Project

General

Profile

« Previous | Next » 

Revision 8ce033d8

Added by Benoit Parmentier about 8 years ago

time profiles run on multiple selected stations and fixing bugs

View differences:

climate/research/oregon/interpolation/global_product_assessment_part1_functions.R
19 19
#
20 20
#setfacl -Rmd user:aguzman4:rwx /nobackupp8/bparmen1/output_run10_1500x4500_global_analyses_pred_1992_10052015
21 21

  
22
##COMMIT: adding windowing and more options to plotting function time series
22
##COMMIT: time profiles run on multiple selected stations and fixing bugs 
23 23

  
24 24
#################################################################################################
25 25

  
......
807 807
  ########## Start script #########
808 808
  
809 809
  ## Screen of NaN and make sure we have NA
810
  df_pix_ts[is.na(df_pix_ts)] <- NA
810
  df_pix_time_series[is.na(df_pix_time_series)] <- NA
811 811
  
812 812
  #Scale if necessary, this should be a list
813 813
  if(!is.null(scaling_factors)){
814 814
    
815
    df_pix_ts[[var_name2]] <-  df_pix_ts[[var_name2]]*scaling_factors[2] 
815
    df_pix_time_series[[var_name2]] <-  df_pix_time_series[[var_name2]]*scaling_factors[2] 
816 816
  }
817 817

  
818 818
  if(is.null(time_series_id)){
819
    time_series_id <- unique(na.omit(df_pix_ts$id))
819
    time_series_id <- unique(na.omit(df_pix_time_series$id))
820 820
  }
821 821
  
822 822
  #### var_name 1
823
  d_z_obs <- zoo(as.numeric(df_pix_ts[[var_name1]]),as.Date(df_pix_ts$date))
823
  d_z_obs <- zoo(as.numeric(df_pix_time_series[[var_name1]]),as.Date(df_pix_time_series$date))
824 824
  #plot(d_z_obs)  
825 825
  
826 826
  #### var_name 2
827
  d_z_var <- zoo(as.numeric(df_pix_ts[[var_name2]]),as.Date(df_pix_ts$date)) #make sure date is a date object !!!
827
  d_z_var <- zoo(as.numeric(df_pix_time_series[[var_name2]]),as.Date(df_pix_time_series$date)) #make sure date is a date object !!!
828 828
  #names(d_z_var) <- var_pred_mosaic
829 829
  #plot(d_z_var)  
830 830

  
831 831
  d_z_diff <- d_z_var - d_z_obs #this is residuals if var is predicted
832 832
  #d_z_res <- d_z_var - d_z_obs 
833 833
  
834
  #d_z_res <- zoo(as.numeric(df_pix_ts[[paste0("res_",var_pred_mosaic)]]),as.Date(df_pix_ts$date))
834
  #d_z_res <- zoo(as.numeric(df_pix_time_series[[paste0("res_",var_pred_mosaic)]]),as.Date(df_pix_time_series$date))
835 835
  #plot(d_z_diff)  
836 836

  
837 837
  d_z_all <- merge(d_z_obs,d_z_var,d_z_diff)
......
866 866
  #day_end <- "2014-12-31" #PARAM 13 arg 13
867 867
  start_date <- as.Date(day_start)
868 868
  end_date <- as.Date(day_end)
869
  #range_year <- range(df_pix_ts$year)
869
  #range_year <- range(df_pix_time_series$year)
870 870
  #start_year <- range_year[1]
871 871
  #end_year <- range_year[2]
872 872
  #var="tmax"

Also available in: Unified diff