Revision 902f729b
Added by Benoit Parmentier over 12 years ago
climate/research/oregon/interpolation/queue/kriging_prediction_reg_function.R | ||
---|---|---|
1 |
|
|
2 |
runKriging <- function(i) { # loop over dates |
|
3 |
|
|
4 |
#This allows to change only one name of the |
|
5 |
|
|
6 |
date<-strptime(dates[i], "%Y%m%d") |
|
7 |
month<-strftime(date, "%m") |
|
8 |
LST_month<-paste("mm_",month,sep="") |
|
9 |
|
|
10 |
mod <-ghcn.subsets[[i]][,match(LST_month, names(ghcn.subsets[[i]]))] |
|
11 |
ghcn.subsets[[i]]$LST <-mod[[1]] |
|
12 |
# |
|
13 |
# n<-nrow(ghcn.subsets[[i]]) |
|
14 |
# ns<-n-round(n*prop) #Create a sample from the data frame with 70% of the rows |
|
15 |
# nv<-n-ns #create a sample for validation with prop of the rows |
|
16 |
# ind.training <- sample(nrow(ghcn.subsets[[i]]), size=ns, replace=FALSE) #This selects the index position for 70% of the rows taken randomly |
|
17 |
ind.training<-sampling[[i]] |
|
18 |
ind.testing <- setdiff(1:nrow(ghcn.subsets[[i]]), ind.training) #This selects the index position for testing subset stations. |
|
19 |
data_s <- ghcn.subsets[[i]][ind.training, ] |
|
20 |
data_v <- ghcn.subsets[[i]][ind.testing, ] |
|
21 |
|
|
22 |
#adding to SpatialGridDataFrame |
|
23 |
|
|
24 |
pos<-match(LST_month,layerNames(s_raster)) #Find column with the current month for instance mm12 |
|
25 |
r1<-raster(s_raster,layer=pos) #Select layer from stack |
|
26 |
layerNames(r1)<-"LST" |
|
27 |
s_raster<-addLayer(s_raster,r1) |
|
28 |
s_sgdf<-as(s_raster,"SpatialGridDataFrame") #Conversion to spatial grid data frame |
|
29 |
|
|
30 |
###BEFORE Kringing the data object must be transformed to SDF |
|
31 |
|
|
32 |
coords<- data_v[,c('x_OR83M','y_OR83M')] |
|
33 |
coordinates(data_v)<-coords |
|
34 |
proj4string(data_v)<-CRS #Need to assign coordinates... |
|
35 |
coords<- data_s[,c('x_OR83M','y_OR83M')] |
|
36 |
coordinates(data_s)<-coords |
|
37 |
proj4string(data_s)<-CRS #Need to assign coordinates.. |
|
38 |
|
|
39 |
#This allows to change only one name of the data.frame |
|
40 |
pos<-match("value",names(data_s)) #Find column with name "value" |
|
41 |
names(data_s)[pos]<-c("tmax") |
|
42 |
data_s$tmax<-data_s$tmax/10 #TMax is the average max temp for months |
|
43 |
pos<-match("value",names(data_v)) #Find column with name "value" |
|
44 |
names(data_v)[pos]<-c("tmax") |
|
45 |
data_v$tmax<-data_v$tmax/10 |
|
46 |
#dstjan=dst[dst$month==9,] #dst contains the monthly averages for tmax for every station over 2000-2010 |
|
47 |
############## |
|
48 |
###STEP 2 KRIGING### |
|
49 |
|
|
50 |
#Kriging tmax |
|
51 |
|
|
52 |
# hscat(tmax~1,data_s,(0:9)*20000) # 9 lag classes with 20,000m width |
|
53 |
# v<-variogram(tmax~1, data_s) # This plots a sample varigram for date 10 fir the testing dataset |
|
54 |
# plot(v) |
|
55 |
# v.fit<-fit.variogram(v,vgm(2000,"Sph", 150000,1000)) #Model variogram: sill is 2000, spherical, range 15000 and nugget 1000 |
|
56 |
# plot(v, v.fit) #Compare model and sample variogram via a graphical plot |
|
57 |
# tmax_krige<-krige(tmax~1, data_s,mean_LST, v.fit) #mean_LST provides the data grid/raster image for the kriging locations to be predicted. |
|
58 |
|
|
59 |
# krmod1<-try(autoKrige(tmax~1, data_s,s_sgdf,data_s)) #Use autoKrige instead of krige: with data_s for fitting on a grid |
|
60 |
# krmod2<-try(autoKrige(tmax~x_OR83M+y_OR83M,input_data=data_s,new_data=s_sgdf,data_variogram=data_s)) |
|
61 |
# krmod3<-try(autoKrige(tmax~x_OR83M+y_OR83M+ELEV_SRTM,input_data=data_s,new_data=s_sgdf,data_variogram=data_s)) |
|
62 |
# krmod4<-try(autoKrige(tmax~x_OR83M+y_OR83M+DISTOC,input_data=data_s,new_data=s_sgdf,data_variogram=data_s)) |
|
63 |
# krmod5<-try(autoKrige(tmax~x_OR83M+y_OR83M+ELEV_SRTM+DISTOC,input_data=data_s,new_data=s_sgdf,data_variogram=data_s)) |
|
64 |
# krmod6<-try(autoKrige(tmax~x_OR83M+y_OR83M+Northness+Eastness,input_data=data_s,new_data=s_sgdf,data_variogram=data_s)) |
|
65 |
# krmod7<-try(autoKrige(tmax~x_OR83M+y_OR83M+Northness+Eastness,input_data=data_s,new_data=s_sgdf,data_variogram=data_s)) |
|
66 |
# |
|
67 |
krmod1<-try(autoKrige(tmax~1, data_s,s_sgdf,data_s)) #Use autoKrige instead of krige: with data_s for fitting on a grid |
|
68 |
krmod2<-try(autoKrige(tmax~lat+lon,input_data=data_s,new_data=s_sgdf,data_variogram=data_s)) |
|
69 |
krmod3<-try(autoKrige(tmax~lat+lon+ELEV_SRTM,input_data=data_s,new_data=s_sgdf,data_variogram=data_s)) |
|
70 |
krmod4<-try(autoKrige(tmax~lat+lon+DISTOC,input_data=data_s,new_data=s_sgdf,data_variogram=data_s)) |
|
71 |
krmod5<-try(autoKrige(tmax~lat+lon+ELEV_SRTM+DISTOC,input_data=data_s,new_data=s_sgdf,data_variogram=data_s)) |
|
72 |
krmod6<-try(autoKrige(tmax~lat+lon+Northness+Eastness,input_data=data_s,new_data=s_sgdf,data_variogram=data_s)) |
|
73 |
krmod7<-try(autoKrige(tmax~lat+lon+Northness+Eastness,input_data=data_s,new_data=s_sgdf,data_variogram=data_s)) |
|
74 |
|
|
75 |
krmod8<-try(autoKrige(tmax~LST,input_data=data_s,new_data=s_sgdf,data_variogram=data_s)) |
|
76 |
krmod9<-try(autoKrige(tmax~lat+lon+LST,input_data=data_s,new_data=s_sgdf,data_variogram=data_s)) |
|
77 |
|
|
78 |
# krig1<-krmod1$krige_output #Extracting Spatial Grid Data frame |
|
79 |
# krig2<-krmod2$krige_output |
|
80 |
# krig3<-krmod3$krige_outpu |
|
81 |
# krig4<-krmod4$krige_output |
|
82 |
# krig5<-krmod5$krige_output |
|
83 |
# krig6<-krmod6$krige_output #Extracting Spatial Grid Data frame |
|
84 |
# krig7<-krmod7$krige_output |
|
85 |
#krig8<-krmod8$krige_outpu |
|
86 |
#krig9<-krmod9$krige_output |
|
87 |
|
|
88 |
#tmax_krig1_s <- overlay(krige,data_s) #This overlays the kriged surface tmax and the location of weather stations |
|
89 |
#tmax_krig1_v <- overlay(krige,data_v) |
|
90 |
# |
|
91 |
# #Cokriging tmax |
|
92 |
# g<-gstat(NULL,"tmax", tmax~1, data_s) #This creates a gstat object "g" that acts as container for kriging specifications. |
|
93 |
# g<-gstat(g, "SRTM_elev",ELEV_SRTM~1,data_s) #Adding variables to gstat object g |
|
94 |
# g<-gstat(g, "LST", LST~1,data_s) |
|
95 |
|
|
96 |
# vm_g<-variogram(g) #Visualizing multivariate sample variogram. |
|
97 |
# vm_g.fit<-fit.lmc(vm_g,g,vgm(2000,"Sph", 100000,1000)) #Fitting variogram for all variables at once. |
|
98 |
# plot(vm_g,vm_g.fit) #Visualizing variogram fit and sample |
|
99 |
# vm_g.fit$set <-list(nocheck=1) #Avoid checking and allow for different range in variogram |
|
100 |
# co_kriged_surf<-predict(vm_g.fit,mean_LST) #Prediction using co-kriging with grid location defined from input raster image. |
|
101 |
# #co_kriged_surf$tmax.pred #Results stored in SpatialGridDataFrame with tmax prediction accessible in dataframe. |
|
102 |
|
|
103 |
#spplot.vcov(co_kriged_surf) #Visualizing the covariance structure |
|
104 |
|
|
105 |
# tmax_cokrig1_s<- overlay(co_kriged_surf,data_s) #This overalys the cokriged surface tmax and the location of weather stations |
|
106 |
# tmax_cokrig1_v<- overlay(co_kriged_surf,data_v) |
|
107 |
|
|
108 |
for (j in 1:models){ |
|
109 |
|
|
110 |
#mod<-paste("krig",j,sep="") |
|
111 |
mod<-paste("krmod",j,sep="") |
|
112 |
|
|
113 |
krmod_auto<-get(mod) |
|
114 |
|
|
115 |
#If mod "j" is not a model object |
|
116 |
if (inherits(krmod_auto,"try-error")) { |
|
117 |
|
|
118 |
#Model assessment:results are NA |
|
119 |
|
|
120 |
results_RMSE[1,1]<- dates[i] #storing the interpolation dates in the first column |
|
121 |
results_RMSE[1,2]<- ns #number of stations used in the training stage |
|
122 |
results_RMSE[1,3]<- "RMSE" |
|
123 |
results_RMSE[1,j+3]<- NA |
|
124 |
#results_RMSE_kr[i,3]<- res_mod_kr_v |
|
125 |
|
|
126 |
results_MAE[1,1]<- dates[i] #storing the interpolation dates in the first column |
|
127 |
results_MAE[1,2]<- ns #number of stations used in the training stage |
|
128 |
results_MAE[1,3]<- "MAE" |
|
129 |
results_MAE[1,j+3]<- NA |
|
130 |
#results_RMSE_kr[i,3]<- res_mod_kr_v |
|
131 |
|
|
132 |
results_ME[1,1]<- dates[i] #storing the interpolation dates in the first column |
|
133 |
results_ME[1,2]<- ns #number of stations used in the training stage |
|
134 |
results_ME[1,3]<- "ME" |
|
135 |
results_ME[1,j+3]<- NA |
|
136 |
#results_RMSE_kr[i,3]<- res_mod_kr_v |
|
137 |
|
|
138 |
results_R2[1,1]<- dates[i] #storing the interpolation dates in the first column |
|
139 |
results_R2[1,2]<- ns #number of stations used in the training stage |
|
140 |
results_R2[1,3]<- "R2" |
|
141 |
results_R2[1,j+3]<- NA |
|
142 |
#results_RMSE_kr[i,3]<- res_mod_kr_v |
|
143 |
|
|
144 |
results_RMSE_f[1,1]<- dates[i] #storing the interpolation dates in the first column |
|
145 |
results_RMSE_f[1,2]<- ns #number of stations used in the training stage |
|
146 |
results_RMSE_f[1,3]<- "RMSE_f" |
|
147 |
results_RMSE_f[1,j+3]<- NA |
|
148 |
#results_RMSE_kr[i,3]<- res_mod_kr_v |
|
149 |
|
|
150 |
results_MAE_f[1,1]<- dates[i] #storing the interpolation dates in the first column |
|
151 |
results_MAE_f[1,2]<- ns #number of stations used in the training stage |
|
152 |
results_MAE_f[1,3]<- "MAE_f" |
|
153 |
results_MAE_f[1,j+3]<- NA |
|
154 |
name3<-paste("res_kr_mod",j,sep="") |
|
155 |
|
|
156 |
} |
|
157 |
|
|
158 |
#If mod "j" is not a model object |
|
159 |
if (inherits(krmod_auto,"autoKrige")) { |
|
160 |
krmod<-krmod_auto$krige_output #Extracting Spatial Grid Data frame |
|
161 |
|
|
162 |
krig_val_s <- overlay(krmod,data_s) #This overlays the kriged surface tmax and the location of weather stations |
|
163 |
krig_val_v <- overlay(krmod,data_v) #This overlays the kriged surface tmax and the location of weather stations |
|
164 |
|
|
165 |
pred_krmod<-paste("pred_krmod",j,sep="") |
|
166 |
#Adding the results back into the original dataframes. |
|
167 |
data_s[[pred_krmod]]<-krig_val_s$var1.pred |
|
168 |
data_v[[pred_krmod]]<-krig_val_v$var1.pred |
|
169 |
|
|
170 |
#Model assessment: RMSE and then krig the residuals....! |
|
171 |
|
|
172 |
res_mod_kr_s<- data_s$tmax - data_s[[pred_krmod]] #Residuals from kriging training |
|
173 |
res_mod_kr_v<- data_v$tmax - data_v[[pred_krmod]] #Residuals from kriging validation |
|
174 |
|
|
175 |
RMSE_mod_kr_s <- sqrt(sum(res_mod_kr_s^2,na.rm=TRUE)/(nv-sum(is.na(res_mod_kr_s)))) #RMSE from kriged surface training |
|
176 |
RMSE_mod_kr_v <- sqrt(sum(res_mod_kr_v^2,na.rm=TRUE)/(nv-sum(is.na(res_mod_kr_v)))) #RMSE from kriged surface validation |
|
177 |
MAE_mod_kr_s<- sum(abs(res_mod_kr_s),na.rm=TRUE)/(nv-sum(is.na(res_mod_kr_s))) #MAE from kriged surface training #MAE, Mean abs. Error FOR REGRESSION STEP 1: GAM |
|
178 |
MAE_mod_kr_v<- sum(abs(res_mod_kr_v),na.rm=TRUE)/(nv-sum(is.na(res_mod_kr_v))) #MAE from kriged surface validation |
|
179 |
ME_mod_kr_s<- sum(res_mod_kr_s,na.rm=TRUE)/(nv-sum(is.na(res_mod_kr_s))) #ME, Mean Error or bias FOR REGRESSION STEP 1: GAM |
|
180 |
ME_mod_kr_v<- sum(res_mod_kr_v,na.rm=TRUE)/(nv-sum(is.na(res_mod_kr_v))) #ME, Mean Error or bias FOR REGRESSION STEP 1: GAM |
|
181 |
R2_mod_kr_s<- cor(data_s$tmax,data_s[[pred_krmod]],use="complete.obs")^2 #R2, coef. of determination FOR REGRESSION STEP 1: GAM |
|
182 |
R2_mod_kr_v<- cor(data_v$tmax,data_v[[pred_krmod]],use="complete.obs")^2 #R2, coef. of determinationFOR REGRESSION STEP 1: GAM |
|
183 |
#(nv-sum(is.na(res_mod2))) |
|
184 |
#Writing out results |
|
185 |
|
|
186 |
results_RMSE[1,1]<- dates[i] #storing the interpolation dates in the first column |
|
187 |
results_RMSE[1,2]<- ns #number of stations used in the training stage |
|
188 |
results_RMSE[1,3]<- "RMSE" |
|
189 |
results_RMSE[1,j+3]<- RMSE_mod_kr_v |
|
190 |
#results_RMSE_kr[i,3]<- res_mod_kr_v |
|
191 |
|
|
192 |
results_MAE[1,1]<- dates[i] #storing the interpolation dates in the first column |
|
193 |
results_MAE[1,2]<- ns #number of stations used in the training stage |
|
194 |
results_MAE[1,3]<- "MAE" |
|
195 |
results_MAE[1,j+3]<- MAE_mod_kr_v |
|
196 |
#results_RMSE_kr[i,3]<- res_mod_kr_v |
|
197 |
|
|
198 |
results_ME[1,1]<- dates[i] #storing the interpolation dates in the first column |
|
199 |
results_ME[1,2]<- ns #number of stations used in the training stage |
|
200 |
results_ME[1,3]<- "ME" |
|
201 |
results_ME[1,j+3]<- ME_mod_kr_v |
|
202 |
#results_RMSE_kr[i,3]<- res_mod_kr_v |
|
203 |
|
|
204 |
results_R2[1,1]<- dates[i] #storing the interpolation dates in the first column |
|
205 |
results_R2[1,2]<- ns #number of stations used in the training stage |
|
206 |
results_R2[1,3]<- "R2" |
|
207 |
results_R2[1,j+3]<- R2_mod_kr_v |
|
208 |
#results_RMSE_kr[i,3]<- res_mod_kr_v |
|
209 |
|
|
210 |
results_RMSE_f[1,1]<- dates[i] #storing the interpolation dates in the first column |
|
211 |
results_RMSE_f[1,2]<- ns #number of stations used in the training stage |
|
212 |
results_RMSE_f[1,3]<- "RMSE_f" |
|
213 |
results_RMSE_f[1,j+3]<- RMSE_mod_kr_s |
|
214 |
#results_RMSE_kr[i,3]<- res_mod_kr_v |
|
215 |
|
|
216 |
results_MAE_f[1,1]<- dates[i] #storing the interpolation dates in the first column |
|
217 |
results_MAE_f[1,2]<- ns #number of stations used in the training stage |
|
218 |
results_MAE_f[1,3]<- "MAE_f" |
|
219 |
results_MAE_f[1,j+3]<- MAE_mod_kr_s |
|
220 |
name3<-paste("res_kr_mod",j,sep="") |
|
221 |
|
|
222 |
#as.numeric(res_mod) |
|
223 |
#data_s[[name3]]<-res_mod_kr_s |
|
224 |
data_s[[name3]]<-as.numeric(res_mod_kr_s) |
|
225 |
#data_v[[name3]]<-res_mod_kr_v |
|
226 |
data_v[[name3]]<-as.numeric(res_mod_kr_v) |
|
227 |
#Writing residuals from kriging |
|
228 |
|
|
229 |
#Saving kriged surface in raster images |
|
230 |
data_name<-paste("mod",j,"_",dates[[i]],sep="") |
|
231 |
#krig_raster_name<-paste("krmod_",data_name,out_prefix,".tif", sep="") |
|
232 |
#writeGDAL(krmod,fname=krig_raster_name, driver="GTiff", type="Float32",options ="INTERLEAVE=PIXEL", overwrite=TRUE) |
|
233 |
krig_raster_name<-paste("krmod_",data_name,out_prefix,".rst", sep="") |
|
234 |
writeRaster(raster(krmod), filename=krig_raster_name, overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
235 |
|
|
236 |
#krig_raster_name<-paste("Kriged_tmax_",data_name,out_prefix,".tif", sep="") |
|
237 |
#writeGDAL(tmax_krige,fname=krig_raster_name, driver="GTiff", type="Float32",options ="INTERLEAVE=PIXEL") |
|
238 |
#X11() |
|
239 |
#plot(raster(co_kriged_surf)) |
|
240 |
#title(paste("Tmax cokriging for date ",dates[[i]],sep="")) |
|
241 |
#savePlot(paste("Cokriged_tmax",data_name,out_prefix,".png", sep=""), type="png") |
|
242 |
#dev.off() |
|
243 |
#X11() |
|
244 |
#plot(raster(tmax_krige)) |
|
245 |
#title(paste("Tmax Kriging for date ",dates[[i]],sep="")) |
|
246 |
#savePlot(paste("Kriged_res_",data_name,out_prefix,".png", sep=""), type="png") |
|
247 |
#dev.off() |
|
248 |
# end of if krige object |
|
249 |
} |
|
250 |
|
|
251 |
} |
|
252 |
|
|
253 |
# #Co-kriging only on the validation sites for faster computing |
|
254 |
# |
|
255 |
# cokrig1_dv<-predict(vm_g.fit,data_v) |
|
256 |
# cokrig1_ds<-predict(vm_g.fit,data_s) |
|
257 |
# # data_s$tmax_cokr<-cokrig1_ds$tmax.pred |
|
258 |
# # data_v$tmax_cokr<-cokrig1_dv$tmax.pred |
|
259 |
# |
|
260 |
# #Calculate RMSE and then krig the residuals....! |
|
261 |
# |
|
262 |
# res_mod1<- data_v$tmax - data_v$tmax_kr #Residuals from kriging. |
|
263 |
# res_mod2<- data_v$tmax - data_v$tmax_cokr #Residuals from cokriging. |
|
264 |
# |
|
265 |
# RMSE_mod1 <- sqrt(sum(res_mod1^2,na.rm=TRUE)/(nv-sum(is.na(res_mod1)))) #RMSE from kriged surface. |
|
266 |
# RMSE_mod2 <- sqrt(sum(res_mod2^2,na.rm=TRUE)/(nv-sum(is.na(res_mod2)))) #RMSE from co-kriged surface. |
|
267 |
# #(nv-sum(is.na(res_mod2))) |
|
268 |
|
|
269 |
#Saving the subset in a dataframe |
|
270 |
data_name<-paste("ghcn_v_",dates[[i]],sep="") |
|
271 |
assign(data_name,data_v) |
|
272 |
data_name<-paste("ghcn_s_",dates[[i]],sep="") |
|
273 |
assign(data_name,data_s) |
|
274 |
|
|
275 |
# results[i,1]<- dates[i] #storing the interpolation dates in the first column |
|
276 |
# results[i,2]<- ns #number of stations in training |
|
277 |
# results[i,3]<- RMSE_mod1 |
|
278 |
# results[i,4]<- RMSE_mod2 |
|
279 |
# |
|
280 |
# results_mod_n[i,1]<-dates[i] |
|
281 |
# results_mod_n[i,2]<-(nv-sum(is.na(res_mod1))) |
|
282 |
# results_mod_n[i,3]<-(nv-sum(is.na(res_mod2))) |
|
283 |
|
|
284 |
#Specific diagnostic measures related to the testing datasets |
|
285 |
#browser() |
|
286 |
results_table_RMSE<-as.data.frame(results_RMSE) |
|
287 |
results_table_MAE<-as.data.frame(results_MAE) |
|
288 |
results_table_ME<-as.data.frame(results_ME) |
|
289 |
results_table_R2<-as.data.frame(results_R2) |
|
290 |
results_table_RMSE_f<-as.data.frame(results_RMSE_f) |
|
291 |
results_table_MAE_f<-as.data.frame(results_MAE_f) |
|
292 |
|
|
293 |
results_table_AIC<-as.data.frame(results_AIC) #Other tables for kriging |
|
294 |
results_table_GCV<-as.data.frame(results_GCV) |
|
295 |
results_table_DEV<-as.data.frame(results_DEV) |
|
296 |
|
|
297 |
tb_metrics1<-rbind(results_table_RMSE,results_table_MAE, results_table_ME, results_table_R2,results_table_RMSE_f,results_table_MAE_f) # |
|
298 |
tb_metrics2<-rbind(results_table_AIC,results_table_GCV, results_table_DEV) |
|
299 |
cname<-c("dates","ns","metric","mod1", "mod2","mod3", "mod4", "mod5", "mod6", "mod7") |
|
300 |
colnames(tb_metrics1)<-cname |
|
301 |
cname<-c("dates","ns","metric","mod1", "mod2","mod3", "mod4", "mod5", "mod6", "mod7") |
|
302 |
colnames(tb_metrics2)<-cname |
|
303 |
#colnames(results_table_RMSE)<-cname |
|
304 |
#colnames(results_table_RMSE_f)<-cname |
|
305 |
#tb_diagnostic1<-results_table_RMSE #measures of validation |
|
306 |
#tb_diagnostic2<-results_table_RMSE_f #measures of fit |
|
307 |
|
|
308 |
#write.table(tb_diagnostic1, file= paste(path,"/","results_fusion_Assessment_measure1",out_prefix,".txt",sep=""), sep=",") |
|
309 |
|
|
310 |
#} |
|
311 |
print(paste(dates[i],"processed")) |
|
312 |
mod_obj<-list(krmod1,krmod2,krmod3,krmod4,krmod5,krmod6,krmod7) |
|
313 |
# end of the for loop1 |
|
314 |
#results_list<-list(data_s,data_v,tb_metrics1,tb_metrics2) |
|
315 |
results_list<-list(data_s,data_v,tb_metrics1,tb_metrics2,mod_obj) |
|
316 |
return(results_list) |
|
317 |
#return(tb_diagnostic1) |
|
318 |
} |
Also available in: Unified diff
KRIGING, raster prediction full year, function used in main script