Revision 8e7d2304
Added by Benoit Parmentier over 10 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R | ||
---|---|---|
5 | 5 |
#Analyses, figures, tables and data are also produced in the script. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 03/23/2014 |
8 |
#MODIFIED ON: 09/16/2014
|
|
8 |
#MODIFIED ON: 09/30/2014
|
|
9 | 9 |
#Version: 3 |
10 | 10 |
#PROJECT: Environmental Layers project |
11 | 11 |
#COMMENTS: analyses for run 5 global using 6 specific tiles |
... | ... | |
106 | 106 |
return(unlist(rast_list)) |
107 | 107 |
} |
108 | 108 |
|
109 |
plot_raster_tb_diagnostic <- function(reg_layer,tb_dat,df_tile_processed,date_selected,mod_selected,var_selected,out_suffix){ |
|
110 |
|
|
111 |
test <- subset(tb_dat,pred_mod==mod_selected & date==date_selected,select=c("tile_id",var_selected)) |
|
112 |
|
|
113 |
test_data_tb <- merge(df_tile_processed,test,by="tile_id",all=T) #keep all |
|
114 |
test_r <- subset(test_data_tb,select=c("lat","lon","tile_id",var_selected)) |
|
115 |
out_suffix_str <- paste(var_selected,mod_selected,date_selected,out_suffix,sep="_") |
|
116 |
coord_names <- c("lon","lat") |
|
117 |
l_rast <- rasterize_df_fun(test_r,coord_names,proj_str,out_suffix_str,out_dir=".",file_format=".tif",NA_flag_val=-9999,tolerance_val=0.000120005) |
|
118 |
#mod_kr_stack <- stack(mod_kr_l_rast) |
|
119 |
d_tb_rast <- stack(l_rast) |
|
120 |
names(d_tb_rast) <- names(test_r) |
|
121 |
#plot(d_tb_rast) |
|
122 |
r <- subset(d_tb_rast,"rmse") |
|
123 |
names(r) <- paste(mod_selected,var_selected,date_selected,sep="_") |
|
124 |
#plot info: with labels |
|
125 |
|
|
126 |
res_pix <- 1200 |
|
127 |
col_mfrow <- 1 |
|
128 |
row_mfrow <- 1 |
|
129 |
|
|
130 |
png(filename=paste("Figure9_",names(r),"_map_processed_region_",region_name,"_",out_prefix,".png",sep=""), |
|
131 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
132 |
|
|
133 |
#plot(reg_layer) |
|
134 |
#p1 <- spplot(reg_layer,"ISO",colorkey=FALSE) #Use ISO instead of NAME_1 to see no color? |
|
135 |
title_str <- paste(names(r),"for ", region_name,sep="") |
|
136 |
|
|
137 |
p0 <- levelplot(r,col.regions=matlab.like(25),margin=F,main=title_str) |
|
138 |
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black')) |
|
139 |
|
|
140 |
p <- p0 + p_shp |
|
141 |
print(p) |
|
142 |
|
|
143 |
dev.off() |
|
144 |
|
|
145 |
} |
|
146 |
|
|
147 |
create_raster_from_tb_diagnostic <- function(i,list_param){ |
|
148 |
#create a raster image using tile centroids and given fields from tb diagnostic data |
|
149 |
tb_dat <- list_param$tb_dat |
|
150 |
df_tile_processed <- list_param$df_tile_processed |
|
151 |
date_selected <- list_param$date_selected[i] |
|
152 |
mod_selected <- list_param$mod_selected |
|
153 |
var_selected <- list_param$var_selected |
|
154 |
out_suffix <- list_param$out_suffix |
|
155 |
|
|
156 |
test <- subset(tb_dat,pred_mod==mod_selected & date==date_selected,select=c("tile_id",var_selected)) |
|
157 |
|
|
158 |
test_data_tb <- merge(df_tile_processed,test,by="tile_id",all=T) #keep all |
|
159 |
test_r <- subset(test_data_tb,select=c("lat","lon","tile_id",var_selected)) |
|
160 |
out_suffix_str <- paste(var_selected,mod_selected,date_selected,out_suffix,sep="_") |
|
161 |
coord_names <- c("lon","lat") |
|
162 |
l_rast <- rasterize_df_fun(test_r,coord_names,proj_str,out_suffix_str,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005) |
|
163 |
#mod_kr_stack <- stack(mod_kr_l_rast) |
|
164 |
#d_tb_rast <- stack(l_rast) |
|
165 |
#r <- subset(d_tb_rast,var_selected) |
|
166 |
#names(d_tb_rast) <- names(test_r) |
|
167 |
return(l_rast[4]) |
|
168 |
} |
|
109 | 169 |
|
110 | 170 |
############################## |
111 | 171 |
#### Parameters and constants |
... | ... | |
130 | 190 |
y_var_name <- "dailyTmax" |
131 | 191 |
interpolation_method <- c("gam_CAI") |
132 | 192 |
out_prefix<-"run6_global_analyses_09162014" |
193 |
mosaic_plot <- FALSE |
|
133 | 194 |
|
134 | 195 |
proj_str<- CRS_WGS84 |
135 | 196 |
file_format <- ".rst" |
... | ... | |
161 | 222 |
tb <- read.table(file=file.path(out_dir,paste("tb_diagnostic_v_NA","_",out_prefix,".txt",sep="")),sep=",") |
162 | 223 |
tb_s <- read.table(file=file.path(out_dir,paste("tb_diagnostic_s_NA","_",out_prefix,".txt",sep="")),sep=",") |
163 | 224 |
|
164 |
tb_month_s_<- read.table(file=file.path(out_dir,paste("tb_month_diagnostic_s_NA","_",out_prefix,".txt",sep="")),sep=",")
|
|
225 |
tb_month_s <- read.table(file=file.path(out_dir,paste("tb_month_diagnostic_s_NA","_",out_prefix,".txt",sep="")),sep=",")
|
|
165 | 226 |
#tb_month_s <- read.table("tb_month_diagnostic_s_NA_run5_global_analyses_08252014.txt",sep=",") |
166 |
pred_data_month_info <- read.table(file=file.path(out_dir,paste("pred_data_month_info_",out_prefix,".txt",sep="")),sep=",") |
|
167 |
pred_data_day_info <- read.table(file=file.path(out_dir,paste("pred_data_day_info_",out_prefix,".txt",sep="")),sep=",") |
|
227 |
#pred_data_month_info <- read.table(file=file.path(out_dir,paste("pred_data_month_info_",out_prefix,".txt",sep="")),sep=",")
|
|
228 |
#pred_data_day_info <- read.table(file=file.path(out_dir,paste("pred_data_day_info_",out_prefix,".txt",sep="")),sep=",")
|
|
168 | 229 |
df_tile_processed <- read.table(file=file.path(out_dir,paste("df_tile_processed_",out_prefix,".txt",sep="")),sep=",") |
169 | 230 |
#in_dir_list <- file.path(in_dir1,read.table(file.path(in_dir1,"processed.txt"))$V1) |
170 | 231 |
#gam_diagnostic_df <- read.table(file=file.path(out_dir,"gam_diagnostic_df_run4_global_analyses_08142014.txt"),sep=",") |
... | ... | |
216 | 277 |
centroids_pts[[i]] <-pt |
217 | 278 |
shps_tiles[[i]] <- shp1 |
218 | 279 |
} |
219 |
coord_names <- c("lon","lat") |
|
220 |
l_rast <- rasterize_df_fun(test,coord_names,proj_str,out_suffix=out_prefix,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005) |
|
280 |
#coord_names <- c("lon","lat")
|
|
281 |
#l_rast <- rasterize_df_fun(test,coord_names,proj_str,out_suffix=out_prefix,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
|
|
221 | 282 |
|
222 | 283 |
|
223 | 284 |
#plot info: with labels |
... | ... | |
313 | 374 |
dev.off() |
314 | 375 |
|
315 | 376 |
|
316 |
###################### |
|
317 |
### Figure 5: plot accuracy ranked |
|
318 |
|
|
319 |
#Turn summary table to a point shp |
|
320 |
|
|
321 |
list_df_ac_mod <- vector("list",length=length(model_name)) |
|
322 |
for (i in 1:length(model_name)){ |
|
323 |
|
|
324 |
ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],] |
|
325 |
### Ranking by tile... |
|
326 |
df_ac_mod <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("pred_mod","rmse","mae","tile_id")] |
|
327 |
list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")] |
|
328 |
|
|
329 |
res_pix <- 480 |
|
330 |
col_mfrow <- 1 |
|
331 |
row_mfrow <- 1 |
|
332 |
|
|
333 |
png(filename=paste("Figure5_ac_metrics_ranked_",model_name[i],"_",out_prefix,".png",sep=""), |
|
334 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
335 |
x<- as.character(df_ac_mod$tile_id) |
|
336 |
barplot(df_ac_mod$rmse, names.arg=x) |
|
337 |
#plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T) |
|
338 |
#plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T) |
|
339 |
title(paste("RMSE ranked by tile for ",model_name[i],sep="")) |
|
340 |
|
|
341 |
dev.off() |
|
342 |
|
|
343 |
} |
|
344 |
|
|
345 |
|
|
346 |
##### Diagnostic gam |
|
347 |
#### |
|
348 |
#gam_diag_10x10 <- read.table("gam_diagnostic_10x10_df_run4_global_analyses_08142014.txt",sep=",") |
|
349 |
#gam_diag_10x10$month <- as.factor(gam_diag_10x10$month) |
|
350 |
|
|
351 |
#xyplot(rmse~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v), |
|
352 |
# pred_mod!="mod_kr"),type="b") |
|
353 |
|
|
354 |
#xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v), |
|
355 |
# pred_mod!="mod_kr"),type="h") |
|
356 |
|
|
357 |
xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v), |
|
358 |
pred_mod!="mod_kr"),type="h") |
|
359 |
|
|
360 |
#xyplot(n~month | tile_id + pred_mod,data=subset(as.data.frame(tb_month_s_), |
|
361 |
# pred_mod!="mod_kr"),type="h") |
|
362 |
|
|
363 |
# |
|
364 |
## Figure 3b |
|
365 |
png(filename=paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_prefix,".png",sep=""), |
|
366 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
367 |
|
|
368 |
boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
|
369 |
title("RMSE per model over all tiles") |
|
370 |
|
|
371 |
dev.off() |
|
372 |
|
|
373 | 377 |
################ |
374 | 378 |
### Figure 4: plot predicted tiff for specific date per model |
375 | 379 |
|
376 | 380 |
#y_var_name <-"dailyTmax" |
377 | 381 |
#index <-244 #index corresponding to Sept 1 |
378 |
index <- 1 #index corresponding to Jan 1 |
|
379 |
date_selected <- "20100901" |
|
380 |
name_method_var <- paste(interpolation_method,"_",y_var_name,"_",sep="") |
|
381 | 382 |
|
382 |
pattern_str <- paste("mosaiced","_",name_method_var,"predicted",".*.",date_selected,".*.tif",sep="") |
|
383 |
lf_pred_list <- list.files(pattern=pattern_str) |
|
383 |
if (mosaic_plot==TRUE){ |
|
384 |
index <- 1 #index corresponding to Jan 1 |
|
385 |
date_selected <- "20100901" |
|
386 |
name_method_var <- paste(interpolation_method,"_",y_var_name,"_",sep="") |
|
387 |
|
|
388 |
pattern_str <- paste("mosaiced","_",name_method_var,"predicted",".*.",date_selected,".*.tif",sep="") |
|
389 |
lf_pred_list <- list.files(pattern=pattern_str) |
|
384 | 390 |
|
385 |
for(i in 1:length(lf_pred_list)){ |
|
391 |
for(i in 1:length(lf_pred_list)){ |
|
392 |
|
|
386 | 393 |
|
387 |
r_pred <- raster(lf_pred_list[i]) |
|
394 |
r_pred <- raster(lf_pred_list[i])
|
|
388 | 395 |
|
389 |
res_pix <- 480 |
|
390 |
col_mfrow <- 1 |
|
391 |
row_mfrow <- 1 |
|
392 |
|
|
393 |
png(filename=paste("Figure4_models_predicted_surfaces_",model_name[i],"_",name_method_var,"_",data_selected,"_",out_prefix,".png",sep=""), |
|
394 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
396 |
res_pix <- 480 |
|
397 |
col_mfrow <- 1 |
|
398 |
row_mfrow <- 1 |
|
395 | 399 |
|
396 |
plot(r_pred) |
|
397 |
title(paste("Mosaiced",model_name[i],name_method_var,date_selected,sep=" ")) |
|
398 |
dev.off() |
|
400 |
png(filename=paste("Figure4_models_predicted_surfaces_",model_name[i],"_",name_method_var,"_",data_selected,"_",out_prefix,".png",sep=""), |
|
401 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
399 | 402 |
|
403 |
plot(r_pred) |
|
404 |
title(paste("Mosaiced",model_name[i],name_method_var,date_selected,sep=" ")) |
|
405 |
dev.off() |
|
406 |
} |
|
407 |
#Plot Delta and clim... |
|
408 |
|
|
409 |
## plotting of delta and clim for later scripts... |
|
410 |
|
|
400 | 411 |
} |
401 | 412 |
|
402 | 413 |
####### Figure 5... |
... | ... | |
404 | 415 |
|
405 | 416 |
#r_pred <- raster(lf_pred_list[i]) |
406 | 417 |
|
407 |
res_pix <- 480 |
|
408 |
col_mfrow <- 1 |
|
409 |
row_mfrow <- 1 |
|
410 |
model_name <- as.character(model_name) |
|
411 |
|
|
412 |
i<-2 |
|
413 |
png(filename=paste("Figure5_tiles_with_models_predicted_surfaces_",model_name[i],"_",name_method_var,out_prefix,".png",sep=""), |
|
414 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
415 |
|
|
418 |
#res_pix <- 480
|
|
419 |
#col_mfrow <- 1
|
|
420 |
#row_mfrow <- 1
|
|
421 |
#model_name <- as.character(model_name)
|
|
422 |
|
|
423 |
#i<-2
|
|
424 |
#png(filename=paste("Figure5_tiles_with_models_predicted_surfaces_",model_name[i],"_",name_method_var,out_prefix,".png",sep=""),
|
|
425 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
|
426 |
# |
|
416 | 427 |
#plot(r_pred) |
417 |
plot(reg_layer) |
|
428 |
#plot(reg_layer)
|
|
418 | 429 |
|
419 | 430 |
#title(paste("Mosaiced",model_name[i],name_method_var,date_selected,"with tiles",sep=" ")) |
420 | 431 |
|
421 | 432 |
#Add polygon tiles... |
422 |
for(i in 1:length(list_shp_reg_files)){ |
|
423 |
shp1 <- shps_tiles[[i]] |
|
424 |
pt <- centroids_pts[[i]] |
|
425 |
plot(shp1,add=T,border="blue") |
|
433 |
#for(i in 1:length(list_shp_reg_files)){
|
|
434 |
# shp1 <- shps_tiles[[i]]
|
|
435 |
# pt <- centroids_pts[[i]]
|
|
436 |
# plot(shp1,add=T,border="blue")
|
|
426 | 437 |
#plot(pt,add=T,cex=2,pch=5) |
427 |
label_id <- df_tile_processed$tile_id[i] |
|
428 |
text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1,col=c("red")) |
|
429 |
} |
|
438 |
# label_id <- df_tile_processed$tile_id[i]
|
|
439 |
# text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1,col=c("red"))
|
|
440 |
#}
|
|
430 | 441 |
#title(paste("Prediction with tiles location 10x10 degrees for ", region_name,sep="")) |
431 |
dev.off() |
|
442 |
#dev.off()
|
|
432 | 443 |
|
433 | 444 |
### |
434 | 445 |
|
... | ... | |
465 | 476 |
#print(p) |
466 | 477 |
#dev.off() |
467 | 478 |
|
479 |
|
|
468 | 480 |
###################### |
469 |
### Figure 6: plot map of average RMSE per tile at centroids
|
|
481 |
### Figure 5: plot accuracy ranked
|
|
470 | 482 |
|
471 | 483 |
#Turn summary table to a point shp |
472 | 484 |
|
473 |
coordinates(summary_metrics_v) <- cbind(summary_metrics_v$lon,summary_metrics_v$lat) |
|
474 |
proj4string(summary_metrics_v) <- CRS_WGS84 |
|
475 |
#lf_list <- lf_pred_list |
|
476 |
list_df_ac_mod <- vector("list",length=length(lf_pred_list)) |
|
477 |
for (i in 1:length(lf_list)){ |
|
485 |
list_df_ac_mod <- vector("list",length=length(model_name)) |
|
486 |
for (i in 1:length(model_name)){ |
|
478 | 487 |
|
479 | 488 |
ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],] |
480 |
r_pred <- raster(lf_list[i]) |
|
489 |
### Ranking by tile... |
|
490 |
df_ac_mod <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("pred_mod","rmse","mae","tile_id")] |
|
491 |
list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")] |
|
481 | 492 |
|
482 | 493 |
res_pix <- 480 |
483 | 494 |
col_mfrow <- 1 |
484 | 495 |
row_mfrow <- 1 |
485 | 496 |
|
486 |
png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_prefix,".png",sep=""),
|
|
497 |
png(filename=paste("Figure5_ac_metrics_ranked_",model_name[i],"_",out_prefix,".png",sep=""),
|
|
487 | 498 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
488 |
|
|
489 |
plot(r_pred) |
|
490 |
|
|
499 |
x<- as.character(df_ac_mod$tile_id) |
|
500 |
barplot(df_ac_mod$rmse, names.arg=x) |
|
491 | 501 |
#plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T) |
492 |
plot(ac_mod,cex=(ac_mod$rmse^2)/10,pch=1,add=T) |
|
493 | 502 |
#plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T) |
494 |
title(paste("Averrage RMSE per tile and by ",model_name[i]))
|
|
503 |
title(paste("RMSE ranked by tile for ",model_name[i],sep=""))
|
|
495 | 504 |
|
496 | 505 |
dev.off() |
497 | 506 |
|
498 |
### Ranking by tile... |
|
499 |
#df_ac_mod <- |
|
500 |
list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")] |
|
501 | 507 |
} |
508 |
|
|
509 |
###################### |
|
510 |
### Figure 6: plot map of average RMSE per tile at centroids |
|
511 |
|
|
512 |
#Turn summary table to a point shp |
|
513 |
|
|
514 |
# coordinates(summary_metrics_v) <- cbind(summary_metrics_v$lon,summary_metrics_v$lat) |
|
515 |
# proj4string(summary_metrics_v) <- CRS_WGS84 |
|
516 |
# #lf_list <- lf_pred_list |
|
517 |
# list_df_ac_mod <- vector("list",length=length(lf_pred_list)) |
|
518 |
# for (i in 1:length(lf_list)){ |
|
519 |
# |
|
520 |
# ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],] |
|
521 |
# r_pred <- raster(lf_list[i]) |
|
522 |
# |
|
523 |
# res_pix <- 480 |
|
524 |
# col_mfrow <- 1 |
|
525 |
# row_mfrow <- 1 |
|
526 |
# |
|
527 |
# png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_prefix,".png",sep=""), |
|
528 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
529 |
# |
|
530 |
# plot(r_pred) |
|
531 |
# |
|
532 |
# #plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T) |
|
533 |
# plot(ac_mod,cex=(ac_mod$rmse^2)/10,pch=1,add=T) |
|
534 |
# #plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T) |
|
535 |
# title(paste("Averrage RMSE per tile and by ",model_name[i])) |
|
536 |
# |
|
537 |
# dev.off() |
|
538 |
# |
|
539 |
# ### Ranking by tile... |
|
540 |
# #df_ac_mod <- |
|
541 |
# list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")] |
|
542 |
# } |
|
502 | 543 |
|
503 | 544 |
#quick kriging... |
504 | 545 |
#autokrige(rmse~1,r2,) |
... | ... | |
544 | 585 |
} |
545 | 586 |
|
546 | 587 |
###################### |
547 |
### Figure 7: Delta and clim... |
|
588 |
### Figure 7: Number of predictions: daily and monthly |
|
589 |
|
|
590 |
#xyplot(rmse~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v), |
|
591 |
# pred_mod!="mod_kr"),type="b") |
|
592 |
|
|
593 |
#xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v), |
|
594 |
# pred_mod!="mod_kr"),type="h") |
|
595 |
|
|
596 |
|
|
548 | 597 |
|
549 |
## plotting of delta and clim for later scripts... |
|
598 |
# |
|
599 |
## Figure 7a |
|
600 |
png(filename=paste("Figure7a_number_daily_predictions_per_models","_",out_prefix,".png",sep=""), |
|
601 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
602 |
|
|
603 |
xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v), |
|
604 |
pred_mod!="mod_kr"),type="h") |
|
605 |
dev.off() |
|
606 |
|
|
607 |
## Figure 7b |
|
608 |
#png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_prefix,".png",sep=""), |
|
609 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
610 |
|
|
611 |
#xyplot(n~month | tile_id + pred_mod,data=subset(as.data.frame(tb_month_s), |
|
612 |
# pred_mod!="mod_kr"),type="h") |
|
613 |
#xyplot(n~month | tile_id,data=subset(as.data.frame(tb_month_s), |
|
614 |
# pred_mod="mod_1"),type="h") |
|
615 |
#test=subset(as.data.frame(tb_month_s),pred_mod="mod_1") |
|
616 |
#table(tb_month_s$month) |
|
617 |
#dev.off() |
|
618 |
# |
|
550 | 619 |
|
551 | 620 |
###################### |
552 | 621 |
### Figure 9: Plot the number of stations in a processing tile |
... | ... | |
564 | 633 |
coord_names <- c("lon.x","lat.x") |
565 | 634 |
#l_r_ast <- rasterize_df_fun(df_tile_processed,coord_names,proj_str,out_suffix,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005) |
566 | 635 |
out_suffix_str <- paste("mod1_",out_suffix) |
567 |
mod1_l_rast <- rasterize_df_fun(mod1_data_tb,coord_names,proj_str,out_suffix_str,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005) |
|
636 |
mod1_l_rast <- rasterize_df_fun(mod1_data_tb,coord_names,proj_str=CRS_WGS84,out_suffix_str,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
|
|
568 | 637 |
mod1_stack <- stack(mod1_l_rast) |
569 | 638 |
names(mod1_stack) <- names(mod1_data_tb) |
570 | 639 |
|
571 | 640 |
out_suffix_str <- paste("mod2_",out_suffix) |
572 |
mod2_l_rast <- rasterize_df_fun(mod2_data_tb,coord_names,proj_str,out_suffix_str,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005) |
|
641 |
mod2_l_rast <- rasterize_df_fun(mod2_data_tb,coord_names,proj_str=CRS_WGS84,out_suffix_str,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
|
|
573 | 642 |
mod2_stack <- stack(mod2_l_rast) |
574 | 643 |
names(mod2_stack) <- names(mod2_data_tb) |
575 | 644 |
|
576 | 645 |
out_suffix_str <- paste("mod_kr_",out_suffix) |
577 |
mod_kr_l_rast <- rasterize_df_fun(mod_kr_data_tb,coord_names,proj_str,out_suffix_str,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005) |
|
646 |
mod_kr_l_rast <- rasterize_df_fun(mod_kr_data_tb,coord_names,proj_str=CRS_WGS84,out_suffix_str,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
|
|
578 | 647 |
mod_kr_stack <- stack(mod_kr_l_rast) |
579 | 648 |
names(mod_kr_stack) <- names(mod_kr_data_tb) |
580 | 649 |
|
581 | 650 |
#Number of daily predictions |
582 |
p0 <- levelplot(mod1_stack,layer=21,margin=F) |
|
651 |
p0 <- levelplot(mod1_stack,layer=21,margin=F, |
|
652 |
main=paste("number_daily_predictions_for_","mod1",sep="")) |
|
583 | 653 |
p<- p0+p_shp |
654 |
|
|
655 |
########### |
|
656 |
## Figure 9a: number of daily predictions |
|
657 |
|
|
658 |
res_pix <- 1200 |
|
659 |
#res_pix <- 480 |
|
660 |
col_mfrow <- 1 |
|
661 |
row_mfrow <- 1 |
|
662 |
|
|
663 |
png(filename=paste("Figure9a_raster_map_number_daily_predictions_forr_","mod1","_",out_prefix,".png",sep=""), |
|
664 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
665 |
|
|
584 | 666 |
print(p) |
585 |
p0<- levelplot(mod2_stack,layer=21,margin=F) |
|
586 |
p<- p0+p_shp |
|
667 |
|
|
668 |
dev.off() |
|
669 |
|
|
670 |
## Figure 9a |
|
671 |
p0 <- levelplot(mod2_stack,layer=21,margin=F) |
|
672 |
p <- p0+p_shp |
|
673 |
|
|
674 |
res_pix <- 1200 |
|
675 |
#res_pix <- 480 |
|
676 |
col_mfrow <- 1 |
|
677 |
row_mfrow <- 1 |
|
678 |
png(filename=paste("Figure9a_raster_map_number_daily_predictions_for_","mod2","_",out_prefix,".png",sep=""), |
|
679 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
680 |
|
|
587 | 681 |
print(p) |
588 |
plot(mod_kr_stack,y=21) |
|
589 | 682 |
|
590 |
#RMSE |
|
591 |
p0 <- levelplot(mod1_stack,layer=10,margin=F,col.regions=matlab.like(25),main="Average RMSE for mod1") |
|
683 |
dev.off() |
|
684 |
|
|
685 |
#plot(mod_kr_stack,y=21) |
|
686 |
|
|
687 |
######## |
|
688 |
###Figure 9b: RMSE plots |
|
689 |
## |
|
690 |
p0 <- levelplot(mod1_stack,layer=10,margin=F,col.regions=matlab.like(25), |
|
691 |
main="Average RMSE for mod1") |
|
592 | 692 |
p<- p0+p_shp |
693 |
|
|
694 |
res_pix <- 1200 |
|
695 |
#res_pix <- 480 |
|
696 |
col_mfrow <- 1 |
|
697 |
row_mfrow <- 1 |
|
698 |
png(filename=paste("Figure9b_raster_map_rmse_predictions_for_","mod1","_",out_prefix,".png",sep=""), |
|
699 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
700 |
|
|
593 | 701 |
print(p) |
594 | 702 |
|
595 |
p0 <- levelplot(mod1_stack,layer=10,margin=F,col.regions=matlab.like(25),main="Average RMSE for mod2") |
|
703 |
dev.off() |
|
704 |
|
|
705 |
#print(p) |
|
706 |
p0 <- levelplot(mod2_stack,layer=10,margin=F,col.regions=matlab.like(25), |
|
707 |
main="Average RMSE for mod2") |
|
596 | 708 |
p<- p0+p_shp |
709 |
#print(p) |
|
710 |
|
|
711 |
res_pix <- 1200 |
|
712 |
#res_pix <- 480 |
|
713 |
col_mfrow <- 1 |
|
714 |
row_mfrow <- 1 |
|
715 |
png(filename=paste("Figure9b_raster_map_rmse_predictions_for_","mod2","_",out_prefix,".png",sep=""), |
|
716 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
717 |
|
|
597 | 718 |
print(p) |
598 | 719 |
|
720 |
dev.off() |
|
721 |
|
|
599 | 722 |
#plot(mod1_stack,y=10) |
600 | 723 |
#plot(mod2_stack,y=10) |
601 | 724 |
#plot(mod_kr_stack,y=10) |
602 | 725 |
|
726 |
########## Figure 10: map of daily predictions accuracy |
|
727 |
|
|
603 | 728 |
## Can make maps of daily and accuracy metrics!!! |
604 | 729 |
|
605 | 730 |
#mod1_tb <- subset(tb,pred_mod=="mod1") |
... | ... | |
622 | 747 |
#idx <- seq(as.Date('20100101'), as.Date('20101231'), 'day') |
623 | 748 |
#date_l <- strptime(idx[1], "%Y%m%d") # interpolation date being processed |
624 | 749 |
l_date_selected <- format(idx, "%Y%m%d") # interpolation date being processed |
625 |
|
|
750 |
tb_dat <- tb |
|
751 |
proj_str <- CRS_WGS84 |
|
626 | 752 |
list_param_raster_from_tb <- list(tb_dat,df_tile_processed,l_date_selected, |
627 | 753 |
mod_selected,var_selected,out_suffix, |
628 | 754 |
proj_str,file_format,NA_value,NA_flag_val) |
... | ... | |
633 | 759 |
#undebug(create_raster_from_tb_diagnostic) |
634 | 760 |
rast <- create_raster_from_tb_diagnostic (i,list_param=list_param_raster_from_tb) |
635 | 761 |
l_rast <- lapply(1:length(l_date_selected),FUN=create_raster_from_tb_diagnostic,list_param=list_param_raster_from_tb) |
636 |
r_rmse <- stack(l_rast) |
|
762 |
r_mod1_rmse <- stack(l_rast) |
|
763 |
list_param_raster_from_tb$var_selected <- "n" |
|
764 |
l_rast_n<- lapply(1:length(l_date_selected),FUN=create_raster_from_tb_diagnostic,list_param=list_param_raster_from_tb) |
|
765 |
r_mod1_n <- stack(l_rast_n) |
|
766 |
|
|
767 |
##now stack for mod2 |
|
768 |
|
|
769 |
list_param_raster_from_tb$mod_selected <- "mod2" |
|
770 |
list_param_raster_from_tb$var_selected <- "rmse" |
|
771 |
l_rast <- lapply(1:length(l_date_selected),FUN=create_raster_from_tb_diagnostic,list_param=list_param_raster_from_tb) |
|
772 |
r_mod1_rmse <- stack(l_rast) |
|
773 |
list_param_raster_from_tb$var_selected <- "n" |
|
774 |
l_rast_n<- lapply(1:length(l_date_selected),FUN=create_raster_from_tb_diagnostic,list_param=list_param_raster_from_tb) |
|
775 |
r_mod1_n <- stack(l_rast_n) |
|
776 |
|
|
777 |
|
|
778 |
|
|
637 | 779 |
#Make this a function... |
638 | 780 |
#test <- subset(tb,pred_mod=="mod1" & date=="20100101",select=c("tile_id","n","mae","rmse","me","r","m50")) |
639 | 781 |
|
... | ... | |
664 | 806 |
plot_raster_tb_diagnostic(reg_layer,tb_dat,df_tile_processed,date_selected,mod_selected,var_selected,out_suffix) |
665 | 807 |
} |
666 | 808 |
|
667 |
plot_raster_tb_diagnostic <- function(reg_layer,tb_dat,df_tile_processed,date_selected,mod_selected,var_selected,out_suffix){ |
|
668 |
|
|
669 |
test <- subset(tb_dat,pred_mod==mod_selected & date==date_selected,select=c("tile_id",var_selected)) |
|
670 |
|
|
671 |
test_data_tb <- merge(df_tile_processed,test,by="tile_id",all=T) #keep all |
|
672 |
test_r <- subset(test_data_tb,select=c("lat","lon","tile_id",var_selected)) |
|
673 |
out_suffix_str <- paste(var_selected,mod_selected,date_selected,out_suffix,sep="_") |
|
674 |
coord_names <- c("lon","lat") |
|
675 |
l_rast <- rasterize_df_fun(test_r,coord_names,proj_str,out_suffix_str,out_dir=".",file_format=".tif",NA_flag_val=-9999,tolerance_val=0.000120005) |
|
676 |
#mod_kr_stack <- stack(mod_kr_l_rast) |
|
677 |
d_tb_rast <- stack(l_rast) |
|
678 |
names(d_tb_rast) <- names(test_r) |
|
679 |
#plot(d_tb_rast) |
|
680 |
r <- subset(d_tb_rast,"rmse") |
|
681 |
names(r) <- paste(mod_selected,var_selected,date_selected,sep="_") |
|
682 |
#plot info: with labels |
|
683 |
|
|
684 |
res_pix <- 1200 |
|
685 |
col_mfrow <- 1 |
|
686 |
row_mfrow <- 1 |
|
687 |
|
|
688 |
png(filename=paste("Figure9_",names(r),"_map_processed_region_",region_name,"_",out_prefix,".png",sep=""), |
|
689 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
690 |
|
|
691 |
#plot(reg_layer) |
|
692 |
#p1 <- spplot(reg_layer,"ISO",colorkey=FALSE) #Use ISO instead of NAME_1 to see no color? |
|
693 |
title_str <- paste(names(r),"for ", region_name,sep="") |
|
694 |
|
|
695 |
p0 <- levelplot(r,col.regions=matlab.like(25),margin=F,main=title_str) |
|
696 |
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black')) |
|
697 |
|
|
698 |
p <- p0 + p_shp |
|
699 |
print(p) |
|
700 |
|
|
701 |
dev.off() |
|
702 |
|
|
703 |
} |
|
704 |
|
|
705 |
create_raster_from_tb_diagnostic <- function(i,list_param){ |
|
706 |
#create a raster image using tile centroids and given fields from tb diagnostic data |
|
707 |
tb_dat <- list_param$tb_dat |
|
708 |
df_tile_processed <- list_param$df_tile_processed |
|
709 |
date_selected <- list_param$date_selected[i] |
|
710 |
mod_selected <- list_param$mod_selected |
|
711 |
var_selected <- list_param$var_selected |
|
712 |
out_suffix <- list_param$out_suffix |
|
713 |
|
|
714 |
test <- subset(tb_dat,pred_mod==mod_selected & date==date_selected,select=c("tile_id",var_selected)) |
|
715 |
|
|
716 |
test_data_tb <- merge(df_tile_processed,test,by="tile_id",all=T) #keep all |
|
717 |
test_r <- subset(test_data_tb,select=c("lat","lon","tile_id",var_selected)) |
|
718 |
out_suffix_str <- paste(var_selected,mod_selected,date_selected,out_suffix,sep="_") |
|
719 |
coord_names <- c("lon","lat") |
|
720 |
l_rast <- rasterize_df_fun(test_r,coord_names,proj_str,out_suffix_str,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005) |
|
721 |
#mod_kr_stack <- stack(mod_kr_l_rast) |
|
722 |
#d_tb_rast <- stack(l_rast) |
|
723 |
#r <- subset(d_tb_rast,var_selected) |
|
724 |
#names(d_tb_rast) <- names(test_r) |
|
725 |
return(l_rast[4]) |
|
726 |
} |
|
727 | 809 |
|
728 | 810 |
dd <- merge(df_tile_processed,pred_data_month_info,by="tile_id") |
729 | 811 |
coordinates(dd) <- c(dd$x,dd$y) |
Also available in: Unified diff
run6 assessment NEX part2: generating raster map of accuracy and number of stations