Project

General

Profile

« Previous | Next » 

Revision 8e7d2304

Added by Benoit Parmentier over 10 years ago

run6 assessment NEX part2: generating raster map of accuracy and number of stations

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R
5 5
#Analyses, figures, tables and data are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 09/16/2014            
8
#MODIFIED ON: 09/30/2014            
9 9
#Version: 3
10 10
#PROJECT: Environmental Layers project     
11 11
#COMMENTS: analyses for run 5 global using 6 specific tiles
......
106 106
  return(unlist(rast_list))
107 107
}
108 108

  
109
plot_raster_tb_diagnostic <- function(reg_layer,tb_dat,df_tile_processed,date_selected,mod_selected,var_selected,out_suffix){
110
  
111
  test <- subset(tb_dat,pred_mod==mod_selected & date==date_selected,select=c("tile_id",var_selected))
112

  
113
  test_data_tb <- merge(df_tile_processed,test,by="tile_id",all=T) #keep all
114
  test_r <- subset(test_data_tb,select=c("lat","lon","tile_id",var_selected))
115
  out_suffix_str <- paste(var_selected,mod_selected,date_selected,out_suffix,sep="_")
116
  coord_names <- c("lon","lat")
117
  l_rast <- rasterize_df_fun(test_r,coord_names,proj_str,out_suffix_str,out_dir=".",file_format=".tif",NA_flag_val=-9999,tolerance_val=0.000120005)
118
  #mod_kr_stack <- stack(mod_kr_l_rast)
119
  d_tb_rast <- stack(l_rast)
120
  names(d_tb_rast) <- names(test_r)
121
  #plot(d_tb_rast)
122
  r <- subset(d_tb_rast,"rmse")
123
  names(r) <- paste(mod_selected,var_selected,date_selected,sep="_")
124
  #plot info: with labels
125

  
126
  res_pix <- 1200
127
  col_mfrow <- 1
128
  row_mfrow <- 1
129

  
130
  png(filename=paste("Figure9_",names(r),"_map_processed_region_",region_name,"_",out_prefix,".png",sep=""),
131
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
132

  
133
  #plot(reg_layer)
134
  #p1 <- spplot(reg_layer,"ISO",colorkey=FALSE) #Use ISO instead of NAME_1 to see no color?
135
  title_str <- paste(names(r),"for ", region_name,sep="")
136

  
137
  p0 <- levelplot(r,col.regions=matlab.like(25),margin=F,main=title_str)
138
  p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black'))
139

  
140
  p <- p0 + p_shp
141
  print(p)
142

  
143
  dev.off()
144

  
145
}
146

  
147
create_raster_from_tb_diagnostic <- function(i,list_param){
148
  #create a raster image using tile centroids and given fields  from tb diagnostic data
149
  tb_dat <- list_param$tb_dat
150
  df_tile_processed <- list_param$df_tile_processed
151
  date_selected <- list_param$date_selected[i]
152
  mod_selected <- list_param$mod_selected
153
  var_selected <- list_param$var_selected
154
  out_suffix <- list_param$out_suffix
155
  
156
  test <- subset(tb_dat,pred_mod==mod_selected & date==date_selected,select=c("tile_id",var_selected))
157

  
158
  test_data_tb <- merge(df_tile_processed,test,by="tile_id",all=T) #keep all
159
  test_r <- subset(test_data_tb,select=c("lat","lon","tile_id",var_selected))
160
  out_suffix_str <- paste(var_selected,mod_selected,date_selected,out_suffix,sep="_")
161
  coord_names <- c("lon","lat")
162
  l_rast <- rasterize_df_fun(test_r,coord_names,proj_str,out_suffix_str,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
163
  #mod_kr_stack <- stack(mod_kr_l_rast)
164
  #d_tb_rast <- stack(l_rast)
165
  #r <- subset(d_tb_rast,var_selected)
166
  #names(d_tb_rast) <- names(test_r)
167
  return(l_rast[4])
168
}
109 169

  
110 170
##############################
111 171
#### Parameters and constants  
......
130 190
y_var_name <- "dailyTmax"
131 191
interpolation_method <- c("gam_CAI")
132 192
out_prefix<-"run6_global_analyses_09162014"
193
mosaic_plot <- FALSE
133 194

  
134 195
proj_str<- CRS_WGS84
135 196
file_format <- ".rst"
......
161 222
tb <- read.table(file=file.path(out_dir,paste("tb_diagnostic_v_NA","_",out_prefix,".txt",sep="")),sep=",")
162 223
tb_s <- read.table(file=file.path(out_dir,paste("tb_diagnostic_s_NA","_",out_prefix,".txt",sep="")),sep=",")
163 224

  
164
tb_month_s_<- read.table(file=file.path(out_dir,paste("tb_month_diagnostic_s_NA","_",out_prefix,".txt",sep="")),sep=",")
225
tb_month_s <- read.table(file=file.path(out_dir,paste("tb_month_diagnostic_s_NA","_",out_prefix,".txt",sep="")),sep=",")
165 226
#tb_month_s <- read.table("tb_month_diagnostic_s_NA_run5_global_analyses_08252014.txt",sep=",")
166
pred_data_month_info <- read.table(file=file.path(out_dir,paste("pred_data_month_info_",out_prefix,".txt",sep="")),sep=",")
167
pred_data_day_info <- read.table(file=file.path(out_dir,paste("pred_data_day_info_",out_prefix,".txt",sep="")),sep=",")
227
#pred_data_month_info <- read.table(file=file.path(out_dir,paste("pred_data_month_info_",out_prefix,".txt",sep="")),sep=",")
228
#pred_data_day_info <- read.table(file=file.path(out_dir,paste("pred_data_day_info_",out_prefix,".txt",sep="")),sep=",")
168 229
df_tile_processed <- read.table(file=file.path(out_dir,paste("df_tile_processed_",out_prefix,".txt",sep="")),sep=",")
169 230
#in_dir_list <- file.path(in_dir1,read.table(file.path(in_dir1,"processed.txt"))$V1)
170 231
#gam_diagnostic_df <- read.table(file=file.path(out_dir,"gam_diagnostic_df_run4_global_analyses_08142014.txt"),sep=",")
......
216 277
  centroids_pts[[i]] <-pt
217 278
  shps_tiles[[i]] <- shp1
218 279
}
219
coord_names <- c("lon","lat")
220
l_rast <- rasterize_df_fun(test,coord_names,proj_str,out_suffix=out_prefix,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
280
#coord_names <- c("lon","lat")
281
#l_rast <- rasterize_df_fun(test,coord_names,proj_str,out_suffix=out_prefix,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
221 282

  
222 283

  
223 284
#plot info: with labels
......
313 374
dev.off()
314 375

  
315 376

  
316
######################
317
### Figure 5: plot accuracy ranked 
318

  
319
#Turn summary table to a point shp
320

  
321
list_df_ac_mod <- vector("list",length=length(model_name))
322
for (i in 1:length(model_name)){
323
  
324
  ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],]
325
  ### Ranking by tile...
326
  df_ac_mod <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("pred_mod","rmse","mae","tile_id")]
327
  list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")]
328
  
329
  res_pix <- 480
330
  col_mfrow <- 1
331
  row_mfrow <- 1
332

  
333
  png(filename=paste("Figure5_ac_metrics_ranked_",model_name[i],"_",out_prefix,".png",sep=""),
334
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
335
  x<- as.character(df_ac_mod$tile_id)
336
  barplot(df_ac_mod$rmse, names.arg=x)
337
  #plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T)
338
  #plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T)
339
  title(paste("RMSE ranked by tile for ",model_name[i],sep=""))
340

  
341
  dev.off()
342
  
343
}
344

  
345

  
346
##### Diagnostic gam
347
####
348
#gam_diag_10x10 <- read.table("gam_diagnostic_10x10_df_run4_global_analyses_08142014.txt",sep=",")
349
#gam_diag_10x10$month <- as.factor(gam_diag_10x10$month)
350

  
351
#xyplot(rmse~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
352
#                                           pred_mod!="mod_kr"),type="b")
353

  
354
#xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
355
#                                           pred_mod!="mod_kr"),type="h")
356

  
357
xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
358
                                           pred_mod!="mod_kr"),type="h")
359

  
360
#xyplot(n~month | tile_id + pred_mod,data=subset(as.data.frame(tb_month_s_),
361
#                                           pred_mod!="mod_kr"),type="h")
362

  
363
# 
364
## Figure 3b
365
png(filename=paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_prefix,".png",sep=""),
366
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
367

  
368
boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
369
title("RMSE per model over all tiles")
370

  
371
dev.off()
372

  
373 377
################ 
374 378
### Figure 4: plot predicted tiff for specific date per model
375 379

  
376 380
#y_var_name <-"dailyTmax"
377 381
#index <-244 #index corresponding to Sept 1
378
index  <- 1 #index corresponding to Jan 1
379
date_selected <- "20100901"
380
name_method_var <- paste(interpolation_method,"_",y_var_name,"_",sep="")
381 382

  
382
pattern_str <- paste("mosaiced","_",name_method_var,"predicted",".*.",date_selected,".*.tif",sep="")
383
lf_pred_list <- list.files(pattern=pattern_str)
383
if (mosaic_plot==TRUE){
384
  index  <- 1 #index corresponding to Jan 1
385
  date_selected <- "20100901"
386
  name_method_var <- paste(interpolation_method,"_",y_var_name,"_",sep="")
387

  
388
  pattern_str <- paste("mosaiced","_",name_method_var,"predicted",".*.",date_selected,".*.tif",sep="")
389
  lf_pred_list <- list.files(pattern=pattern_str)
384 390

  
385
for(i in 1:length(lf_pred_list)){
391
  for(i in 1:length(lf_pred_list)){
392
    
386 393
  
387
  r_pred <- raster(lf_pred_list[i])
394
    r_pred <- raster(lf_pred_list[i])
388 395
  
389
  res_pix <- 480
390
  col_mfrow <- 1
391
  row_mfrow <- 1
392
  
393
  png(filename=paste("Figure4_models_predicted_surfaces_",model_name[i],"_",name_method_var,"_",data_selected,"_",out_prefix,".png",sep=""),
394
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
396
    res_pix <- 480
397
    col_mfrow <- 1
398
    row_mfrow <- 1
395 399
  
396
  plot(r_pred)
397
  title(paste("Mosaiced",model_name[i],name_method_var,date_selected,sep=" "))
398
  dev.off()
400
    png(filename=paste("Figure4_models_predicted_surfaces_",model_name[i],"_",name_method_var,"_",data_selected,"_",out_prefix,".png",sep=""),
401
       width=col_mfrow*res_pix,height=row_mfrow*res_pix)
399 402
  
403
    plot(r_pred)
404
    title(paste("Mosaiced",model_name[i],name_method_var,date_selected,sep=" "))
405
    dev.off()
406
  }
407
  #Plot Delta and clim...
408

  
409
   ## plotting of delta and clim for later scripts...
410

  
400 411
}
401 412

  
402 413
####### Figure 5...
......
404 415

  
405 416
#r_pred <- raster(lf_pred_list[i])
406 417
  
407
res_pix <- 480
408
col_mfrow <- 1
409
row_mfrow <- 1
410
model_name <- as.character(model_name)
411

  
412
i<-2
413
png(filename=paste("Figure5_tiles_with_models_predicted_surfaces_",model_name[i],"_",name_method_var,out_prefix,".png",sep=""),
414
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
415
  
418
#res_pix <- 480
419
#col_mfrow <- 1
420
#row_mfrow <- 1
421
#model_name <- as.character(model_name)
422

  
423
#i<-2
424
#png(filename=paste("Figure5_tiles_with_models_predicted_surfaces_",model_name[i],"_",name_method_var,out_prefix,".png",sep=""),
425
#    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
426
#  
416 427
#plot(r_pred)
417
plot(reg_layer)
428
#plot(reg_layer)
418 429

  
419 430
#title(paste("Mosaiced",model_name[i],name_method_var,date_selected,"with tiles",sep=" "))
420 431

  
421 432
#Add polygon tiles...
422
for(i in 1:length(list_shp_reg_files)){
423
  shp1 <- shps_tiles[[i]]
424
  pt <- centroids_pts[[i]]
425
  plot(shp1,add=T,border="blue")
433
#for(i in 1:length(list_shp_reg_files)){
434
#  shp1 <- shps_tiles[[i]]
435
#  pt <- centroids_pts[[i]]
436
#  plot(shp1,add=T,border="blue")
426 437
  #plot(pt,add=T,cex=2,pch=5)
427
  label_id <- df_tile_processed$tile_id[i]
428
  text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1,col=c("red"))
429
}
438
#  label_id <- df_tile_processed$tile_id[i]
439
#  text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1,col=c("red"))
440
#}
430 441
#title(paste("Prediction with tiles location 10x10 degrees for ", region_name,sep=""))
431
dev.off()
442
#dev.off()
432 443

  
433 444
### 
434 445

  
......
465 476
#print(p)
466 477
#dev.off()
467 478

  
479

  
468 480
######################
469
### Figure 6: plot map of average RMSE per tile at centroids
481
### Figure 5: plot accuracy ranked 
470 482

  
471 483
#Turn summary table to a point shp
472 484

  
473
coordinates(summary_metrics_v) <- cbind(summary_metrics_v$lon,summary_metrics_v$lat)
474
proj4string(summary_metrics_v) <- CRS_WGS84
475
#lf_list <- lf_pred_list
476
list_df_ac_mod <- vector("list",length=length(lf_pred_list))
477
for (i in 1:length(lf_list)){
485
list_df_ac_mod <- vector("list",length=length(model_name))
486
for (i in 1:length(model_name)){
478 487
  
479 488
  ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],]
480
  r_pred <- raster(lf_list[i])
489
  ### Ranking by tile...
490
  df_ac_mod <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("pred_mod","rmse","mae","tile_id")]
491
  list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")]
481 492
  
482 493
  res_pix <- 480
483 494
  col_mfrow <- 1
484 495
  row_mfrow <- 1
485 496

  
486
  png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_prefix,".png",sep=""),
497
  png(filename=paste("Figure5_ac_metrics_ranked_",model_name[i],"_",out_prefix,".png",sep=""),
487 498
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
488

  
489
  plot(r_pred)  
490
  
499
  x<- as.character(df_ac_mod$tile_id)
500
  barplot(df_ac_mod$rmse, names.arg=x)
491 501
  #plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T)
492
  plot(ac_mod,cex=(ac_mod$rmse^2)/10,pch=1,add=T)
493 502
  #plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T)
494
  title(paste("Averrage RMSE per tile and by ",model_name[i]))
503
  title(paste("RMSE ranked by tile for ",model_name[i],sep=""))
495 504

  
496 505
  dev.off()
497 506
  
498
  ### Ranking by tile...
499
  #df_ac_mod <- 
500
  list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")]
501 507
}
508

  
509
######################
510
### Figure 6: plot map of average RMSE per tile at centroids
511

  
512
#Turn summary table to a point shp
513

  
514
# coordinates(summary_metrics_v) <- cbind(summary_metrics_v$lon,summary_metrics_v$lat)
515
# proj4string(summary_metrics_v) <- CRS_WGS84
516
# #lf_list <- lf_pred_list
517
# list_df_ac_mod <- vector("list",length=length(lf_pred_list))
518
# for (i in 1:length(lf_list)){
519
#   
520
#   ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],]
521
#   r_pred <- raster(lf_list[i])
522
#   
523
#   res_pix <- 480
524
#   col_mfrow <- 1
525
#   row_mfrow <- 1
526
# 
527
#   png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_prefix,".png",sep=""),
528
#     width=col_mfrow*res_pix,height=row_mfrow*res_pix)
529
# 
530
#   plot(r_pred)  
531
#   
532
#   #plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T)
533
#   plot(ac_mod,cex=(ac_mod$rmse^2)/10,pch=1,add=T)
534
#   #plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T)
535
#   title(paste("Averrage RMSE per tile and by ",model_name[i]))
536
# 
537
#   dev.off()
538
#   
539
#   ### Ranking by tile...
540
#   #df_ac_mod <- 
541
#   list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")]
542
# }
502 543
  
503 544
#quick kriging...
504 545
#autokrige(rmse~1,r2,)
......
544 585
}
545 586

  
546 587
######################
547
### Figure 7: Delta and clim...
588
### Figure 7: Number of predictions: daily and monthly
589

  
590
#xyplot(rmse~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
591
#                                           pred_mod!="mod_kr"),type="b")
592

  
593
#xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
594
#                                           pred_mod!="mod_kr"),type="h")
595

  
596

  
548 597

  
549
## plotting of delta and clim for later scripts...
598
# 
599
## Figure 7a
600
png(filename=paste("Figure7a_number_daily_predictions_per_models","_",out_prefix,".png",sep=""),
601
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
602

  
603
xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
604
                                           pred_mod!="mod_kr"),type="h")
605
dev.off()
606

  
607
## Figure 7b
608
#png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_prefix,".png",sep=""),
609
#    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
610

  
611
#xyplot(n~month | tile_id + pred_mod,data=subset(as.data.frame(tb_month_s),
612
#                                           pred_mod!="mod_kr"),type="h")
613
#xyplot(n~month | tile_id,data=subset(as.data.frame(tb_month_s),
614
#                                           pred_mod="mod_1"),type="h")
615
#test=subset(as.data.frame(tb_month_s),pred_mod="mod_1")
616
#table(tb_month_s$month)
617
#dev.off()
618
#
550 619

  
551 620
######################
552 621
### Figure 9: Plot the number of stations in a processing tile
......
564 633
coord_names <- c("lon.x","lat.x")
565 634
#l_r_ast <- rasterize_df_fun(df_tile_processed,coord_names,proj_str,out_suffix,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
566 635
out_suffix_str <- paste("mod1_",out_suffix)
567
mod1_l_rast <- rasterize_df_fun(mod1_data_tb,coord_names,proj_str,out_suffix_str,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
636
mod1_l_rast <- rasterize_df_fun(mod1_data_tb,coord_names,proj_str=CRS_WGS84,out_suffix_str,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
568 637
mod1_stack <- stack(mod1_l_rast)
569 638
names(mod1_stack) <- names(mod1_data_tb)
570 639

  
571 640
out_suffix_str <- paste("mod2_",out_suffix)
572
mod2_l_rast <- rasterize_df_fun(mod2_data_tb,coord_names,proj_str,out_suffix_str,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
641
mod2_l_rast <- rasterize_df_fun(mod2_data_tb,coord_names,proj_str=CRS_WGS84,out_suffix_str,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
573 642
mod2_stack <- stack(mod2_l_rast)
574 643
names(mod2_stack) <- names(mod2_data_tb)
575 644

  
576 645
out_suffix_str <- paste("mod_kr_",out_suffix)
577
mod_kr_l_rast <- rasterize_df_fun(mod_kr_data_tb,coord_names,proj_str,out_suffix_str,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
646
mod_kr_l_rast <- rasterize_df_fun(mod_kr_data_tb,coord_names,proj_str=CRS_WGS84,out_suffix_str,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
578 647
mod_kr_stack <- stack(mod_kr_l_rast)
579 648
names(mod_kr_stack) <- names(mod_kr_data_tb)
580 649

  
581 650
#Number of daily predictions 
582
p0 <- levelplot(mod1_stack,layer=21,margin=F)
651
p0 <- levelplot(mod1_stack,layer=21,margin=F,
652
                main=paste("number_daily_predictions_for_","mod1",sep=""))
583 653
p<- p0+p_shp
654

  
655
###########
656
## Figure 9a: number of daily predictions
657

  
658
res_pix <- 1200
659
#res_pix <- 480
660
col_mfrow <- 1
661
row_mfrow <- 1
662

  
663
png(filename=paste("Figure9a_raster_map_number_daily_predictions_forr_","mod1","_",out_prefix,".png",sep=""),
664
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
665

  
584 666
print(p)
585
p0<- levelplot(mod2_stack,layer=21,margin=F)
586
p<- p0+p_shp
667

  
668
dev.off()
669

  
670
## Figure 9a
671
p0 <- levelplot(mod2_stack,layer=21,margin=F)
672
p <- p0+p_shp
673

  
674
res_pix <- 1200
675
#res_pix <- 480
676
col_mfrow <- 1
677
row_mfrow <- 1
678
png(filename=paste("Figure9a_raster_map_number_daily_predictions_for_","mod2","_",out_prefix,".png",sep=""),
679
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
680

  
587 681
print(p)
588
plot(mod_kr_stack,y=21)
589 682

  
590
#RMSE
591
p0 <- levelplot(mod1_stack,layer=10,margin=F,col.regions=matlab.like(25),main="Average RMSE for mod1")
683
dev.off()
684

  
685
#plot(mod_kr_stack,y=21)
686

  
687
########
688
###Figure 9b: RMSE plots
689
##
690
p0 <- levelplot(mod1_stack,layer=10,margin=F,col.regions=matlab.like(25),
691
                main="Average RMSE for mod1")
592 692
p<- p0+p_shp
693

  
694
res_pix <- 1200
695
#res_pix <- 480
696
col_mfrow <- 1
697
row_mfrow <- 1
698
png(filename=paste("Figure9b_raster_map_rmse_predictions_for_","mod1","_",out_prefix,".png",sep=""),
699
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
700

  
593 701
print(p)
594 702

  
595
p0 <- levelplot(mod1_stack,layer=10,margin=F,col.regions=matlab.like(25),main="Average RMSE for mod2")
703
dev.off()
704

  
705
#print(p)
706
p0 <- levelplot(mod2_stack,layer=10,margin=F,col.regions=matlab.like(25),
707
                main="Average RMSE for mod2")
596 708
p<- p0+p_shp
709
#print(p)
710

  
711
res_pix <- 1200
712
#res_pix <- 480
713
col_mfrow <- 1
714
row_mfrow <- 1
715
png(filename=paste("Figure9b_raster_map_rmse_predictions_for_","mod2","_",out_prefix,".png",sep=""),
716
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
717

  
597 718
print(p)
598 719

  
720
dev.off()
721

  
599 722
#plot(mod1_stack,y=10)
600 723
#plot(mod2_stack,y=10)
601 724
#plot(mod_kr_stack,y=10)
602 725

  
726
########## Figure 10: map of daily predictions accuracy
727

  
603 728
## Can make maps of daily and accuracy metrics!!!
604 729

  
605 730
#mod1_tb <- subset(tb,pred_mod=="mod1")
......
622 747
#idx <- seq(as.Date('20100101'), as.Date('20101231'), 'day')
623 748
#date_l <- strptime(idx[1], "%Y%m%d") # interpolation date being processed
624 749
l_date_selected <- format(idx, "%Y%m%d") # interpolation date being processed
625

  
750
tb_dat <- tb
751
proj_str <- CRS_WGS84
626 752
list_param_raster_from_tb <- list(tb_dat,df_tile_processed,l_date_selected,
627 753
                                  mod_selected,var_selected,out_suffix,
628 754
                                  proj_str,file_format,NA_value,NA_flag_val)
......
633 759
#undebug(create_raster_from_tb_diagnostic)
634 760
rast <- create_raster_from_tb_diagnostic (i,list_param=list_param_raster_from_tb)
635 761
l_rast <- lapply(1:length(l_date_selected),FUN=create_raster_from_tb_diagnostic,list_param=list_param_raster_from_tb)
636
r_rmse <- stack(l_rast)
762
r_mod1_rmse <- stack(l_rast)
763
list_param_raster_from_tb$var_selected <- "n"
764
l_rast_n<- lapply(1:length(l_date_selected),FUN=create_raster_from_tb_diagnostic,list_param=list_param_raster_from_tb)
765
r_mod1_n <- stack(l_rast_n)
766

  
767
##now stack for mod2
768

  
769
list_param_raster_from_tb$mod_selected <- "mod2"
770
list_param_raster_from_tb$var_selected <- "rmse"
771
l_rast <- lapply(1:length(l_date_selected),FUN=create_raster_from_tb_diagnostic,list_param=list_param_raster_from_tb)
772
r_mod1_rmse <- stack(l_rast)
773
list_param_raster_from_tb$var_selected <- "n"
774
l_rast_n<- lapply(1:length(l_date_selected),FUN=create_raster_from_tb_diagnostic,list_param=list_param_raster_from_tb)
775
r_mod1_n <- stack(l_rast_n)
776

  
777

  
778

  
637 779
#Make this a function...
638 780
#test <- subset(tb,pred_mod=="mod1" & date=="20100101",select=c("tile_id","n","mae","rmse","me","r","m50"))
639 781

  
......
664 806
  plot_raster_tb_diagnostic(reg_layer,tb_dat,df_tile_processed,date_selected,mod_selected,var_selected,out_suffix)
665 807
}
666 808

  
667
plot_raster_tb_diagnostic <- function(reg_layer,tb_dat,df_tile_processed,date_selected,mod_selected,var_selected,out_suffix){
668
  
669
  test <- subset(tb_dat,pred_mod==mod_selected & date==date_selected,select=c("tile_id",var_selected))
670

  
671
  test_data_tb <- merge(df_tile_processed,test,by="tile_id",all=T) #keep all
672
  test_r <- subset(test_data_tb,select=c("lat","lon","tile_id",var_selected))
673
  out_suffix_str <- paste(var_selected,mod_selected,date_selected,out_suffix,sep="_")
674
  coord_names <- c("lon","lat")
675
  l_rast <- rasterize_df_fun(test_r,coord_names,proj_str,out_suffix_str,out_dir=".",file_format=".tif",NA_flag_val=-9999,tolerance_val=0.000120005)
676
  #mod_kr_stack <- stack(mod_kr_l_rast)
677
  d_tb_rast <- stack(l_rast)
678
  names(d_tb_rast) <- names(test_r)
679
  #plot(d_tb_rast)
680
  r <- subset(d_tb_rast,"rmse")
681
  names(r) <- paste(mod_selected,var_selected,date_selected,sep="_")
682
  #plot info: with labels
683

  
684
  res_pix <- 1200
685
  col_mfrow <- 1
686
  row_mfrow <- 1
687

  
688
  png(filename=paste("Figure9_",names(r),"_map_processed_region_",region_name,"_",out_prefix,".png",sep=""),
689
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
690

  
691
  #plot(reg_layer)
692
  #p1 <- spplot(reg_layer,"ISO",colorkey=FALSE) #Use ISO instead of NAME_1 to see no color?
693
  title_str <- paste(names(r),"for ", region_name,sep="")
694

  
695
  p0 <- levelplot(r,col.regions=matlab.like(25),margin=F,main=title_str)
696
  p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black'))
697

  
698
  p <- p0 + p_shp
699
  print(p)
700

  
701
  dev.off()
702

  
703
}
704

  
705
create_raster_from_tb_diagnostic <- function(i,list_param){
706
  #create a raster image using tile centroids and given fields  from tb diagnostic data
707
  tb_dat <- list_param$tb_dat
708
  df_tile_processed <- list_param$df_tile_processed
709
  date_selected <- list_param$date_selected[i]
710
  mod_selected <- list_param$mod_selected
711
  var_selected <- list_param$var_selected
712
  out_suffix <- list_param$out_suffix
713
  
714
  test <- subset(tb_dat,pred_mod==mod_selected & date==date_selected,select=c("tile_id",var_selected))
715

  
716
  test_data_tb <- merge(df_tile_processed,test,by="tile_id",all=T) #keep all
717
  test_r <- subset(test_data_tb,select=c("lat","lon","tile_id",var_selected))
718
  out_suffix_str <- paste(var_selected,mod_selected,date_selected,out_suffix,sep="_")
719
  coord_names <- c("lon","lat")
720
  l_rast <- rasterize_df_fun(test_r,coord_names,proj_str,out_suffix_str,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
721
  #mod_kr_stack <- stack(mod_kr_l_rast)
722
  #d_tb_rast <- stack(l_rast)
723
  #r <- subset(d_tb_rast,var_selected)
724
  #names(d_tb_rast) <- names(test_r)
725
  return(l_rast[4])
726
}
727 809

  
728 810
dd <- merge(df_tile_processed,pred_data_month_info,by="tile_id")
729 811
coordinates(dd) <- c(dd$x,dd$y)

Also available in: Unified diff