|
1 |
###################################################################################
|
|
2 |
### R code to aquire and process MOD06_L2 cloud data from the MODIS platform
|
|
3 |
|
|
4 |
|
|
5 |
## connect to server of choice
|
|
6 |
#system("ssh litoria")
|
|
7 |
#R
|
|
8 |
|
|
9 |
library(sp)
|
|
10 |
library(spgrass6)
|
|
11 |
library(rgdal)
|
|
12 |
library(reshape)
|
|
13 |
library(ncdf4)
|
|
14 |
library(geosphere)
|
|
15 |
library(rgeos)
|
|
16 |
library(multicore)
|
|
17 |
library(raster)
|
|
18 |
library(lattice)
|
|
19 |
library(latticeExtra)
|
|
20 |
library(rgl)
|
|
21 |
library(hdf5)
|
|
22 |
library(rasterVis)
|
|
23 |
library(heR.Misc)
|
|
24 |
library(car)
|
|
25 |
library(mgcv)
|
|
26 |
library(sampling)
|
|
27 |
|
|
28 |
X11.options(type="Xlib")
|
|
29 |
ncores=20 #number of threads to use
|
|
30 |
|
|
31 |
setwd("/home/adamw/acrobates/projects/interp")
|
|
32 |
|
|
33 |
## get MODLAND tile information
|
|
34 |
tb=read.table("http://landweb.nascom.nasa.gov/developers/sn_tiles/sn_bound_10deg.txt",skip=6,nrows=648,header=T)
|
|
35 |
tb$tile=paste("h",sprintf("%02d",tb$ih),"v",sprintf("%02d",tb$iv),sep="")
|
|
36 |
save(tb,file="modlandTiles.Rdata")
|
|
37 |
|
|
38 |
tile="h11v08" #can move this to submit script if needed
|
|
39 |
#tile="h09v04" #oregon
|
|
40 |
|
|
41 |
psin=CRS("+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs")
|
|
42 |
|
|
43 |
tile_bb=tb[tb$tile==tile,] ## identify tile of interest
|
|
44 |
roi_ll=extent(tile_bb$lon_min,tile_bb$lon_max,tile_bb$lat_min,tile_bb$lat_max)
|
|
45 |
#roi=spTransform(roi,psin)
|
|
46 |
#roil=as(roi,"SpatialLines")
|
|
47 |
|
|
48 |
dmod06="data/modis/mod06/summary"
|
|
49 |
|
|
50 |
|
|
51 |
##########################
|
|
52 |
#### Organize the data
|
|
53 |
months=seq(as.Date("2000-01-15"),as.Date("2000-12-15"),by="month")
|
|
54 |
|
|
55 |
getmod06<-function(variable){
|
|
56 |
d=brick(list.files(dmod06,pattern=paste("MOD06_",tile,".nc",sep=""),full=T),varname=toupper(variable))
|
|
57 |
# d=dropLayer(d,1)
|
|
58 |
projection(d)=psin
|
|
59 |
setZ(d,format(as.Date(d@z$Date),"%m"),name="time")
|
|
60 |
# d@z=as.Date(d@z$Date)
|
|
61 |
layerNames(d) <- as.character(format(as.Date(d@z$Date),"%b")) #paste(variable,format(as.Date(d@z$Date),"%m"))
|
|
62 |
return(d)
|
|
63 |
}
|
|
64 |
|
|
65 |
# drop #1?
|
|
66 |
|
|
67 |
cer=getmod06("cer")
|
|
68 |
cld=getmod06("cld")
|
|
69 |
cot=getmod06("cot")
|
|
70 |
cer20=getmod06("cer20")
|
|
71 |
|
|
72 |
pcol=colorRampPalette(c("brown","red","yellow","darkgreen"))
|
|
73 |
#levelplot(cer,col.regions=pcol(20))
|
|
74 |
|
|
75 |
## load WorldClim data for comparison (download then uncompress)
|
|
76 |
#system("wget -P data/worldclim/ http://biogeo.ucdavis.edu/data/climate/worldclim/1_4/grid/cur/prec_30s_bil.zip",wait=F)
|
|
77 |
#system("wget -P data/worldclim/ http://biogeo.ucdavis.edu/data/climate/worldclim/1_4/grid/cur/alt_30s_bil.zip",wait=F)
|
|
78 |
|
|
79 |
### load WORLDCLIM elevation
|
|
80 |
#dem=raster(list.files("data/worldclim/alt_30s_bil/",pattern="bil$",full=T))
|
|
81 |
#projection(dem)=CRS("+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0")
|
|
82 |
#dem=crop(dem,roi_ll)
|
|
83 |
#dem[dem>60000]=NA
|
|
84 |
#dem=projectRaster(dem,cer)
|
|
85 |
#writeRaster(dem,file=paste("data/tiles/",tile,"/dem_",tile,".tif",sep=""),format="GTiff")
|
|
86 |
dem=raster(paste("data/tiles/",tile,"/dem_",tile,".tif",sep=""))
|
|
87 |
|
|
88 |
### get station data, subset to stations in region, and transform to sinusoidal
|
|
89 |
dm=readOGR(paste("data/tiles/",tile,sep=""),paste("station_monthly_",tile,"_PRCP",sep=""))
|
|
90 |
colnames(dm@data)[grep("elevation",colnames(dm@data))]="dem"
|
|
91 |
colnames(dm@data)[grep("value",colnames(dm@data))]="ppt"
|
|
92 |
|
|
93 |
#xyplot(latitude~longitude|month,data=dm@data)
|
|
94 |
dm2=spTransform(dm,CRS(projection(cer)))
|
|
95 |
dm2@data[,c("x","y")]=coordinates(dm2)
|
|
96 |
|
|
97 |
### extract MOD06 data for each station
|
|
98 |
stcer=extract(cer,dm2,fun=mean);colnames(stcer)=paste("cer_mean_",as.numeric(format(as.Date(cer@z$Date),"%m")),sep="")
|
|
99 |
stcer20=extract(cer20,dm2,fun=mean);colnames(stcer20)=paste("cer20_mean_",as.numeric(format(as.Date(cer20@z$Date),"%m")),sep="")
|
|
100 |
stcot=extract(cot,dm2);colnames(stcot)=paste("cot_mean_",as.numeric(format(as.Date(cot@z$Date),"%m")),sep="")
|
|
101 |
stcld=extract(cld,dm2);colnames(stcld)=paste("cld_mean_",as.numeric(format(as.Date(cld@z$Date),"%m")),sep="")
|
|
102 |
stdem=extract(dem,dm2)
|
|
103 |
#mod06=cbind.data.frame(station=dm$station,stcer[,-1],stcot[,-1],stcld[,-1],stcer20[,-1])
|
|
104 |
mod06=cbind.data.frame(station=dm$station,stcer,stcot,stcld,stcer20)
|
|
105 |
mod06l=melt(mod06,id.vars=c("station"));colnames(mod06l)[grep("value",colnames(mod06l))]="mod06"
|
|
106 |
mod06l[,c("variable","moment","month")]=do.call(rbind,strsplit(as.character(mod06l$variable),"_"))
|
|
107 |
mod06l=unique(mod06l)
|
|
108 |
mod06l=cast(mod06l,station+moment+month~variable,value="mod06")
|
|
109 |
mod06l=merge(dm2@data,mod06l,by=c("station","month"))
|
|
110 |
mod06l=mod06l[!is.na(mod06l$cer),]
|
|
111 |
|
|
112 |
mod06l=mod06l[order(mod06l$month),]
|
|
113 |
|
|
114 |
#xyplot(value~cer|month,data=mod06l,scales=list(relation="free"),pch=16,cex=.5)
|
|
115 |
#xyplot(value~cer|station,data=mod06l[mod06l$count>400,],pch=16,cex=.5)
|
|
116 |
#xyplot(cot~month,groups=station,data=mod06l,type="l")
|
|
117 |
|
|
118 |
### create monthly raster bricks for prediction
|
|
119 |
m=2
|
|
120 |
|
|
121 |
pdata=stack(
|
|
122 |
subset(cer,subset=m),
|
|
123 |
subset(cot,subset=m),
|
|
124 |
subset(cer20,subset=m),
|
|
125 |
subset(cld,subset=m)
|
|
126 |
)
|
|
127 |
|
|
128 |
## Set up models to compare
|
|
129 |
####################################
|
|
130 |
#### build table comparing various metrics
|
|
131 |
models=c(
|
|
132 |
"ppt~s(y)+ s(x)",
|
|
133 |
"ppt~s(y,x)",
|
|
134 |
"ppt~s(y,x) + s(dem)",
|
|
135 |
"ppt~s(y,x)+s(dem)+cer+cld+cot+cer20",
|
|
136 |
"ppt~s(y,x)+s(dem)+s(cer)",
|
|
137 |
"ppt~s(y,x)+s(dem)+s(cer20)",
|
|
138 |
"ppt~s(y,x)+s(dem)+s(cld)",
|
|
139 |
"ppt~s(y,x)+s(dem)+s(cot)",
|
|
140 |
"ppt~s(y,x)+s(dem)+s(cer20,cld)",
|
|
141 |
"ppt~s(y,x)+s(dem)+s(cer20,cot)",
|
|
142 |
"ppt~s(y,x)+s(dem)+s(cer,cld)",
|
|
143 |
"ppt~s(dem)+s(cer,cot)")
|
|
144 |
months=1:12
|
|
145 |
|
|
146 |
## build the list of models/months to process
|
|
147 |
mm=expand.grid(model=models,month=months)
|
|
148 |
mm$model=as.character(mm$model)
|
|
149 |
mm$mid=match(mm$model,models)
|
|
150 |
|
|
151 |
# mod1<- gam(tmax~ s(lat) + s (lon) + s (ELEV_SRTM), data=data_s)
|
|
152 |
# mod2<- gam(tmax~ s(lat,lon,ELEV_SRTM), data=data_s)
|
|
153 |
# mod3<- gam(tmax~ s(lat) + s (lon) + s (ELEV_SRTM) + s (Northness)+ s (Eastness) + s(DISTOC), data=data_s)
|
|
154 |
# mod4<- gam(tmax~ s(lat) + s (lon) + s(ELEV_SRTM) + s(Northness) + s (Eastness) + s(DISTOC) + s(LST), data=data_s)
|
|
155 |
# mod5<- gam(tmax~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST), data=data_s)
|
|
156 |
# mod6<- gam(tmax~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST,LC1), data=data_s)
|
|
157 |
# mod7<- gam(tmax~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST,LC3), data=data_s)
|
|
158 |
# mod8<- gam(tmax~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST) + s(LC1), data=data_s)
|
|
159 |
|
|
160 |
### Sample validation stations
|
|
161 |
prop=0.1
|
|
162 |
mod06l$validation=F
|
|
163 |
mod06l$validation[as.numeric(rownames(strata(mod06l,stratanames="month",size=as.integer(prop*table(mod06l$month)),method="srswor")))]=T
|
|
164 |
|
|
165 |
### run it
|
|
166 |
mods=lapply(1:nrow(mm),function(i){
|
|
167 |
mod=try(gam(as.formula(mm$model[i]),data=mod06l[mod06l$month==mm$month[i]&!mod06l$validation,]))
|
|
168 |
## add some attributes to the object to help ID it later
|
|
169 |
attr(mod,"month")=mm$month[i]
|
|
170 |
attr(mod,"model")=mm$model[i]
|
|
171 |
attr(mod,"modelid")=mm$mid[i]
|
|
172 |
print(paste("Finished model ",mm$model[i]," for month",mm$month[i]))
|
|
173 |
return(mod)
|
|
174 |
})
|
|
175 |
|
|
176 |
## Get summary stats
|
|
177 |
sums=do.call(rbind.data.frame,lapply(mods,function(m,plot=F){
|
|
178 |
if(class(m)=="try-error") {
|
|
179 |
return(data.frame(model=attr(m,"model"),
|
|
180 |
modelid=attr(m,"modelid"),
|
|
181 |
month=attr(m,"month"),
|
|
182 |
r2=NA,
|
|
183 |
dev=NA,
|
|
184 |
aic=NA,
|
|
185 |
rmse=NA,
|
|
186 |
vr2=NA))
|
|
187 |
}
|
|
188 |
|
|
189 |
## make validation predictions
|
|
190 |
vd=mod06l[mod06l$validation&mod06l$month==attr(m,"month"),]
|
|
191 |
y=predict(m,mod06l[mod06l$validation&mod06l$month==attr(m,"month"),])
|
|
192 |
vlm=lm(y~vd$ppt)
|
|
193 |
|
|
194 |
## Draw some plots
|
|
195 |
if(plot){
|
|
196 |
## partial residual plots
|
|
197 |
var=2
|
|
198 |
fv <- predict(m,type="terms") ## get term estimates
|
|
199 |
## compute partial residuals for first smooth...
|
|
200 |
prsd1 <- residuals(m,type="working") + fv[,var]
|
|
201 |
plot(m,select=var) ## plot first smooth
|
|
202 |
points(mod06l$cot[mod06l$month==mm$month[i]&!mod06l$validation],prsd1,pch=16,col="red")
|
|
203 |
}
|
|
204 |
|
|
205 |
## summarize validation
|
|
206 |
s1=summary(m)
|
|
207 |
data.frame(
|
|
208 |
model=attr(m,"model"),
|
|
209 |
modelid=attr(m,"modelid"),
|
|
210 |
month=attr(m,"month"),
|
|
211 |
r2=s1$r.sq,
|
|
212 |
dev=s1$dev.expl,
|
|
213 |
aic=AIC(m),
|
|
214 |
rmse=sqrt(mean((vd$ppt-predict(vlm,vd))^2)),
|
|
215 |
vr2=summary(vlm)$r.squared)
|
|
216 |
}))
|
|
217 |
|
|
218 |
### Summary Figures
|
|
219 |
|
|
220 |
sumsl=melt(sums,id.vars=c("model","modelid","month"))
|
|
221 |
|
|
222 |
sum2=cast(sumsl,model~variable, fun=function(x) c(mean=mean(x,na.rm=T),sd=sd(x,na.rm=T)))
|
|
223 |
|
|
224 |
#combineLimits(useOuterStrips(xyplot(value~month|model+variable,data=sumsl,scale=list(relation="free"))))
|
|
225 |
bwplot(model~value|variable,data=sumsl,scale=list(x=list(relation="free")))
|
|
226 |
|
|
227 |
xyplot(ppt~cld|station,groups=month,data=mod06l,cex=.5,pch=16)
|
|
228 |
|
|
229 |
round(cor(mod06l[,c("ppt","dem","cer","cer20","cld","cot")]),2)
|
|
230 |
|
|
231 |
|
|
232 |
### draw some plots
|
|
233 |
gq=function(x,n=10,cut=F) {
|
|
234 |
if(!cut) return(unique(quantile(x,seq(0,1,len=n+1),na.rm=T)))
|
|
235 |
if(cut) return(cut(x,unique(quantile(x,seq(0,1,len=n+1),na.rm=T))))
|
|
236 |
}
|
|
237 |
|
|
238 |
### add some additional variables
|
|
239 |
mod06s$month=factor(mod06s$month,labels=format(as.Date(paste("2000",1:12,"15",sep="-")),"%b"))
|
|
240 |
mod06s$lppt=log(mod06s$ppt)
|
|
241 |
mod06s$glon=cut(mod06s$lon,gq(mod06s$lon,n=5),include.lowest=T,ordered=T)#gq(mod06s$lon,n=3))
|
|
242 |
mod06s$glon2=cut(mod06s$lon,breaks=c(-125,-122,-115),labels=c("Coastal","Inland"),include.lowest=T,ordered=T)#gq(mod06s$lon,n=3))
|
|
243 |
mod06s$gelev=cut(mod06s$elev,breaks=gq(mod06s$elev,n=3),labels=c("Low","Mid","High"),include.lowest=T,ordered=T)
|
|
244 |
mod06s$gbin=factor(paste(mod06s$gelev,mod06s$glon2,sep="_"),levels=c("Low_Coastal","Mid_Coastal","High_Coastal","Low_Inland","Mid_Inland","High_Inland"),ordered=T)
|
|
245 |
mod06s$LWP_mean=(2/3)*mod06s$CER_mean*mod06s$COT_mean
|
|
246 |
|
|
247 |
## melt it
|
|
248 |
mod06sl=melt(mod06s[,!grepl("lppt",colnames(mod06s))],id.vars=c("id","lon","lat","elev","month","ppt","glon","glon2","gelev","gbin"))
|
|
249 |
levels(mod06sl$variable)=c("Effective Radius (um)","Very Cloudy Days (%)","Cloudy Days (%)","Optical Thickness (%)","Liquid Water Path")
|
|
250 |
|
|
251 |
###################################################################
|
|
252 |
###################################################################
|
|
253 |
|
|
254 |
bgyr=colorRampPalette(c("blue","green","yellow","red","purple"))
|
|
255 |
|
|
256 |
X11.options(type="cairo")
|
|
257 |
pdf("output/MOD06_summary.pdf",width=11,height=8.5)
|
|
258 |
|
|
259 |
# % cloudy maps
|
|
260 |
title="Cloudiness (% cloudy days) "
|
|
261 |
at=unique(quantile(as.matrix(cld),seq(0,1,len=100),na.rm=T))
|
|
262 |
p=levelplot(cld,xlab.top=title,at=at,col.regions=bgyr(length(at)))#+layer(sp.lines(roil, lwd=1.2, col='black'))
|
|
263 |
print(p)
|
|
264 |
#bwplot(cer,main=title,ylab="Cloud Effective Radius (microns)")
|
|
265 |
|
|
266 |
# CER maps
|
|
267 |
title="Cloud Effective Radius (microns)"
|
|
268 |
at=quantile(as.matrix(cer),seq(0,1,len=100),na.rm=T)
|
|
269 |
p=levelplot(cer,xlab.top=title,at=at,col.regions=bgyr(length(at)))#+layer(sp.lines(roil, lwd=1.2, col='black'))
|
|
270 |
print(p)
|
|
271 |
#bwplot(cer,main=title,ylab="Cloud Effective Radius (microns)")
|
|
272 |
|
|
273 |
# CER20 maps
|
|
274 |
title="% Days with Cloud Effective Radius > 20 microns"
|
|
275 |
at=unique(quantile(as.matrix(cer20),seq(0,1,len=100),na.rm=T))
|
|
276 |
p=levelplot(cer20,xlab.top=title,at=at,col.regions=bgyr(length(at)))#+layer(sp.lines(roil, lwd=1.2, col='black'))
|
|
277 |
print(p)
|
|
278 |
#bwplot(cer,main=title,ylab="Cloud Effective Radius (microns)")
|
|
279 |
|
|
280 |
# COT maps
|
|
281 |
title="Cloud Optical Thickness (%)"
|
|
282 |
at=quantile(as.matrix(cot),seq(0,1,len=100),na.rm=T)
|
|
283 |
p=levelplot(cot,xlab.top=title,at=at,col.regions=bgyr(length(at)))#+layer(sp.lines(roil, lwd=0.8, col='black'))
|
|
284 |
print(p)
|
|
285 |
#bwplot(cot,xlab.top=title,ylab="Cloud Optical Thickness (%)")
|
|
286 |
dev.off()
|
|
287 |
|
|
288 |
|
|
289 |
|
|
290 |
|
|
291 |
|
|
292 |
|
|
293 |
### Calculate the slope of each line
|
|
294 |
mod06s.sl=dapply(mod06s,list(id=mod06s$id),function(x){
|
|
295 |
lm1=lm(log(x$ppt)~x$CER_mean,)
|
|
296 |
data.frame(lat=x$lat[1],lon=x$lon[1],elev=x$elev[1],intcpt=coefficients(lm1)[1],cer=coefficients(lm1)[2],r2=summary(lm1)$r.squared)
|
|
297 |
})
|
|
298 |
mod06s.sl$cex=gq(mod06s.sl$r2,n=5,cut=T)
|
|
299 |
mod06s.sl$cer.s=gq(mod06s.sl$cer,n=5,cut=T)
|
|
300 |
|
|
301 |
### and plot it on a map
|
|
302 |
xyplot(lat~lon,group=cer.s,data=mod06s.sl,par.settings = list(superpose.symbol = list(pch =16, col=bgyr(5),cex=1)),auto.key=list(space="right",title="Slope Coefficient"),asp=1,
|
|
303 |
main="Slopes of linear regressions {log(ppt)~CloudEffectiveRadius}")+
|
|
304 |
layer(sp.lines(roi_geo, lwd=1.2, col='black'))
|
|
305 |
|
|
306 |
### look for relationships with longitude
|
|
307 |
xyplot(cer~lon,group=cut(mod06s.sl$elev,gq(mod06s.sl$elev,n=5)),data=mod06s.sl,
|
|
308 |
par.settings = list(superpose.symbol = list(col=bgyr(5),pch=16,cex=1)),auto.key=list(space="right",title="Station Elevation"),
|
|
309 |
ylab="Slope of lm(ppt~EffectiveRadius)",xlab="Longitude",main="Precipitation~Effective Radius relationship by latitude")
|
|
310 |
|
|
311 |
|
|
312 |
############################################################
|
|
313 |
### simple regression to get spatial residuals
|
|
314 |
m="01"
|
|
315 |
mod06s2=mod06s#[mod06s$month==m,]
|
|
316 |
|
|
317 |
lm1=lm(log(ppt)~CER_mean*month*lon,data=mod06s2); summary(lm1)
|
|
318 |
mod06s2$pred=exp(predict(lm1,mod06s2))
|
|
319 |
mod06s2$resid=mod06s2$pred-mod06s2$ppt
|
|
320 |
mod06s2$residg=gq(mod06s2$resid,n=5,cut=T)
|
|
321 |
mod06s2$presid=mod06s2$resid/mod06s2$ppt
|
|
322 |
|
|
323 |
for(l in c(F,T)){
|
|
324 |
## all months
|
|
325 |
xyplot(pred~ppt,groups=gelev,data=mod06s2,
|
|
326 |
par.settings = list(superpose.symbol = list(col=bgyr(3),pch=16,cex=.75)),auto.key=list(space="right",title="Station Elevation"),
|
|
327 |
scales=list(log=l),
|
|
328 |
ylab="Predicted Mean Monthly Precipitation (mm)",xlab="Observed Mean Monthly Precipitation (mm)",main="Predicted vs. Observed for Simple Model",
|
|
329 |
sub="Red line is y=x")+
|
|
330 |
layer(panel.abline(0,1,col="red"))
|
|
331 |
|
|
332 |
## month by month
|
|
333 |
print(xyplot(pred~ppt|month,groups=gelev,data=mod06s2,
|
|
334 |
par.settings = list(superpose.symbol = list(col=bgyr(3),pch=16,cex=.75)),auto.key=list(space="right",title="Station Elevation"),
|
|
335 |
scales=list(log=l),
|
|
336 |
ylab="Predicted Mean Monthly Precipitation (mm)",xlab="Observed Mean Monthly Precipitation (mm)",main="Predicted vs. Observed for Simple Model",
|
|
337 |
sub="Red line is y=x")+
|
|
338 |
layer(panel.abline(0,1,col="red"))
|
|
339 |
)}
|
|
340 |
|
|
341 |
## residuals by month
|
|
342 |
xyplot(lat~lon|month,group=residg,data=mod06s2,
|
|
343 |
par.settings = list(superpose.symbol = list(pch =16, col=bgyr(5),cex=.5)),
|
|
344 |
auto.key=list(space="right",title="Residuals"),
|
|
345 |
main="Spatial plot of monthly residuals")+
|
|
346 |
layer(sp.lines(roi_geo, lwd=1.2, col='black'))
|
|
347 |
|
|
348 |
|
|
349 |
dev.off()
|
|
350 |
|
|
351 |
|
|
352 |
|
|
353 |
|
|
354 |
|
|
355 |
|
|
356 |
|
|
357 |
|
|
358 |
|
|
359 |
|
|
360 |
load("data/modis/pointsummary.Rdata")
|
|
361 |
|
|
362 |
|
|
363 |
dsl=melt(ds,id.vars=c("id","date","ppt","lon","lat"),measure.vars= c("Cloud_Water_Path","Cloud_Effective_Radius","Cloud_Optical_Thickness"))
|
|
364 |
|
|
365 |
dsl=dsl[!is.nan(dsl$value),]
|
|
366 |
|
|
367 |
|
|
368 |
|
|
369 |
|
|
370 |
####
|
|
371 |
## mean annual precip
|
|
372 |
dp=d[d$variable=="ppt",]
|
|
373 |
dp$year=format(dp$date,"%Y")
|
|
374 |
dm=tapply(dp$value,list(id=dp$id,year=dp$year),sum,na.rm=T)
|
|
375 |
dms=apply(dm,1,mean,na.rm=T)
|
|
376 |
dms=data.frame(id=names(dms),ppt=dms/10)
|
|
377 |
|
|
378 |
dslm=tapply(dsl$value,list(id=dsl$id,variable=dsl$variable),mean,na.rm=T)
|
|
379 |
dslm=data.frame(id=rownames(dslm),dslm)
|
|
380 |
|
|
381 |
dms=merge(dms,dslm)
|
|
382 |
dmsl=melt(dms,id.vars=c("id","ppt"))
|
|
383 |
|
|
384 |
summary(lm(ppt~Cloud_Effective_Radius,data=dms))
|
|
385 |
summary(lm(ppt~Cloud_Water_Path,data=dms))
|
|
386 |
summary(lm(ppt~Cloud_Optical_Thickness,data=dms))
|
|
387 |
summary(lm(ppt~Cloud_Effective_Radius+Cloud_Water_Path+Cloud_Optical_Thickness,data=dms))
|
|
388 |
|
|
389 |
|
|
390 |
#### draw some plots
|
|
391 |
#pdf("output/MOD06_summary.pdf",width=11,height=8.5)
|
|
392 |
png("output/MOD06_summary_%d.png",width=1024,height=780)
|
|
393 |
|
|
394 |
## daily data
|
|
395 |
xyplot(value~ppt/10|variable,data=dsl,
|
|
396 |
scales=list(relation="free"),type=c("p","r"),
|
|
397 |
pch=16,cex=.5,layout=c(3,1))
|
|
398 |
|
|
399 |
|
|
400 |
densityplot(~value|variable,groups=cut(dsl$ppt,c(0,50,100,500)),data=dsl,auto.key=T,
|
|
401 |
scales=list(relation="free"),plot.points=F)
|
|
402 |
|
|
403 |
## annual means
|
|
404 |
|
|
405 |
xyplot(value~ppt|variable,data=dmsl,
|
|
406 |
scales=list(relation="free"),type=c("p","r"),pch=16,cex=0.5,layout=c(3,1),
|
|
407 |
xlab="Mean Annual Precipitation (mm)",ylab="Mean value")
|
|
408 |
|
|
409 |
densityplot(~value|variable,groups=cut(dsl$ppt,c(0,50,100,500)),data=dmsl,auto.key=T,
|
|
410 |
scales=list(relation="free"),plot.points=F)
|
|
411 |
|
|
412 |
|
|
413 |
## plot some swaths
|
|
414 |
|
|
415 |
nc1=raster(fs$path[3],varname="Cloud_Effective_Radius")
|
|
416 |
nc2=raster(fs$path[4],varname="Cloud_Effective_Radius")
|
|
417 |
nc3=raster(fs$path[5],varname="Cloud_Effective_Radius")
|
|
418 |
|
|
419 |
nc1[nc1<=0]=NA
|
|
420 |
nc2[nc2<=0]=NA
|
|
421 |
nc3[nc3<=0]=NA
|
|
422 |
|
|
423 |
plot(roi)
|
|
424 |
plot(nc3)
|
|
425 |
|
|
426 |
plot(nc1,add=T)
|
|
427 |
plot(nc2,add=T)
|
|
428 |
|
|
429 |
|
|
430 |
dev.off()
|
|
431 |
|
|
432 |
|
initial script to handle modified netcdf files from Pleiades.R script