Revision 8bb64f7a
Added by Benoit Parmentier over 9 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R | ||
---|---|---|
5 | 5 |
#Analyses, figures, tables and data are also produced in the script. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 03/23/2014 |
8 |
#MODIFIED ON: 02/16/2015
|
|
8 |
#MODIFIED ON: 03/07/2015
|
|
9 | 9 |
#Version: 4 |
10 | 10 |
#PROJECT: Environmental Layers project |
11 |
#COMMENTS: analyses for run 10 global analyses, Europe, Australia, 1000x300km |
|
11 |
#COMMENTS: analyses for run 10 global analyses,all regions 1500x4500km and other tiles |
|
12 |
#TODO: |
|
13 |
#1) Split functions and master script |
|
14 |
#2) Make this is a script/function callable from the shell/bash |
|
15 |
#3) Check image format for tif |
|
16 |
|
|
12 | 17 |
################################################################################################# |
13 | 18 |
|
14 | 19 |
### Loading R library and packages |
... | ... | |
160 | 165 |
col_mfrow <- 1 |
161 | 166 |
row_mfrow <- 1 |
162 | 167 |
|
163 |
png(filename=paste("Figure9_",names(r),"_map_processed_region_",region_name,"_",out_prefix,".png",sep=""),
|
|
168 |
png(filename=paste("Figure9_",names(r),"_map_processed_region_",region_name,"_",out_suffix,".png",sep=""),
|
|
164 | 169 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
165 | 170 |
|
166 | 171 |
#plot(reg_layer) |
... | ... | |
319 | 324 |
#out_dir <- "/nobackup/bparmen1/" #on NEX |
320 | 325 |
#in_dir_shp <- "/nobackupp4/aguzman4/climateLayers/output4/subset/shapefiles/" |
321 | 326 |
|
322 |
y_var_name <- "dailyTmax" |
|
323 |
interpolation_method <- c("gam_CAI") |
|
324 |
#out_prefix<-"run10_global_analyses_01282015" |
|
325 |
#out_prefix <- "output_run10_1000x3000_global_analyses_02102015" |
|
326 |
out_prefix <- "run10_1000x3000_global_analyses_02162015" |
|
327 |
y_var_name <- "dailyTmax" #PARAM1 |
|
328 |
interpolation_method <- c("gam_CAI") #PARAM2 |
|
329 |
#out_suffix<-"run10_global_analyses_01282015" |
|
330 |
#out_suffix <- "output_run10_1000x3000_global_analyses_02102015" |
|
331 |
out_suffix <- "run10_1500x4500_global_analyses_03052015" #PARAM3 |
|
332 |
out_dir <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_03052015" #PARAM4 |
|
333 |
create_out_dir_param <- FALSE #PARAM 5 |
|
327 | 334 |
|
328 |
mosaic_plot <- FALSE |
|
335 |
mosaic_plot <- FALSE #PARAM6
|
|
329 | 336 |
|
337 |
#if daily mosaics NULL then mosaicas all days of the year |
|
330 | 338 |
day_to_mosaic <- c("20100101","20100102","20100103","20100104","20100105", |
331 | 339 |
"20100301","20100302","20100303","20100304","20100305", |
332 | 340 |
"20100501","20100502","20100503","20100504","20100505", |
333 | 341 |
"20100701","20100702","20100703","20100704","20100705", |
334 | 342 |
"20100901","20100902","20100903","20100904","20100905", |
335 |
"20101101","20101102","20101103","20101104","20101105") |
|
336 |
|
|
343 |
"20101101","20101102","20101103","20101104","20101105") #PARAM7
|
|
344 |
|
|
337 | 345 |
#CRS_locs_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
338 |
CRS_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
346 |
CRS_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 #CONSTANT1 |
|
347 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
339 | 348 |
|
340 |
proj_str<- CRS_WGS84 |
|
341 |
file_format <- ".rst" |
|
342 |
NA_value <- -9999 |
|
349 |
proj_str<- CRS_WGS84 #PARAM 8 #check this parameter
|
|
350 |
file_format <- ".rst" #PARAM 9
|
|
351 |
NA_value <- -9999 #PARAM10
|
|
343 | 352 |
NA_flag_val <- NA_value |
344 |
out_suffix <-out_prefix |
|
353 |
|
|
354 |
tile_size <- "1500x4500" #PARAM 11 |
|
355 |
mulitple_region <- TRUE #PARAM 12 |
|
356 |
|
|
357 |
region_name <- "world" #PARAM 13 |
|
358 |
|
|
359 |
########################## START SCRIPT ############################## |
|
360 |
|
|
361 |
|
|
362 |
####### PART 1: Read in data ######## |
|
345 | 363 |
|
346 |
#out_dir <-paste(out_dir,"_",out_prefix,sep="") |
|
347 |
create_out_dir_param <- FALSE |
|
348 |
#out_dir <-"/data/project/layers/commons/NEX_data/output_run10_global_analyses_01282015/" |
|
349 |
out_dir <- "/data/project/layers/commons/NEX_data/output_run10_1000x3000_global_analyses_02162015" |
|
350 | 364 |
if(create_out_dir_param==TRUE){ |
351 |
out_dir <- create_dir_fun(out_dir,out_prefix)
|
|
365 |
out_dir <- create_dir_fun(out_dir,out_suffix)
|
|
352 | 366 |
setwd(out_dir) |
353 | 367 |
}else{ |
354 | 368 |
setwd(out_dir) #use previoulsy defined directory |
355 | 369 |
} |
356 | 370 |
|
357 | 371 |
setwd(out_dir) |
358 |
|
|
359 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
360 |
CRS_WGS84<-c("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
361 |
|
|
362 |
region_name <- "world" |
|
363 |
tile_size <- "1000x3000" |
|
364 | 372 |
|
365 | 373 |
###Table 1: Average accuracy metrics |
366 | 374 |
###Table 2: daily accuracy metrics for all tiles |
367 | 375 |
|
368 |
summary_metrics_v <- read.table(file=file.path(out_dir,paste("summary_metrics_v2_NA_",out_prefix,".txt",sep="")),sep=",")
|
|
369 |
#fname <- file.path(out_dir,paste("summary_metrics_v2_NA_",out_prefix,".txt",sep=""))
|
|
370 |
tb <- read.table(file=file.path(out_dir,paste("tb_diagnostic_v_NA","_",out_prefix,".txt",sep="")),sep=",")
|
|
376 |
summary_metrics_v <- read.table(file=file.path(out_dir,paste("summary_metrics_v2_NA_",out_suffix,".txt",sep="")),sep=",")
|
|
377 |
#fname <- file.path(out_dir,paste("summary_metrics_v2_NA_",out_suffix,".txt",sep=""))
|
|
378 |
tb <- read.table(file=file.path(out_dir,paste("tb_diagnostic_v_NA","_",out_suffix,".txt",sep="")),sep=",")
|
|
371 | 379 |
#tb_diagnostic_s_NA_run10_global_analyses_11302014.txt |
372 |
tb_s <- read.table(file=file.path(out_dir,paste("tb_diagnostic_s_NA","_",out_prefix,".txt",sep="")),sep=",")
|
|
380 |
tb_s <- read.table(file=file.path(out_dir,paste("tb_diagnostic_s_NA","_",out_suffix,".txt",sep="")),sep=",")
|
|
373 | 381 |
|
374 |
tb_month_s <- read.table(file=file.path(out_dir,paste("tb_month_diagnostic_s_NA","_",out_prefix,".txt",sep="")),sep=",") |
|
375 |
#pred_data_month_info <- read.table(file=file.path(out_dir,paste("pred_data_month_info_",out_prefix,".txt",sep="")),sep=",") |
|
376 |
#pred_data_day_info <- read.table(file=file.path(out_dir,paste("pred_data_day_info_",out_prefix,".txt",sep="")),sep=",") |
|
377 |
df_tile_processed <- read.table(file=file.path(out_dir,paste("df_tile_processed_",out_prefix,".txt",sep="")),sep=",") |
|
378 |
|
|
379 |
########################## START SCRIPT ############################## |
|
382 |
tb_month_s <- read.table(file=file.path(out_dir,paste("tb_month_diagnostic_s_NA","_",out_suffix,".txt",sep="")),sep=",") |
|
383 |
#pred_data_month_info <- read.table(file=file.path(out_dir,paste("pred_data_month_info_",out_suffix,".txt",sep="")),sep=",") |
|
384 |
#pred_data_day_info <- read.table(file=file.path(out_dir,paste("pred_data_day_info_",out_suffix,".txt",sep="")),sep=",") |
|
385 |
df_tile_processed <- read.table(file=file.path(out_dir,paste("df_tile_processed_",out_suffix,".txt",sep="")),sep=",") |
|
380 | 386 |
|
381 | 387 |
#add column for tile size later on!!! |
382 | 388 |
|
... | ... | |
390 | 396 |
tb_s$pred_mod <- as.character(tb_s$pred_mod) |
391 | 397 |
tb_s$tile_id <- as.character(tb_s$tile_id) |
392 | 398 |
|
393 |
mulitple_region <- TRUE |
|
394 | 399 |
|
395 | 400 |
#multiple regions? |
396 | 401 |
if(mulitple_region==TRUE){ |
... | ... | |
403 | 408 |
|
404 | 409 |
} |
405 | 410 |
|
406 |
### |
|
407 |
"/data/project/layers/commons/NEX_data/output_run8_global_analyses_10212014/tb_diagnostic_v_NA_run8_global_analyses_10212014.txt" |
|
408 |
|
|
409 |
#drop 3b |
|
410 | 411 |
tb_all <- tb |
411 |
#tb <- subset(tb,reg!="reg3b") |
|
412 | 412 |
|
413 | 413 |
summary_metrics_v_all <- summary_metrics_v |
414 |
#summary_metrics_v <- subset(summary_metrics_v,reg!="reg3b") |
|
415 |
|
|
416 |
#tb_s_all <- tb_s |
|
417 |
#tb_s_all <- subset(tb_s,reg!="reg3b") |
|
418 |
|
|
419 |
#tb_month_s_all <- tb_month_s |
|
420 |
#tb_month_s <- subset(tb_month_s,reg!="reg3b") |
|
421 |
|
|
422 |
#df_tile_processed_all <- df_tile_processed |
|
423 |
#df_tile_processed <- subset(df_tile_processed,reg!="reg3b") |
|
424 |
|
|
425 |
#pred_data_month_info_all <- pred_data_month_info |
|
426 |
#pred_data_month_info <- subset(pred_data_month_info,reg!="reg3b") |
|
427 |
|
|
428 |
#pred_data_month_info_all <- pred_data_month_info |
|
429 |
#pred_data_month_info <- subset(pred_data_month_info,reg!="reg3b") |
|
430 | 414 |
|
431 |
#path_reg3 <- "/data/project/layers/commons/NEX_data/output_run8_global_analyses_10212014" |
|
432 |
#summary_metrics_v_reg3 <- read.table(file.path(path_reg3,"summary_metrics_v2_NA_run8_global_analyses_10212014.txt"),sep=",") |
|
433 |
#tb_diagnostic_v_NA_run8_global_analyses_10212014.txt |
|
434 |
#tb_month_diagnostic_s_NA_run8_global_analyses_10212014.txt |
|
435 |
#tb_diagnostic_s_NA_run8_global_analyses_10212014.txt |
|
436 |
#pred_data_month_info_run8_global_analyses_10212014.txt |
|
437 |
#pred_data_day_info_run8_global_analyses_10212014.txt |
|
438 |
#df_tile_processed_run8_global_analyses_10212014.txt |
|
415 |
############ PART 2: PRODUCE FIGURES ################ |
|
439 | 416 |
|
440 |
############### |
|
417 |
###########################
|
|
441 | 418 |
### Figure 1: plot location of the study area with tiles processed |
442 | 419 |
|
443 | 420 |
#df_tiled_processed <- na.omit(df_tile_processed) #remove other list of folders irrelevant |
... | ... | |
448 | 425 |
list_shp_reg_files <- file.path("/data/project/layers/commons/NEX_data/",out_dir, |
449 | 426 |
"shapefiles",basename(list_shp_reg_files)) |
450 | 427 |
|
428 |
|
|
429 |
### Potential function starts here: |
|
430 |
#function(in_dir,out_dir,list_shp_reg_files,title_str,region_name,num_cores,out_suffix,out_suffix) |
|
431 |
|
|
451 | 432 |
### First get background map to display where study area is located |
452 |
#can make this more general later on.. |
|
433 |
#can make this more general later on..should have this already in a local directory on Atlas or NEX!!!! |
|
434 |
|
|
453 | 435 |
if (region_name=="USA"){ |
454 | 436 |
usa_map <- getData('GADM', country='USA', level=1) #Get US map |
455 | 437 |
#usa_map <- getData('GADM', country=region_name,level=1) #Get US map, this is not working right now |
... | ... | |
472 | 454 |
#collect info: read in all shapfiles |
473 | 455 |
#This is slow...make a function and use mclapply?? |
474 | 456 |
#/data/project/layers/commons/NEX_data/output_run6_global_analyses_09162014/shapefiles |
475 |
|
|
457 |
|
|
476 | 458 |
for(i in 1:length(list_shp_reg_files)){ |
477 | 459 |
#path_to_shp <- dirname(list_shp_reg_files[[i]]) |
478 | 460 |
path_to_shp <- file.path(out_dir,"/shapefiles") |
... | ... | |
495 | 477 |
|
496 | 478 |
#fun <- function(i,list_shp_files) |
497 | 479 |
#coord_names <- c("lon","lat") |
498 |
#l_ras#t <- rasterize_df_fun(test,coord_names,proj_str,out_suffix=out_prefix,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
|
|
480 |
#l_ras#t <- rasterize_df_fun(test,coord_names,proj_str,out_suffix=out_suffix,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
|
|
499 | 481 |
|
500 | 482 |
#remove try-error polygons...we loose three tiles because they extend beyond -180 deg |
501 | 483 |
tmp <- shps_tiles |
... | ... | |
512 | 494 |
col_mfrow <- 1 |
513 | 495 |
row_mfrow <- 1 |
514 | 496 |
|
515 |
png(filename=paste("Figure1_tile_processed_region_",region_name,"_",out_prefix,".png",sep=""),
|
|
497 |
png(filename=paste("Figure1_tile_processed_region_",region_name,"_",out_suffix,".png",sep=""),
|
|
516 | 498 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
517 | 499 |
|
518 | 500 |
plot(reg_layer) |
... | ... | |
552 | 534 |
col_mfrow <- 1 |
553 | 535 |
row_mfrow <- 1 |
554 | 536 |
|
555 |
png(filename=paste("Figure2a_boxplot_with_oultiers_by_tiles_",model_name[i],"_",out_prefix,".png",sep=""),
|
|
537 |
png(filename=paste("Figure2a_boxplot_with_oultiers_by_tiles_",model_name[i],"_",out_suffix,".png",sep=""),
|
|
556 | 538 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
557 | 539 |
|
558 | 540 |
boxplot(rmse~tile_id,data=subset(tb,tb$pred_mod==model_name[i])) |
... | ... | |
568 | 550 |
res_pix <- 480 |
569 | 551 |
col_mfrow <- 1 |
570 | 552 |
row_mfrow <- 1 |
571 |
png(filename=paste("Figure2b_boxplot_scaling_by_tiles","_",model_name[i],"_",out_prefix,".png",sep=""),
|
|
553 |
png(filename=paste("Figure2b_boxplot_scaling_by_tiles","_",model_name[i],"_",out_suffix,".png",sep=""),
|
|
572 | 554 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
573 | 555 |
|
574 | 556 |
model_name <- unique(tb$pred_mod) |
... | ... | |
587 | 569 |
col_mfrow <- 1 |
588 | 570 |
row_mfrow <- 1 |
589 | 571 |
|
590 |
png(filename=paste("Figure3a_boxplot_overall_region_with_oultiers_",model_name[i],"_",out_prefix,".png",sep=""),
|
|
572 |
png(filename=paste("Figure3a_boxplot_overall_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""),
|
|
591 | 573 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
592 | 574 |
|
593 | 575 |
boxplot(rmse~pred_mod,data=tb)#,names=tb$pred_mod) |
... | ... | |
596 | 578 |
dev.off() |
597 | 579 |
|
598 | 580 |
## Figure 3b |
599 |
png(filename=paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_prefix,".png",sep=""),
|
|
581 |
png(filename=paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep=""),
|
|
600 | 582 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
601 | 583 |
|
602 | 584 |
boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
... | ... | |
628 | 610 |
# col_mfrow <- 1 |
629 | 611 |
# row_mfrow <- 1 |
630 | 612 |
# |
631 |
# png(filename=paste("Figure4_models_predicted_surfaces_",model_name[i],"_",name_method_var,"_",data_selected,"_",out_prefix,".png",sep=""),
|
|
613 |
# png(filename=paste("Figure4_models_predicted_surfaces_",model_name[i],"_",name_method_var,"_",data_selected,"_",out_suffix,".png",sep=""),
|
|
632 | 614 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
633 | 615 |
# |
634 | 616 |
# plot(r_pred) |
... | ... | |
659 | 641 |
col_mfrow <- 1 |
660 | 642 |
row_mfrow <- 1 |
661 | 643 |
|
662 |
png(filename=paste("Figure5_ac_metrics_ranked_",model_name[i],"_",out_prefix,".png",sep=""),
|
|
644 |
png(filename=paste("Figure5_ac_metrics_ranked_",model_name[i],"_",out_suffix,".png",sep=""),
|
|
663 | 645 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
664 | 646 |
x<- as.character(df_ac_mod$tile_id) |
665 | 647 |
barplot(df_ac_mod$rmse, names.arg=x) |
... | ... | |
689 | 671 |
# col_mfrow <- 1 |
690 | 672 |
# row_mfrow <- 1 |
691 | 673 |
# |
692 |
# png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_prefix,".png",sep=""),
|
|
674 |
# png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_suffix,".png",sep=""),
|
|
693 | 675 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
694 | 676 |
# |
695 | 677 |
# plot(r_pred) |
... | ... | |
726 | 708 |
col_mfrow <- 1 |
727 | 709 |
row_mfrow <- 1 |
728 | 710 |
|
729 |
png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_prefix,".png",sep=""),
|
|
711 |
png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_suffix,".png",sep=""),
|
|
730 | 712 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
731 | 713 |
|
732 | 714 |
#plot(r_pred) |
... | ... | |
785 | 767 |
row_mfrow <- 1 |
786 | 768 |
|
787 | 769 |
png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i], |
788 |
"_",out_prefix,".png",sep=""),
|
|
770 |
"_",out_suffix,".png",sep=""),
|
|
789 | 771 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
790 | 772 |
|
791 | 773 |
model_name[j] |
... | ... | |
815 | 797 |
|
816 | 798 |
# |
817 | 799 |
## Figure 7a |
818 |
png(filename=paste("Figure7a_number_daily_predictions_per_models","_",out_prefix,".png",sep=""),
|
|
800 |
png(filename=paste("Figure7a_number_daily_predictions_per_models","_",out_suffix,".png",sep=""),
|
|
819 | 801 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
820 | 802 |
|
821 | 803 |
xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v), |
... | ... | |
844 | 826 |
histogram(test$predicted~test$tile_id) |
845 | 827 |
#table(tb) |
846 | 828 |
## Figure 7b |
847 |
#png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_prefix,".png",sep=""),
|
|
829 |
#png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""),
|
|
848 | 830 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
849 | 831 |
|
850 | 832 |
#xyplot(n~month | tile_id + pred_mod,data=subset(as.data.frame(tb_month_s), |
... | ... | |
868 | 850 |
col_mfrow <- 1 |
869 | 851 |
row_mfrow <- 1 |
870 | 852 |
|
871 |
png(filename=paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_",model_name[i],"_",out_prefix,".png",sep=""),
|
|
853 |
png(filename=paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""),
|
|
872 | 854 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
873 | 855 |
|
874 | 856 |
p<- bwplot(rmse~pred_mod | reg, data=tb, |
... | ... | |
877 | 859 |
dev.off() |
878 | 860 |
|
879 | 861 |
## Figure 8b |
880 |
png(filename=paste("Figure8b_boxplot_overall_separated_by_region_scaling_",model_name[i],"_",out_prefix,".png",sep=""),
|
|
862 |
png(filename=paste("Figure8b_boxplot_overall_separated_by_region_scaling_",model_name[i],"_",out_suffix,".png",sep=""),
|
|
881 | 863 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
882 | 864 |
|
883 | 865 |
boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
... | ... | |
911 | 893 |
#out_dir_str <- out_dir |
912 | 894 |
#reg_name <- "reg6_1000x3000" |
913 | 895 |
#lapply() |
914 |
#list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_prefix)
|
|
915 |
#list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_prefix,l_dates=day_to_mosaic)
|
|
896 |
#list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_suffix)
|
|
897 |
#list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_suffix,l_dates=day_to_mosaic)
|
|
916 | 898 |
|
917 | 899 |
#lf_m_mask_reg4_1500x4500 <- mclapply(1:2,FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6) |
918 | 900 |
#debug(plot_daily_mosaics) |
... | ... | |
927 | 909 |
out_dir_str <- out_dir |
928 | 910 |
reg_name <- paste(l_reg_name[i],"_",tile_size,sep="") #make this automatic |
929 | 911 |
#lapply() |
930 |
list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_prefix,l_dates=day_to_mosaic)
|
|
912 |
list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_suffix,l_dates=day_to_mosaic)
|
|
931 | 913 |
#lf_m_mask_reg4_1500x4500 <- mclapply(1:2,FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6) |
932 | 914 |
|
933 | 915 |
lf_mosaics_mask_reg[[i]] <- mclapply(1:length(lf_m),FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 10) |
... | ... | |
1058 | 1040 |
# out_dir_str <- out_dir |
1059 | 1041 |
#reg_name <- paste(l_reg_name[i],"_",tile_size,sep="") #make this automatic |
1060 | 1042 |
#lapply() |
1061 |
# list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=tile_size,out_dir_str=out_dir_str,out_suffix=out_prefix,l_dates=day_to_mosaic)
|
|
1043 |
# list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=tile_size,out_dir_str=out_dir_str,out_suffix=out_suffix,l_dates=day_to_mosaic)
|
|
1062 | 1044 |
#lf_m_mask_reg4_1500x4500 <- mclapply(1:2,FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6) |
1063 | 1045 |
|
1064 | 1046 |
#lf_world_mask_reg[[i]] <- mclapply(1:length(lf_m),FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 10) |
Also available in: Unified diff
global assessment part2, clean up of code, 1500x4500km til size production of figures