Revision 8df39bf1
Added by Benoit Parmentier over 9 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part1.R | ||
---|---|---|
5 | 5 |
#Part 1 create summary tables and inputs files for figure in part 2 and part 3. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 03/23/2014 |
8 |
#MODIFIED ON: 04/24/2015
|
|
8 |
#MODIFIED ON: 04/27/2015
|
|
9 | 9 |
#Version: 4 |
10 | 10 |
#PROJECT: Environmental Layers project |
11 | 11 |
#TO DO: |
... | ... | |
90 | 90 |
CRS_locs_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84, #PARAM8 |
91 | 91 |
|
92 | 92 |
#day_to_mosaic <- c("20100101","20100901") #PARAM9 |
93 |
#day_to_mosaic <- c("20100101","20100102","20100103","20100104","20100105",
|
|
94 |
# "20100301","20100302","20100303","20100304","20100305",
|
|
95 |
# "20100501","20100502","20100503","20100504","20100505",
|
|
96 |
# "20100701","20100702","20100703","20100704","20100705",
|
|
97 |
# "20100901","20100902","20100903","20100904","20100905",
|
|
98 |
# "20101101","20101102","20101103","20101104","20101105")
|
|
99 |
day_to_mosaic <- NULL #if day to mosaic is null then mosaic all dates? |
|
93 |
day_to_mosaic <- c("20100101","20100102","20100103","20100104","20100105", |
|
94 |
"20100301","20100302","20100303","20100304","20100305", |
|
95 |
"20100501","20100502","20100503","20100504","20100505", |
|
96 |
"20100701","20100702","20100703","20100704","20100705", |
|
97 |
"20100901","20100902","20100903","20100904","20100905", |
|
98 |
"20101101","20101102","20101103","20101104","20101105") |
|
99 |
#day_to_mosaic <- NULL #if day to mosaic is null then mosaic all dates?
|
|
100 | 100 |
|
101 | 101 |
file_format <- ".tif" #format for mosaiced files #PARAM10 |
102 | 102 |
NA_flag_val <- -9999 #No data value, #PARAM11 |
... | ... | |
110 | 110 |
#module_path <- "/nobackupp6/aguzman4/climateLayers/sharedCode/" #PARAM14 |
111 | 111 |
#mosaics script #PARAM 15 |
112 | 112 |
#shell global mosaic script #PARAM 16 |
113 |
#gather station data |
|
113 | 114 |
|
114 | 115 |
########################## START SCRIPT ######################################### |
115 | 116 |
|
... | ... | |
369 | 370 |
# write.table((data_month_NAM), |
370 | 371 |
# file=file.path(out_dir,paste("data_month_s_NAM","_",out_prefix,".txt",sep="")),sep=",") |
371 | 372 |
|
373 |
##### SPDF of daily Station info |
|
374 |
#load data_month for specific tiles |
|
375 |
# data_month <- extract_from_list_obj(robj1$clim_method_mod_obj,"data_month") |
|
376 |
# names(data_month) #this contains LST means (mm_1, mm_2 etc.) as well as TMax and other info |
|
377 |
# |
|
378 |
data_day_s_list <- mclapply(list_raster_obj_files,FUN=function(x){try(x<-load_obj(x));try(x$validation_mod_obj[["data_s"]])},mc.preschedule=FALSE,mc.cores = num_cores) |
|
379 |
data_day_v_list <- mclapply(list_raster_obj_files,FUN=function(x){try(x<-load_obj(x));try(x$validation_mod_obj[["data_v"]])},mc.preschedule=FALSE,mc.cores = num_cores) |
|
380 |
|
|
381 |
data_day_s_list <- mclapply(list_raster_obj_files[1:6],FUN=function(x){try(x<-load_obj(x));try(x$validation_mod_obj[["data_s"]])},mc.preschedule=FALSE,mc.cores = num_cores) |
|
382 |
|
|
383 |
data_day_v_list <- mclapply(list_raster_obj_files,FUN=function(x){try(x<-load_obj(x));try(extract_list_from_list_obj(x$validation_mod_obj,"data_v"))},mc.preschedule=FALSE,mc.cores = num_cores) |
|
384 |
data_day_s_list <- mclapply(list_raster_obj_files,FUN=function(x){try(x<-load_obj(x));try(extract_list_from_list_obj(x$validation_mod_obj,"data_s"))},mc.preschedule=FALSE,mc.cores = num_cores) |
|
385 |
|
|
386 |
list_data_day_v <- try(extract_list_from_list_obj(raster_obj$validation_mod_obj,"data_v")) |
|
387 |
list_data_day_s <- try(extract_list_from_list_obj(raster_obj$validation_mod_obj,"data_s")) |
|
388 |
sampling_dat_day <- extract_list_from_list_obj(raster_obj$method_mod_obj,"daily_dev_sampling_dat") |
|
389 |
#debug(pred_data_info_fun) |
|
390 |
#list_pred_data_day_s_info <- pred_data_info_fun(1,list_data=list_data_day_s,pred_mod=pred_mod,sampling_dat_info=sampling_dat_day) |
|
391 |
list_pred_data_day_s_info <- lapply(1:length(sampling_dat_day),FUN=pred_data_info_fun, |
|
392 |
list_data=list_data_day_s,pred_mod=pred_mod,sampling_dat_info=sampling_dat_day) |
|
393 |
list_pred_data_day_v_info <- lapply(1:length(sampling_dat_day),FUN=pred_data_info_fun, |
|
394 |
list_data=list_data_day_v,pred_mod=pred_mod,sampling_dat_info=sampling_dat_day) |
|
395 |
pred_data_day_s_info <- do.call(rbind,list_pred_data_day_s_info) |
|
396 |
pred_data_day_v_info <- do.call(rbind,list_pred_data_day_v_info) |
|
397 |
pred_data_day_s_info$training <- rep(1,nrow(pred_data_day_s_info)) |
|
398 |
pred_data_day_v_info$training <- rep(0,nrow(pred_data_day_v_info)) |
|
399 |
pred_data_day_info <-rbind(pred_data_day_v_info,pred_data_day_s_info) |
|
400 |
|
|
401 |
# |
|
402 |
names(data_month_s_list) <- list_names_tile_id |
|
403 |
# |
|
404 |
# data_month_tmp <- remove_from_list_fun(data_month_s_list)$list |
|
405 |
# #df_tile_processed$metrics_v <- remove_from_list_fun(data_month_s_list)$valid |
|
406 |
# |
|
407 |
# tile_id <- lapply(1:length(data_month_tmp), |
|
408 |
# FUN=function(i,x){rep(names(x)[i],nrow(x[[i]]))},x=data_month_tmp) |
|
409 |
# data_month_NAM <- do.call(rbind.fill,data_month_list) #combined data_month for "NAM" North America |
|
410 |
# data_month_NAM$tile_id <- unlist(tile_id) |
|
411 |
# |
|
412 |
# write.table((data_month_NAM), |
|
413 |
# file=file.path(out_dir,paste("data_month_s_NAM","_",out_prefix,".txt",sep="")),sep=",") |
|
414 |
|
|
372 | 415 |
##### SPDF of Daily Station info |
373 | 416 |
|
374 | 417 |
|
... | ... | |
537 | 580 |
### SECOND mosaics globally from regional mosaics... |
538 | 581 |
### Now find out how many files were predicted |
539 | 582 |
# will be useful later on |
583 |
# Transform this into a function that takes in a list of files!!! We can skip the region stage to reduce the number of files.. |
|
540 | 584 |
|
541 | 585 |
#sh /nobackupp6/aguzman4/climateLayers/sharedCode/shMergeFromFile.sh list_mosaics_20100901.txt world_mosaics_1000x3000_20100901.tif |
542 | 586 |
|
Also available in: Unified diff
global assessment part1, obtaining training and testing information from global runs