1 |
|
############################## INTERPOLATION OF TEMPERATURES #######################################
|
|
1 |
############################## INTERPOLATION OF TEMPERATURES #######################################
|
2 |
2 |
####################### Script for assessment of scaling up on NEX : part2 ##############################
|
3 |
3 |
#This script uses the worklfow code applied to the globe. Results currently reside on NEX/PLEIADES NASA.
|
4 |
4 |
#Accuracy methods are added in the the function scripts to evaluate results.
|
5 |
5 |
#Analyses, figures, tables and data are also produced in the script.
|
6 |
6 |
#AUTHOR: Benoit Parmentier
|
7 |
7 |
#CREATED ON: 03/23/2014
|
8 |
|
#MODIFIED ON: 09/23/2015
|
9 |
|
#Version: 4
|
|
8 |
#MODIFIED ON: 01/03/2016
|
|
9 |
#Version: 5
|
10 |
10 |
#PROJECT: Environmental Layers project
|
11 |
11 |
#COMMENTS: analyses for run 10 global analyses,all regions 1500x4500km with additional tiles to increase overlap
|
12 |
12 |
#TODO:
|
... | ... | |
47 |
47 |
|
48 |
48 |
#### FUNCTION USED IN SCRIPT
|
49 |
49 |
|
50 |
|
function_analyses_paper1 <-"contribution_of_covariates_paper_interpolation_functions_07182014.R" #first interp paper
|
51 |
|
function_analyses_paper2 <-"multi_timescales_paper_interpolation_functions_08132014.R"
|
|
50 |
#function_analyses_paper1 <-"contribution_of_covariates_paper_interpolation_functions_07182014.R" #first interp paper
|
|
51 |
#function_analyses_paper2 <-"multi_timescales_paper_interpolation_functions_08132014.R"
|
52 |
52 |
|
53 |
53 |
load_obj <- function(f)
|
54 |
54 |
{
|
... | ... | |
358 |
358 |
|
359 |
359 |
}
|
360 |
360 |
|
361 |
|
############################################
|
362 |
|
#### Parameters and constants
|
363 |
|
|
364 |
|
#on ATLAS
|
365 |
|
#in_dir1 <- "/data/project/layers/commons/NEX_data/test_run1_03232014/output" #On Atlas
|
366 |
|
#parent output dir : contains subset of the data produced on NEX
|
367 |
|
#in_dir1 <- "/data/project/layers/commons/NEX_data/output_run6_global_analyses_09162014/output20Deg2"
|
368 |
|
# parent output dir for the curent script analyes
|
369 |
|
#out_dir <-"/data/project/layers/commons/NEX_data/output_run3_global_analyses_06192014/" #On NCEAS Atlas
|
370 |
|
# input dir containing shapefiles defining tiles
|
371 |
|
#in_dir_shp <- "/data/project/layers/commons/NEX_data/output_run5_global_analyses_08252014/output/subset/shapefiles"
|
372 |
|
|
373 |
|
#On NEX
|
374 |
|
#contains all data from the run by Alberto
|
375 |
|
#in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output4" #On NEX
|
376 |
|
#parent output dir for the current script analyes
|
377 |
|
#out_dir <- "/nobackup/bparmen1/" #on NEX
|
378 |
|
#in_dir_shp <- "/nobackupp4/aguzman4/climateLayers/output4/subset/shapefiles/"
|
379 |
|
|
380 |
|
y_var_name <- "dailyTmax" #PARAM1
|
381 |
|
interpolation_method <- c("gam_CAI") #PARAM2
|
382 |
|
#out_suffix<-"run10_global_analyses_01282015"
|
383 |
|
#out_suffix <- "output_run10_1000x3000_global_analyses_02102015"
|
384 |
|
out_suffix <- "run10_1500x4500_global_analyses_pred_1982_09152015" #PARAM3
|
385 |
|
out_dir <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_1982_09152015" #PARAM4
|
386 |
|
create_out_dir_param <- FALSE #PARAM 5
|
387 |
|
|
388 |
|
mosaic_plot <- FALSE #PARAM6
|
389 |
|
|
390 |
|
#if daily mosaics NULL then mosaicas all days of the year
|
391 |
|
|
392 |
|
day_to_mosaic <- c("19820101","19820102","19820103","19820104","19820105",
|
393 |
|
"19820106","19820107","19820108","19820109","19820110",
|
394 |
|
"1982011")
|
395 |
|
|
396 |
|
CRS_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 #CONSTANT1
|
397 |
|
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
|
398 |
|
|
399 |
|
proj_str<- CRS_WGS84 #PARAM 8 #check this parameter
|
400 |
|
file_format <- ".rst" #PARAM 9
|
401 |
|
NA_value <- -9999 #PARAM10
|
402 |
|
NA_flag_val <- NA_value
|
403 |
|
|
404 |
|
tile_size <- "1500x4500" #PARAM 11
|
405 |
|
multiple_region <- TRUE #PARAM 12
|
406 |
|
|
407 |
|
region_name <- "world" #PARAM 13
|
408 |
|
plot_region <- TRUE
|
409 |
|
num_cores <- 6 #PARAM 14
|
410 |
|
reg_modified <- TRUE
|
411 |
|
region <- c("reg4") #reference region to merge if necessary #PARAM 16
|
412 |
|
|
413 |
|
########################## START SCRIPT ##############################
|
414 |
|
|
415 |
|
|
416 |
|
####### PART 1: Read in data ########
|
417 |
|
|
418 |
|
if(create_out_dir_param==TRUE){
|
419 |
|
out_dir <- create_dir_fun(out_dir,out_suffix)
|
420 |
|
setwd(out_dir)
|
421 |
|
}else{
|
422 |
|
setwd(out_dir) #use previoulsy defined directory
|
423 |
|
}
|
424 |
|
|
425 |
|
setwd(out_dir)
|
426 |
|
|
427 |
|
###Table 1: Average accuracy metrics
|
428 |
|
###Table 2: daily accuracy metrics for all tiles
|
429 |
|
|
430 |
|
summary_metrics_v <- read.table(file=file.path(out_dir,paste("summary_metrics_v2_NA_",out_suffix,".txt",sep="")),sep=",")
|
431 |
|
#fname <- file.path(out_dir,paste("summary_metrics_v2_NA_",out_suffix,".txt",sep=""))
|
432 |
|
tb <- read.table(file=file.path(out_dir,paste("tb_diagnostic_v_NA","_",out_suffix,".txt",sep="")),sep=",")
|
433 |
|
#tb_diagnostic_s_NA_run10_global_analyses_11302014.txt
|
434 |
|
tb_s <- read.table(file=file.path(out_dir,paste("tb_diagnostic_s_NA","_",out_suffix,".txt",sep="")),sep=",")
|
435 |
|
|
436 |
|
tb_month_s <- read.table(file=file.path(out_dir,paste("tb_month_diagnostic_s_NA","_",out_suffix,".txt",sep="")),sep=",")
|
437 |
|
pred_data_month_info <- read.table(file=file.path(out_dir,paste("pred_data_month_info_",out_suffix,".txt",sep="")),sep=",")
|
438 |
|
pred_data_day_info <- read.table(file=file.path(out_dir,paste("pred_data_day_info_",out_suffix,".txt",sep="")),sep=",")
|
439 |
|
df_tile_processed <- read.table(file=file.path(out_dir,paste("df_tile_processed_",out_suffix,".txt",sep="")),sep=",")
|
440 |
|
|
441 |
|
#add column for tile size later on!!!
|
442 |
|
|
443 |
|
tb$pred_mod <- as.character(tb$pred_mod)
|
444 |
|
summary_metrics_v$pred_mod <- as.character(summary_metrics_v$pred_mod)
|
445 |
|
summary_metrics_v$tile_id <- as.character(summary_metrics_v$tile_id)
|
446 |
|
df_tile_processed$tile_id <- as.character(df_tile_processed$tile_id)
|
447 |
|
|
448 |
|
tb_month_s$pred_mod <- as.character(tb_month_s$pred_mod)
|
449 |
|
tb_month_s$tile_id<- as.character(tb_month_s$tile_id)
|
450 |
|
tb_s$pred_mod <- as.character(tb_s$pred_mod)
|
451 |
|
tb_s$tile_id <- as.character(tb_s$tile_id)
|
452 |
|
|
453 |
|
|
454 |
|
#multiple regions?
|
455 |
|
if(multiple_region==TRUE){
|
456 |
|
df_tile_processed$reg <- basename(dirname(as.character(df_tile_processed$path_NEX)))
|
457 |
|
|
458 |
|
tb <- merge(tb,df_tile_processed,by="tile_id")
|
459 |
|
tb_s <- merge(tb_s,df_tile_processed,by="tile_id")
|
460 |
|
tb_month_s<- merge(tb_month_s,df_tile_processed,by="tile_id")
|
461 |
|
summary_metrics_v <- merge(summary_metrics_v,df_tile_processed,by="tile_id")
|
462 |
|
|
463 |
|
}
|
464 |
|
|
465 |
|
tb_all <- tb
|
466 |
|
|
467 |
|
summary_metrics_v_all <- summary_metrics_v
|
468 |
|
#deal with additional tiles...
|
469 |
|
# if(reg_modified==T){
|
470 |
|
#
|
471 |
|
# summary_metrics_v_tmp <- summary_metrics_v
|
472 |
|
# #summary_metrics_v_tmp$reg[summary_metrics_v_tmp$reg=="reg_1b"] <- "reg1"
|
473 |
|
# #summary_metrics_v_tmp$reg[summary_metrics_v_tmp$reg=="reg_1c"] <- "reg1"
|
474 |
|
# #summary_metrics_v_tmp$reg[summary_metrics_v_tmp$reg=="reg_3b"] <- "reg3"
|
475 |
|
# summary_metrics_v_tmp$reg[summary_metrics_v_tmp$reg=="reg5b"] <- "reg5"
|
476 |
|
#
|
477 |
|
# summary_metrics_v_tmp$reg_all <- summary_metrics_v$reg
|
478 |
|
# ###
|
479 |
|
# summary_metrics_v<- summary_metrics_v_tmp
|
480 |
|
#
|
481 |
|
# ###
|
482 |
|
# tb_tmp <- tb
|
483 |
|
# #tb_tmp$reg[tb_tmp$reg=="reg_1b"] <- "reg1"
|
484 |
|
# #tb_tmp$reg[tb_tmp$reg=="reg_1c"] <- "reg1"
|
485 |
|
# #tb_tmp$reg[tb_tmp$reg=="reg_3b"] <- "reg3"
|
486 |
|
# tb_tmp$reg[tb_tmp$reg=="reg5b"] <- "reg5"
|
487 |
|
#
|
488 |
|
# ###
|
489 |
|
# tb <- tb_tmp
|
490 |
|
# }
|
491 |
|
|
492 |
|
table(summary_metrics_v_all$reg)
|
493 |
|
table(summary_metrics_v$reg)
|
494 |
|
table(tb_all$reg)
|
495 |
|
table(tb$reg)
|
496 |
|
|
497 |
|
############ PART 2: PRODUCE FIGURES ################
|
498 |
|
|
499 |
|
###########################
|
500 |
|
### Figure 1: plot location of the study area with tiles processed
|
501 |
|
|
502 |
|
#df_tiled_processed <- na.omit(df_tile_processed) #remove other list of folders irrelevant
|
503 |
|
#list_shp_reg_files <- df_tiled_processed$shp_files
|
504 |
|
list_shp_reg_files<- as.character(df_tile_processed$shp_files)
|
505 |
|
#list_shp_reg_files <- file.path("/data/project/layers/commons/NEX_data/",out_dir,
|
506 |
|
# as.character(df_tile_processed$tile_coord),"shapefiles",basename(list_shp_reg_files))
|
507 |
|
list_shp_reg_files <- file.path("/data/project/layers/commons/NEX_data/",out_dir,
|
508 |
|
"shapefiles",basename(list_shp_reg_files))
|
509 |
|
|
510 |
|
#table(summary_metrics_v$reg)
|
511 |
|
#table(summary_metrics_v$reg)
|
512 |
|
|
513 |
|
### Potential function starts here:
|
514 |
|
#function(in_dir,out_dir,list_shp_reg_files,title_str,region_name,num_cores,out_suffix,out_suffix)
|
515 |
|
|
516 |
|
### First get background map to display where study area is located
|
517 |
|
#can make this more general later on..should have this already in a local directory on Atlas or NEX!!!!
|
518 |
|
|
519 |
|
if (region_name=="USA"){
|
520 |
|
usa_map <- getData('GADM', country='USA', level=1) #Get US map
|
521 |
|
#usa_map <- getData('GADM', country=region_name,level=1) #Get US map, this is not working right now
|
522 |
|
usa_map <- usa_map[usa_map$NAME_1!="Alaska",] #remove Alaska
|
523 |
|
reg_layer <- usa_map[usa_map$NAME_1!="Hawaii",] #remove Hawai
|
524 |
|
}
|
525 |
|
|
526 |
|
if (region_name=="world"){
|
527 |
|
#http://www.diva-gis.org/Data
|
528 |
|
countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp"
|
529 |
|
path_to_shp <- dirname(countries_shp)
|
530 |
|
layer_name <- sub(".shp","",basename(countries_shp))
|
531 |
|
reg_layer <- readOGR(path_to_shp, layer_name)
|
532 |
|
#proj4string(reg_layer) <- CRS_locs_WGS84
|
533 |
|
#reg_shp<-readOGR(dirname(list_shp_reg_files[[i]]),sub(".shp","",basename(list_shp_reg_files[[i]])))
|
534 |
|
}
|
535 |
|
|
536 |
|
centroids_pts <- vector("list",length(list_shp_reg_files))
|
537 |
|
shps_tiles <- vector("list",length(list_shp_reg_files))
|
538 |
|
#collect info: read in all shapfiles
|
539 |
|
#This is slow...make a function and use mclapply??
|
540 |
|
#/data/project/layers/commons/NEX_data/output_run6_global_analyses_09162014/shapefiles
|
541 |
|
|
542 |
|
for(i in 1:length(list_shp_reg_files)){
|
543 |
|
#path_to_shp <- dirname(list_shp_reg_files[[i]])
|
544 |
|
path_to_shp <- file.path(out_dir,"/shapefiles")
|
545 |
|
layer_name <- sub(".shp","",basename(list_shp_reg_files[[i]]))
|
546 |
|
shp1 <- try(readOGR(path_to_shp, layer_name)) #use try to resolve error below
|
547 |
|
#shp_61.0_-160.0
|
548 |
|
#Geographical CRS given to non-conformant data: -186.331747678
|
549 |
|
|
550 |
|
#shp1<-readOGR(dirname(list_shp_reg_files[[i]]),sub(".shp","",basename(list_shp_reg_files[[i]])))
|
551 |
|
if (!inherits(shp1,"try-error")) {
|
552 |
|
pt <- gCentroid(shp1)
|
553 |
|
centroids_pts[[i]] <- pt
|
554 |
|
}else{
|
555 |
|
pt <- shp1
|
556 |
|
centroids_pts[[i]] <- pt
|
557 |
|
}
|
558 |
|
shps_tiles[[i]] <- shp1
|
559 |
|
#centroids_pts[[i]] <- centroids
|
560 |
|
}
|
561 |
|
|
562 |
|
#fun <- function(i,list_shp_files)
|
563 |
|
#coord_names <- c("lon","lat")
|
564 |
|
#l_ras#t <- rasterize_df_fun(test,coord_names,proj_str,out_suffix=out_suffix,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
|
565 |
|
|
566 |
|
#remove try-error polygons...we loose three tiles because they extend beyond -180 deg
|
567 |
|
tmp <- shps_tiles
|
568 |
|
shps_tiles <- remove_errors_list(shps_tiles) #[[!inherits(shps_tiles,"try-error")]]
|
569 |
|
#shps_tiles <- tmp
|
570 |
|
length(tmp)-length(shps_tiles) #number of tiles with error message
|
571 |
|
|
572 |
|
tmp_pts <- centroids_pts
|
573 |
|
centroids_pts <- remove_errors_list(centroids_pts) #[[!inherits(shps_tiles,"try-error")]]
|
574 |
|
#centroids_pts <- tmp_pts
|
575 |
|
|
576 |
|
#plot info: with labels
|
577 |
|
res_pix <-1200
|
578 |
|
col_mfrow <- 1
|
579 |
|
row_mfrow <- 1
|
580 |
|
|
581 |
|
png(filename=paste("Figure1_tile_processed_region_",region_name,"_",out_suffix,".png",sep=""),
|
582 |
|
width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
583 |
|
|
584 |
|
plot(reg_layer)
|
585 |
|
#Add polygon tiles...
|
586 |
|
for(i in 1:length(shps_tiles)){
|
587 |
|
shp1 <- shps_tiles[[i]]
|
588 |
|
pt <- centroids_pts[[i]]
|
589 |
|
if(!inherits(shp1,"try-error")){
|
590 |
|
plot(shp1,add=T,border="blue")
|
591 |
|
#plot(pt,add=T,cex=2,pch=5)
|
592 |
|
label_id <- df_tile_processed$tile_id[i]
|
593 |
|
text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red"))
|
594 |
|
}
|
595 |
|
}
|
596 |
|
#title(paste("Tiles ", tile_size,region_name,sep=""))
|
597 |
|
|
598 |
|
dev.off()
|
599 |
|
|
600 |
|
#unique(summaty_metrics$tile_id)
|
601 |
|
#text(lat-shp,)
|
602 |
|
#union(list_shp_reg_files[[1]],list_shp_reg_files[[2]])
|
603 |
|
|
604 |
|
###############
|
605 |
|
### Figure 2: boxplot of average accuracy by model and by tiles
|
606 |
|
|
607 |
|
|
608 |
|
tb$tile_id <- factor(tb$tile_id, levels=unique(tb$tile_id))
|
609 |
|
|
610 |
|
model_name <- as.character(unique(tb$pred_mod))
|
611 |
|
|
612 |
|
|
613 |
|
## Figure 2a
|
614 |
|
|
615 |
|
for(i in 1:length(model_name)){
|
616 |
|
|
617 |
|
res_pix <- 480
|
618 |
|
col_mfrow <- 1
|
619 |
|
row_mfrow <- 1
|
620 |
|
|
621 |
|
png(filename=paste("Figure2a_boxplot_with_oultiers_by_tiles_",model_name[i],"_",out_suffix,".png",sep=""),
|
622 |
|
width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
623 |
|
|
624 |
|
boxplot(rmse~tile_id,data=subset(tb,tb$pred_mod==model_name[i]))
|
625 |
|
title(paste("RMSE per ",model_name[i]))
|
626 |
|
|
627 |
|
dev.off()
|
628 |
|
}
|
629 |
|
|
630 |
|
## Figure 2b
|
631 |
|
#wtih ylim and removing trailing...
|
632 |
|
for(i in 1:length(model_name)){
|
633 |
|
|
634 |
|
res_pix <- 480
|
635 |
|
col_mfrow <- 1
|
636 |
|
row_mfrow <- 1
|
637 |
|
png(filename=paste("Figure2b_boxplot_scaling_by_tiles","_",model_name[i],"_",out_suffix,".png",sep=""),
|
638 |
|
width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
639 |
|
|
640 |
|
model_name <- unique(tb$pred_mod)
|
641 |
|
boxplot(rmse~tile_id,data=subset(tb,tb$pred_mod==model_name[i])
|
642 |
|
,ylim=c(0,4),outline=FALSE)
|
643 |
|
title(paste("RMSE per ",model_name[i]))
|
644 |
|
dev.off()
|
645 |
|
}
|
646 |
|
#bwplot(rmse~tile_id, data=subset(tb,tb$pred_mod=="mod1"))
|
647 |
|
|
648 |
|
###############
|
649 |
|
### Figure 3: boxplot of average RMSE by model acrosss all tiles
|
650 |
|
|
651 |
|
## Figure 3a
|
652 |
|
res_pix <- 480
|
653 |
|
col_mfrow <- 1
|
654 |
|
row_mfrow <- 1
|
655 |
|
|
656 |
|
png(filename=paste("Figure3a_boxplot_overall_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""),
|
657 |
|
width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
658 |
|
|
659 |
|
boxplot(rmse~pred_mod,data=tb)#,names=tb$pred_mod)
|
660 |
|
title("RMSE per model over all tiles")
|
661 |
|
|
662 |
|
dev.off()
|
663 |
|
|
664 |
|
## Figure 3b
|
665 |
|
png(filename=paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep=""),
|
666 |
|
width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
667 |
|
|
668 |
|
boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
|
669 |
|
title("RMSE per model over all tiles")
|
670 |
|
|
671 |
|
dev.off()
|
672 |
|
|
673 |
|
|
674 |
|
################
|
675 |
|
### Figure 4: plot predicted tiff for specific date per model
|
676 |
|
|
677 |
|
#y_var_name <-"dailyTmax"
|
678 |
|
#index <-244 #index corresponding to Sept 1
|
679 |
|
|
680 |
|
# if (mosaic_plot==TRUE){
|
681 |
|
# index <- 1 #index corresponding to Jan 1
|
682 |
|
# date_selected <- "20100901"
|
683 |
|
# name_method_var <- paste(interpolation_method,"_",y_var_name,"_",sep="")
|
684 |
|
#
|
685 |
|
# pattern_str <- paste("mosaiced","_",name_method_var,"predicted",".*.",date_selected,".*.tif",sep="")
|
686 |
|
# lf_pred_list <- list.files(pattern=pattern_str)
|
687 |
|
#
|
688 |
|
# for(i in 1:length(lf_pred_list)){
|
689 |
|
#
|
690 |
|
#
|
691 |
|
# r_pred <- raster(lf_pred_list[i])
|
692 |
|
#
|
693 |
|
# res_pix <- 480
|
694 |
|
# col_mfrow <- 1
|
695 |
|
# row_mfrow <- 1
|
696 |
|
#
|
697 |
|
# png(filename=paste("Figure4_models_predicted_surfaces_",model_name[i],"_",name_method_var,"_",data_selected,"_",out_suffix,".png",sep=""),
|
698 |
|
# width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
699 |
|
#
|
700 |
|
# plot(r_pred)
|
701 |
|
# title(paste("Mosaiced",model_name[i],name_method_var,date_selected,sep=" "))
|
702 |
|
# dev.off()
|
703 |
|
# }
|
704 |
|
# #Plot Delta and clim...
|
705 |
|
#
|
706 |
|
# ## plotting of delta and clim for later scripts...
|
707 |
|
#
|
708 |
|
# }
|
709 |
|
|
710 |
|
|
711 |
|
######################
|
712 |
|
### Figure 5: plot accuracy ranked
|
713 |
|
|
714 |
|
#Turn summary table to a point shp
|
715 |
|
|
716 |
|
list_df_ac_mod <- vector("list",length=length(model_name))
|
717 |
|
for (i in 1:length(model_name)){
|
718 |
|
|
719 |
|
ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],]
|
720 |
|
### Ranking by tile...
|
721 |
|
df_ac_mod <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("pred_mod","rmse","mae","tile_id")]
|
722 |
|
list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")]
|
723 |
|
|
724 |
|
res_pix <- 480
|
725 |
|
col_mfrow <- 1
|
726 |
|
row_mfrow <- 1
|
727 |
|
|
728 |
|
png(filename=paste("Figure5_ac_metrics_ranked_",model_name[i],"_",out_suffix,".png",sep=""),
|
729 |
|
width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
730 |
|
x<- as.character(df_ac_mod$tile_id)
|
731 |
|
barplot(df_ac_mod$rmse, names.arg=x)
|
732 |
|
#plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T)
|
733 |
|
#plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T)
|
734 |
|
title(paste("RMSE ranked by tile for ",model_name[i],sep=""))
|
735 |
|
|
736 |
|
dev.off()
|
737 |
|
|
738 |
|
}
|
739 |
|
|
740 |
|
######################
|
741 |
|
### Figure 6: plot map of average RMSE per tile at centroids
|
742 |
|
|
743 |
|
#Turn summary table to a point shp
|
744 |
|
|
745 |
|
# coordinates(summary_metrics_v) <- cbind(summary_metrics_v$lon,summary_metrics_v$lat)
|
746 |
|
# proj4string(summary_metrics_v) <- CRS_WGS84
|
747 |
|
# #lf_list <- lf_pred_list
|
748 |
|
# list_df_ac_mod <- vector("list",length=length(lf_pred_list))
|
749 |
|
# for (i in 1:length(lf_list)){
|
750 |
|
#
|
751 |
|
# ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],]
|
752 |
|
# r_pred <- raster(lf_list[i])
|
753 |
|
#
|
754 |
|
# res_pix <- 480
|
755 |
|
# col_mfrow <- 1
|
756 |
|
# row_mfrow <- 1
|
757 |
|
#
|
758 |
|
# png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_suffix,".png",sep=""),
|
759 |
|
# width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
760 |
|
#
|
761 |
|
# plot(r_pred)
|
762 |
|
#
|
763 |
|
# #plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T)
|
764 |
|
# plot(ac_mod,cex=(ac_mod$rmse^2)/10,pch=1,add=T)
|
765 |
|
# #plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T)
|
766 |
|
# title(paste("Averrage RMSE per tile and by ",model_name[i]))
|
767 |
|
#
|
768 |
|
# dev.off()
|
769 |
|
#
|
770 |
|
# ### Ranking by tile...
|
771 |
|
# #df_ac_mod <-
|
772 |
|
# list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")]
|
773 |
|
# }
|
774 |
|
|
775 |
|
#quick kriging...
|
776 |
|
#autokrige(rmse~1,r2,)
|
777 |
|
|
778 |
|
|
779 |
|
### Without
|
780 |
|
|
781 |
|
#list_df_ac_mod <- vector("list",length=length(lf_pred_list))
|
782 |
|
list_df_ac_mod <- vector("list",length=2)
|
783 |
|
|
784 |
|
for (i in 1:length(model_name)){
|
785 |
|
|
786 |
|
ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],]
|
787 |
|
#r_pred <- raster(lf_list[i])
|
788 |
|
|
789 |
|
res_pix <- 1200
|
790 |
|
#res_pix <- 480
|
791 |
|
|
792 |
|
col_mfrow <- 1
|
793 |
|
row_mfrow <- 1
|
794 |
|
|
795 |
|
png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_suffix,".png",sep=""),
|
796 |
|
width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
797 |
|
|
798 |
|
#plot(r_pred)
|
799 |
|
#plot(reg_layer)
|
800 |
|
#plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T)
|
801 |
|
#plot(ac_mod,cex=(ac_mod$rmse^2)/10,pch=1,col="red",add=T)
|
802 |
|
|
803 |
|
#coordinates(ac_mod) <- ac_mod[,c("lon","lat")]
|
804 |
|
coordinates(ac_mod) <- ac_mod[,c("lon.x","lat.x")] #solve this later
|
805 |
|
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black'))
|
806 |
|
#title("(a) Mean for 1 January")
|
807 |
|
p <- bubble(ac_mod,"rmse",main=paste("Averrage RMSE per tile and by ",model_name[i]))
|
808 |
|
p1 <- p+p_shp
|
809 |
|
print(p1)
|
810 |
|
#plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T)
|
811 |
|
#title(paste("Averrage RMSE per tile and by ",model_name[i]))
|
812 |
|
|
813 |
|
dev.off()
|
814 |
|
|
815 |
|
### Ranking by tile...
|
816 |
|
#df_ac_mod <-
|
817 |
|
list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")]
|
818 |
|
}
|
819 |
|
|
820 |
|
## Number of tiles with information:
|
821 |
|
sum(df_tile_processed$metrics_v) #26,number of tiles with raster object
|
822 |
|
length(df_tile_processed$metrics_v) #26,number of tiles in the region
|
823 |
|
sum(df_tile_processed$metrics_v)/length(df_tile_processed$metrics_v) #80 of tiles with info
|
824 |
|
|
825 |
|
#coordinates
|
826 |
|
#coordinates(summary_metrics_v) <- c("lon","lat")
|
827 |
|
coordinates(summary_metrics_v) <- c("lon.y","lat.y")
|
828 |
|
|
829 |
|
threshold_missing_day <- c(367,365,300,200)
|
830 |
|
|
831 |
|
nb<-nrow(subset(summary_metrics_v,model_name=="mod1"))
|
832 |
|
sum(subset(summary_metrics_v,model_name=="mod1")$n_missing)/nb #33/35
|
833 |
|
|
834 |
|
## Make this a figure...
|
835 |
|
|
836 |
|
#plot(summary_metrics_v)
|
837 |
|
#Make this a function later so that we can explore many thresholds...
|
838 |
|
|
839 |
|
j<-1 #for model name 1
|
840 |
|
for(i in 1:length(threshold_missing_day)){
|
841 |
|
|
842 |
|
#summary_metrics_v$n_missing <- summary_metrics_v$n == 365
|
843 |
|
#summary_metrics_v$n_missing <- summary_metrics_v$n < 365
|
844 |
|
summary_metrics_v$n_missing <- summary_metrics_v$n < threshold_missing_day[i]
|
845 |
|
summary_metrics_v_subset <- subset(summary_metrics_v,model_name=="mod1")
|
846 |
|
|
847 |
|
#res_pix <- 1200
|
848 |
|
res_pix <- 960
|
849 |
|
|
850 |
|
col_mfrow <- 1
|
851 |
|
row_mfrow <- 1
|
852 |
|
|
853 |
|
png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i],
|
854 |
|
"_",out_suffix,".png",sep=""),
|
855 |
|
width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
856 |
|
|
857 |
|
model_name[j]
|
858 |
|
|
859 |
|
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black'))
|
860 |
|
#title("(a) Mean for 1 January")
|
861 |
|
p <- bubble(summary_metrics_v_subset,"n_missing",main=paste("Missing per tile and by ",model_name[j]," for ",
|
862 |
|
threshold_missing_day[i]))
|
863 |
|
p1 <- p+p_shp
|
864 |
|
print(p1)
|
865 |
|
#plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T)
|
866 |
|
#title(paste("Averrage RMSE per tile and by ",model_name[i]))
|
867 |
|
|
868 |
|
dev.off()
|
869 |
|
}
|
870 |
|
|
871 |
|
######################
|
872 |
|
### Figure 7: Number of predictions: daily and monthly
|
873 |
|
|
874 |
|
#xyplot(rmse~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
|
875 |
|
# pred_mod!="mod_kr"),type="b")
|
876 |
|
|
877 |
|
#xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
|
878 |
|
# pred_mod!="mod_kr"),type="h")
|
879 |
|
|
880 |
|
#cor
|
881 |
|
|
882 |
|
#
|
883 |
|
## Figure 7a
|
884 |
|
png(filename=paste("Figure7a_number_daily_predictions_per_models","_",out_suffix,".png",sep=""),
|
885 |
|
width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
886 |
|
|
887 |
|
xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
|
888 |
|
pred_mod!="mod_kr"),type="h")
|
889 |
|
dev.off()
|
890 |
|
|
891 |
|
table(tb$pred_mod)
|
892 |
|
table(tb$index_d)
|
893 |
|
table(subset(tb,pred_mod!="mod_kr"))
|
894 |
|
table(subset(tb,pred_mod=="mod1")$index_d)
|
895 |
|
#aggregate()
|
896 |
|
tb$predicted <- 1
|
897 |
|
test <- aggregate(predicted~pred_mod+tile_id,data=tb,sum)
|
898 |
|
xyplot(predicted~pred_mod | tile_id,data=subset(as.data.frame(test),
|
899 |
|
pred_mod!="mod_kr"),type="h")
|
900 |
|
|
901 |
|
test
|
902 |
|
|
903 |
|
as.character(unique(test$tile_id)) #141 tiles
|
904 |
|
|
905 |
|
dim(subset(test,test$predicted==365 & test$pred_mod=="mod1"))
|
906 |
|
histogram(subset(test, test$pred_mod=="mod1")$predicted)
|
907 |
|
unique(subset(test, test$pred_mod=="mod1")$predicted)
|
908 |
|
table((subset(test, test$pred_mod=="mod1")$predicted))
|
909 |
|
|
910 |
|
#LST_avgm_min <- aggregate(LST~month,data=data_month_all,min)
|
911 |
|
histogram(test$predicted~test$tile_id)
|
912 |
|
#table(tb)
|
913 |
|
## Figure 7b
|
914 |
|
#png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""),
|
915 |
|
# width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
916 |
|
|
917 |
|
#xyplot(n~month | tile_id + pred_mod,data=subset(as.data.frame(tb_month_s),
|
918 |
|
# pred_mod!="mod_kr"),type="h")
|
919 |
|
#xyplot(n~month | tile_id,data=subset(as.data.frame(tb_month_s),
|
920 |
|
# pred_mod="mod_1"),type="h")
|
921 |
|
#test=subset(as.data.frame(tb_month_s),pred_mod="mod_1")
|
922 |
|
#table(tb_month_s$month)
|
923 |
|
#dev.off()
|
924 |
|
#
|
925 |
|
|
926 |
|
|
927 |
|
##########################################################
|
928 |
|
##### Figure 8: Breaking down accuracy by regions!! #####
|
929 |
|
|
930 |
|
#summary_metrics_v <- merge(summary_metrics_v,df_tile_processed,by="tile_id")
|
931 |
|
|
932 |
|
## Figure 8a
|
933 |
|
res_pix <- 480
|
934 |
|
col_mfrow <- 1
|
935 |
|
row_mfrow <- 1
|
936 |
|
|
937 |
|
png(filename=paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""),
|
938 |
|
width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
939 |
|
|
940 |
|
p<- bwplot(rmse~pred_mod | reg, data=tb,
|
941 |
|
main="RMSE per model and region over all tiles")
|
942 |
|
print(p)
|
943 |
|
dev.off()
|
944 |
|
|
945 |
|
## Figure 8b
|
946 |
|
png(filename=paste("Figure8b_boxplot_overall_separated_by_region_scaling_",model_name[i],"_",out_suffix,".png",sep=""),
|
947 |
|
width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
948 |
|
|
949 |
|
boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
|
950 |
|
title("RMSE per model over all tiles")
|
951 |
|
p<- bwplot(rmse~pred_mod | reg, data=tb,ylim=c(0,5),
|
952 |
|
main="RMSE per model and region over all tiles")
|
953 |
|
print(p)
|
954 |
|
dev.off()
|
955 |
|
|
956 |
|
#####################################################
|
957 |
|
#### Figure 9: plotting mosaics of regions ###########
|
958 |
|
## plot mosaics...
|
959 |
|
|
960 |
|
#First collect file names
|
961 |
|
|
962 |
|
|
963 |
|
#names(lf_mosaics_reg) <- l_reg_name
|
964 |
|
|
965 |
|
#This part should be automated...
|
966 |
|
#plot Australia
|
967 |
|
#lf_m <- lf_mosaics_reg[[2]]
|
968 |
|
#out_dir_str <- out_dir
|
969 |
|
#reg_name <- "reg6_1000x3000"
|
970 |
|
#lapply()
|
971 |
|
#list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_suffix)
|
972 |
|
#list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_suffix,l_dates=day_to_mosaic)
|
973 |
|
|
974 |
|
#lf_m_mask_reg4_1500x4500 <- mclapply(1:2,FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6)
|
975 |
|
#debug(plot_daily_mosaics)
|
976 |
|
#lf_m_mask_reg6_1000x3000 <- plot_daily_mosaics(1,list_param=list_param_plot_daily_mosaics)
|
977 |
|
|
978 |
|
#lf_m_mask_reg6_1000x3000 <- mclapply(1:length(lf_m),FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 10)
|
979 |
|
|
980 |
|
|
981 |
|
################## WORLD MOSAICS NEEDS MAJOR CLEAN UP OF CODE HERE
|
982 |
|
##make functions!!
|
983 |
|
###Combine mosaics with modified code from Alberto
|
984 |
|
|
985 |
|
#use list from above!!
|
986 |
|
|
987 |
|
# test_list <-list.files(path=file.path(out_dir,"mosaics"),
|
988 |
|
# pattern=paste("^world_mosaics.*.tif$",sep=""),
|
989 |
|
# )
|
990 |
|
# #world_mosaics_mod1_output1500x4500_km_20101105_run10_1500x4500_global_analyses_03112015.tif
|
991 |
|
#
|
992 |
|
# #test_list<-lapply(1:30,FUN=function(i){lapply(1:x[[i]]},x=lf_mosaics_mask_reg)
|
993 |
|
# #test_list<-unlist(test_list)
|
994 |
|
# #mosaic_list_mean <- vector("list",length=1)
|
995 |
|
# mosaic_list_mean <- test_list
|
996 |
|
# out_rastnames <- "world_test_mosaic_20100101"
|
997 |
|
# out_path <- out_dir
|
998 |
|
#
|
999 |
|
# list_param_mosaic<-list(mosaic_list_mean,out_path,out_rastnames,file_format,NA_flag_val,out_suffix)
|
1000 |
|
# names(list_param_mosaic)<-c("mosaic_list","out_path","out_rastnames","file_format","NA_flag_val","out_suffix")
|
1001 |
|
# #mean_m_list <-mclapply(1:12, list_param=list_param_mosaic, mosaic_m_raster_list,mc.preschedule=FALSE,mc.cores = 6) #This is the end bracket from mclapply(...) statement
|
1002 |
|
#
|
1003 |
|
# lf <- mosaic_m_raster_list(1,list_param_mosaic)
|
1004 |
|
#
|
1005 |
|
# debug(mosaic_m_raster_list)
|
1006 |
|
# mosaic_list<-list_param$mosaic_list
|
1007 |
|
# out_path<-list_param$out_path
|
1008 |
|
# out_names<-list_param$out_rastnames
|
1009 |
|
# file_format <- list_param$file_format
|
1010 |
|
# NA_flag_val <- list_param$NA_flag_val
|
1011 |
|
# out_suffix <- list_param$out_suffix
|
1012 |
|
|
1013 |
|
##Now mosaic for mean: should reorder files!!
|
1014 |
|
#out_rastnames_mean<-paste("_",lst_pat,"_","mean",out_suffix,sep="")
|
1015 |
|
#list_date_names<-c("jan","feb","mar","apr","may","jun","jul","aug","sep","oct","nov","dec")
|
1016 |
|
#mosaic_list<-split(tmp_str1,list_date_names)
|
1017 |
|
#new_list<-vector("list",length(mosaic_list))
|
1018 |
|
# for (i in 1:length(list_date_names)){
|
1019 |
|
# j<-grep(list_date_names[i],mosaic_list,value=FALSE)
|
1020 |
|
# names(mosaic_list)[j]<-list_date_names[i]
|
1021 |
|
# new_list[i]<-mosaic_list[j]
|
1022 |
|
# }
|
1023 |
|
# mosaic_list_mean <-new_list #list ready for mosaicing
|
1024 |
|
# out_rastnames_mean<-paste(list_date_names,out_rastnames_mean,sep="")
|
1025 |
|
|
1026 |
|
### Now mosaic tiles...Note that function could be improved to use less memory
|
1027 |
|
|
1028 |
|
|
1029 |
|
################## PLOTTING WORLD MOSAICS ################
|
1030 |
|
|
1031 |
|
#lf_world_pred <-list.files(path=file.path(out_dir,"mosaics"),
|
1032 |
|
# pattern=paste("^world_mosaics.*.tif$",sep=""),full.names=T)
|
1033 |
|
|
1034 |
|
lf_world_pred <-list.files(path=file.path(out_dir,"mosaics"),
|
1035 |
|
pattern=paste("^reg5.*.",".tif$",sep=""),full.names=T)
|
1036 |
|
l_reg_name <- unique(df_tile_processed$reg)
|
1037 |
|
lf_world_pred <-list.files(path=file.path(out_dir,l_reg_name[[i]]),
|
1038 |
|
pattern=paste(".tif$",sep=""),full.names=T)
|
1039 |
|
|
1040 |
|
#mosaic_list_mean <- test_list
|
1041 |
|
#out_rastnames <- "world_test_mosaic_20100101"
|
1042 |
|
#out_path <- out_dir
|
1043 |
|
|
1044 |
|
#lf_world_pred <- list.files(pattern="world.*2010090.*.tif$")
|
1045 |
|
#lf_raster_fname <- list.files(pattern="world.*2010*.*02162015.tif$",full.names=T)
|
1046 |
|
lf_raster_fname <- lf_world_pred
|
1047 |
|
prefix_str <- "Figure10_clim_world_mosaics_day_"
|
1048 |
|
l_dates <-day_to_mosaic
|
1049 |
|
screenRast=FALSE
|
1050 |
|
list_param_plot_screen_raster <- list(lf_raster_fname,screenRast,l_dates,out_dir,prefix_str,out_suffix)
|
1051 |
|
names(list_param_plot_screen_raster) <- c("lf_raster_fname","screenRast","l_dates","out_dir_str","prefix_str","out_suffix_str")
|
1052 |
|
|
1053 |
|
debug(plot_screen_raster_val)
|
1054 |
|
|
1055 |
|
world_m_list1<- plot_screen_raster_val(1,list_param_plot_screen_raster)
|
1056 |
|
#world_m_list <- mclapply(11:30, list_param=list_param_plot_screen_raster, plot_screen_raster_val,mc.preschedule=FALSE,mc.cores = num_cores) #This is the end bracket from mclapply(...) statement
|
1057 |
|
world_m_list <- mclapply(1:length(l_dates), list_param=list_param_plot_screen_raster, plot_screen_raster_val,mc.preschedule=FALSE,mc.cores = num_cores) #This is the end bracket from mclapply(...) statement
|
1058 |
|
|
1059 |
|
s_pred <- stack(lf_raster_fname)
|
1060 |
|
|
1061 |
|
res_pix <- 1500
|
1062 |
|
col_mfrow <- 3
|
1063 |
|
row_mfrow <- 2
|
1064 |
|
|
1065 |
|
png(filename=paste("Figure10_levelplot_combined_",region_name,"_",out_suffix,".png",sep=""),
|
1066 |
|
width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
1067 |
|
|
1068 |
|
levelplot(s_pred,layers=1:6,col.regions=rev(terrain.colors(255)),cex=4)
|
1069 |
|
|
1070 |
|
dev.off()
|
1071 |
|
|
1072 |
|
# blues<- designer.colors(6, c( "blue", "white") )
|
1073 |
|
# reds <- designer.colors(6, c( "white","red") )
|
1074 |
|
# colorTable<- c( blues[-6], reds)
|
1075 |
|
# breaks with a gap of 10 to 17 assigned the white color
|
1076 |
|
# brks<- c(seq( 1, 10,,6), seq( 17, 25,,6))
|
1077 |
|
# image.plot( x,y,z,breaks=brks, col=colorTable)
|
1078 |
|
#
|
1079 |
|
|
1080 |
|
#lf_world_mask_reg <- vector("list",length=length(lf_world_pred))
|
1081 |
|
#for(i in 1:length(lf_world_pred)){
|
1082 |
|
#
|
1083 |
|
# lf_m <- lf_mosaics_reg[i]
|
1084 |
|
# out_dir_str <- out_dir
|
1085 |
|
#reg_name <- paste(l_reg_name[i],"_",tile_size,sep="") #make this automatic
|
1086 |
|
#lapply()
|
1087 |
|
# list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=tile_size,out_dir_str=out_dir_str,out_suffix=out_suffix,l_dates=day_to_mosaic)
|
1088 |
|
#lf_m_mask_reg4_1500x4500 <- mclapply(1:2,FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6)
|
1089 |
|
|
1090 |
|
#lf_world_mask_reg[[i]] <- mclapply(1:length(lf_m),FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 10)
|
1091 |
|
}
|
1092 |
|
|
1093 |
|
############# NEW MASK AND DATA
|
1094 |
|
## Plot areas and day predicted as first check
|
1095 |
|
|
1096 |
|
l_reg_name <- unique(df_tile_processed$reg)
|
1097 |
|
#(subset(df_tile_processed$reg == l_reg_name[i],date)
|
1098 |
|
|
1099 |
|
for(i in 1:length(l_reg_name)){
|
1100 |
|
lf_world_pred<-list.files(path=file.path(out_dir,l_reg_name[[i]]),
|
1101 |
|
pattern=paste(".tif$",sep=""),full.names=T)
|
1102 |
|
|
1103 |
|
#mosaic_list_mean <- test_list
|
1104 |
|
#out_rastnames <- "world_test_mosaic_20100101"
|
1105 |
|
#out_path <- out_dir
|
1106 |
|
|
1107 |
|
#lf_world_pred <- list.files(pattern="world.*2010090.*.tif$")
|
1108 |
|
#lf_raster_fname <- list.files(pattern="world.*2010*.*02162015.tif$",full.names=T)
|
1109 |
|
lf_raster_fname <- lf_world_pred
|
1110 |
|
prefix_str <- paste("Figure10_",l_reg_name[i],sep="")
|
1111 |
|
|
1112 |
|
l_dates <- basename(lf_raster_fname)
|
1113 |
|
tmp_name <- gsub(".tif","",l_dates)
|
1114 |
|
tmp_name <- gsub("gam_CAI_dailyTmax_predicted_mod1_0_1_","",tmp_name)
|
1115 |
|
#l_dates <- tmp_name
|
1116 |
|
l_dates <- paste(l_reg_name[i],"_",tmp_name,sep="")
|
1117 |
|
|
1118 |
|
screenRast=TRUE
|
1119 |
|
list_param_plot_screen_raster <- list(lf_raster_fname,screenRast,l_dates,out_dir,prefix_str,out_suffix)
|
1120 |
|
names(list_param_plot_screen_raster) <- c("lf_raster_fname","screenRast","l_dates","out_dir_str","prefix_str","out_suffix_str")
|
1121 |
|
|
1122 |
|
#undebug(plot_screen_raster_val)
|
1123 |
|
|
1124 |
|
#world_m_list1<- plot_screen_raster_val(1,list_param_plot_screen_raster)
|
1125 |
|
#world_m_list <- mclapply(11:30, list_param=list_param_plot_screen_raster, plot_screen_raster_val,mc.preschedule=FALSE,mc.cores = num_cores) #This is the end bracket from mclapply(...) statement
|
1126 |
|
world_m_list <- mclapply(1:length(l_dates), list_param=list_param_plot_screen_raster, plot_screen_raster_val,mc.preschedule=FALSE,mc.cores = num_cores) #This is the end bracket from mclapply(...) statement
|
1127 |
|
|
1128 |
|
#s_pred <- stack(lf_raster_fname)
|
1129 |
|
|
1130 |
|
#res_pix <- 1500
|
1131 |
|
#col_mfrow <- 3
|
1132 |
|
#row_mfrow <- 2
|
1133 |
|
|
1134 |
|
#png(filename=paste("Figure10_levelplot_combined_",region_name,"_",out_suffix,".png",sep=""),
|
1135 |
|
# width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
1136 |
|
|
1137 |
|
#levelplot(s_pred,layers=1:6,col.regions=rev(terrain.colors(255)),cex=4)
|
1138 |
|
|
1139 |
|
#dev.off()
|
1140 |
|
}
|
1141 |
|
|
1142 |
|
|
1143 |
361 |
|
1144 |
362 |
##################### END OF SCRIPT ######################
|
slidify presentation using input assessment figure table from stage 6