5,
|
434
|
lty=c(0,1,1,1,1,5,1,5),
|
435
|
col=c("transparent","red","blue","black","darkgreen","darkgreen","orange","orange")),
|
436
|
text=list(
|
437
|
c("MODIS Products","C5 MOD09 % Cloudy","C5 MOD35 % Cloudy","C6 MOD35 % Cloudy","MOD17 % Missing","MOD17 (scaled)","MOD11 % Missing","MOD11 (scaled)")),
|
438
|
rectangles=list(border=NA,col=c(NA,"tan","darkgreen")),
|
439
|
text=list(c("C5 MOD35 Processing Path","Desert","Land")),
|
440
|
rectangles=list(border=NA,col=c(NA,IGBP$col[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])),
|
441
|
text=list(c("MCD12Q1 IGBP Land Cover",IGBP$class[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])))))),
|
442
|
strip = strip,strip.left=F)
|
443
|
#print(p4)
|
444
|
|
445
|
|
446
|
CairoPDF("output/mod35compare.pdf",width=11,height=7)
|
447
|
#CairoPNG("output/mod35compare_%d.png",units="in", width=11,height=8.5,pointsize=4000,dpi=1200,antialias="subpixel")
|
448
|
### Global Comparison
|
449
|
print(g1,position=c(0,.35,1,1),more=T)
|
450
|
print(g2,position=c(0,0,1,0.415),more=F)
|
451
|
#print(g3,position=c(0.31,0.06,.42,0.27),more=F)
|
452
|
|
453
|
### MOD35 Desert Processing path
|
454
|
levelplot(pp,asp=1,scales=list(draw=T,rot=0),maxpixels=1e6,cuts=3,
|
455
|
at=(0:3)+.5,col.regions=c("blue","cyan","tan","darkgreen"),margin=F,
|
456
|
colorkey=list(space="top",title="MOD35 Processing Path",labels=list(labels=c("Water","Coast","Desert","Land"),at=0:3),height=.25))+
|
457
|
layer(sp.points(coordinates(bbs),col="black",cex=2,pch=13,lwd=2))+
|
458
|
layer(sp.lines(coast,lwd=.5))
|
459
|
|
460
|
### levelplot of regions
|
461
|
print(p1,position=c(0,0,.62,1),more=T)
|
462
|
print(p2,position=c(0.6,0.21,0.78,0.79),more=T)
|
463
|
print(p3,position=c(0.76,0.21,1,0.79))
|
464
|
### profile plots
|
465
|
print(p4)
|
466
|
dev.off()
|
467
|
|
468
|
### summary stats for paper
|
469
|
td=cast(transect+loc+dist~variable,value="value",data=transd)
|
470
|
td2=melt.data.frame(td,id.vars=c("transect","dist","loc","MOD35pp","MCD12Q1"))
|
471
|
|
472
|
## function to prettyprint mean/sd's
|
473
|
msd= function(x) paste(round(mean(x,na.rm=T),1),"% ±",round(sd(x,na.rm=T),1),sep="")
|
474
|
|
475
|
cast(td2,transect+variable~MOD35pp,value="value",fun=msd)
|
476
|
cast(td2,transect+variable~MOD35pp+MCD12Q1,value="value",fun=msd)
|
477
|
cast(td2,transect+variable~.,value="value",fun=msd)
|
478
|
|
479
|
cast(td2,transect+variable~.,value="value",fun=msd)
|
480
|
|
481
|
cast(td2,variable~MOD35pp,value="value",fun=msd)
|
482
|
cast(td2,variable~.,value="value",fun=msd)
|
483
|
|
484
|
td[td$transect=="Venezuela",]
|
485
|
|
486
|
|
487
|
#### export KML
|
488
|
library(plotKML)
|
489
|
|
490
|
kml_open("output/modiscloud.kml")
|
491
|
|
492
|
readAll(mod35c5)
|
493
|
|
494
|
kml_layer.Raster(mod35c5,
|
495
|
plot.legend = TRUE,raster_name="Collection 5 MOD35 2009 Cloud Frequency",
|
496
|
z.lim = c(0,100),colour_scale = get("colour_scale_numeric", envir = plotKML.opts),
|
497
|
# home_url = get("home_url", envir = plotKML.opts),
|
498
|
# metadata = NULL, html.table = NULL,
|
499
|
altitudeMode = "clampToGround", balloon = FALSE
|
500
|
)
|
501
|
|
502
|
system(paste("gdal_translate -of KMLSUPEROVERLAY ",mod35c5@file@name," output/mod35c5.kmz -co FORMAT=JPEG"))
|
503
|
|
504
|
logo = "http://static.tumblr.com/t0afs9f/KWTm94tpm/yale_logo.png"
|
505
|
kml_screen(image.file = logo, position = "UL", sname = "YALE logo",size=c(.1,.1))
|
506
|
kml_close("modiscloud.kml")
|
507
|
kml_compress("modiscloud.kml",files=c(paste(month.name,".png",sep=""),"obj_legend.png"),zip="/usr/bin/zip")
|