Revision 91e41f72
Added by Benoit Parmentier almost 10 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R | ||
---|---|---|
5 | 5 |
#Analyses, figures, tables and data are also produced in the script. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 03/23/2014 |
8 |
#MODIFIED ON: 12/23/2014
|
|
9 |
#Version: 3
|
|
8 |
#MODIFIED ON: 01/02/2015
|
|
9 |
#Version: 4
|
|
10 | 10 |
#PROJECT: Environmental Layers project |
11 |
#COMMENTS: analyses for run 10 global analyses, Europe 1000x300km |
|
11 |
#COMMENTS: analyses for run 10 global analyses, Europe, Australia, 1000x300km
|
|
12 | 12 |
################################################################################################# |
13 | 13 |
|
14 | 14 |
### Loading R library and packages |
... | ... | |
206 | 206 |
return(combined_spdf) |
207 | 207 |
} |
208 | 208 |
|
209 |
############################## |
|
209 |
plot_daily_mosaics <- function(i,list_param_plot_daily_mosaics){ |
|
210 |
#Purpose: |
|
211 |
#This functions mask mosaics files for a default range (-100,100 deg). |
|
212 |
#It produces a masked tif in a given dataType format (FLT4S) |
|
213 |
#It creates a figure of mosaiced region being interpolated. |
|
214 |
#Author: Benoit Parmentier |
|
215 |
#Parameters: |
|
216 |
#lf_m: list of files |
|
217 |
#reg_name:region name with tile size included |
|
218 |
#To do: |
|
219 |
#Add filenames |
|
220 |
#Add range |
|
221 |
#Add output dir |
|
222 |
#Add dataType_val option |
|
223 |
|
|
224 |
##### BEGIN ######## |
|
225 |
|
|
226 |
#Parse the list of parameters |
|
227 |
lf_m <- list_param_plot_daily_mosaics$lf_m |
|
228 |
reg_name <- list_param_plot_daily_mosaics$reg_name |
|
229 |
out_dir_str <- list_param_plot_daily_mosaics$out_dir_str |
|
230 |
out_suffix <- list_param_plot_daily_mosaics$out_suffix |
|
231 |
|
|
232 |
|
|
233 |
#list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str) |
|
234 |
|
|
235 |
|
|
236 |
#rast_list <- vector("list",length=length(lf_m)) |
|
237 |
r_test<- raster(lf_m[i]) |
|
238 |
|
|
239 |
m <- c(-Inf, -100, NA, |
|
240 |
-100, 100, 1, |
|
241 |
100, Inf, NA) #can change the thresholds later |
|
242 |
rclmat <- matrix(m, ncol=3, byrow=TRUE) |
|
243 |
rc <- reclassify(r_test, rclmat,filename=paste("rc_tmp_",i,".tif",sep=""),dataType="FLT4S",overwrite=T) |
|
244 |
file_name <- unlist(strsplit(basename(lf_m[i]),"_")) |
|
245 |
date_proc <- file_name[7] #specific tot he current naming of files |
|
246 |
#paste(raster_name[1:7],collapse="_") |
|
247 |
#add filename option later |
|
248 |
extension_str <- extension(filename(r_test)) |
|
249 |
raster_name_tmp <- gsub(extension_str,"",basename(filename(r_test))) |
|
250 |
raster_name <- file.path(out_dir_str,paste(raster_name_tmp,"_",date_proc,"_masked.tif",sep="")) |
|
251 |
r_pred <- mask(r_test,rc,filename=raster_name,overwrite=TRUE) |
|
252 |
|
|
253 |
res_pix <- 1200 |
|
254 |
#res_pix <- 480 |
|
255 |
|
|
256 |
col_mfrow <- 1 |
|
257 |
row_mfrow <- 1 |
|
258 |
|
|
259 |
png(filename=paste("Figure9_clim_mosaics_day_test","_",date_proc,"_",reg_name,"_",out_suffix,".png",sep=""), |
|
260 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
261 |
|
|
262 |
plot(r_pred,main=paste("climatology month ",date_proc , " ", reg_name,sep=""),cex.main=1.5) |
|
263 |
dev.off() |
|
264 |
|
|
265 |
return(raster_name) |
|
266 |
|
|
267 |
} |
|
268 |
|
|
269 |
############################################ |
|
210 | 270 |
#### Parameters and constants |
211 | 271 |
|
212 | 272 |
#on ATLAS |
... | ... | |
215 | 275 |
#in_dir1 <- "/data/project/layers/commons/NEX_data/output_run6_global_analyses_09162014/output20Deg2" |
216 | 276 |
# parent output dir for the curent script analyes |
217 | 277 |
#out_dir <-"/data/project/layers/commons/NEX_data/output_run3_global_analyses_06192014/" #On NCEAS Atlas |
218 |
out_dir <-"/data/project/layers/commons/NEX_data/output_run10_global_analyses_12152014/"
|
|
278 |
out_dir <-"/data/project/layers/commons/NEX_data/output_run10_global_analyses_12232014/"
|
|
219 | 279 |
# input dir containing shapefiles defining tiles |
220 | 280 |
#in_dir_shp <- "/data/project/layers/commons/NEX_data/output_run5_global_analyses_08252014/output/subset/shapefiles" |
221 | 281 |
|
... | ... | |
228 | 288 |
|
229 | 289 |
y_var_name <- "dailyTmax" |
230 | 290 |
interpolation_method <- c("gam_CAI") |
231 |
out_prefix<-"run10_global_analyses_12152014"
|
|
291 |
out_prefix<-"run10_global_analyses_12232014"
|
|
232 | 292 |
mosaic_plot <- FALSE |
233 | 293 |
|
234 | 294 |
#CRS_locs_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
... | ... | |
277 | 337 |
tb$pred_mod <- as.character(tb$pred_mod) |
278 | 338 |
summary_metrics_v$pred_mod <- as.character(summary_metrics_v$pred_mod) |
279 | 339 |
|
280 |
mulitple_region <- FALSE
|
|
340 |
mulitple_region <- TRUE
|
|
281 | 341 |
|
282 | 342 |
#multiple regions? |
283 | 343 |
if(mulitple_region==TRUE){ |
284 | 344 |
df_tile_processed$reg <- basename(dirname(as.character(df_tile_processed$path_NEX))) |
285 | 345 |
} |
286 | 346 |
|
287 |
#This part is specifically related to this run : dropping model with elev |
|
288 |
#tb <- merge(tb,df_tile_processed,by="tile_id") |
|
289 |
|
|
290 |
#tb_tmp_reg5 <- subset(tb,reg=="reg5") |
|
291 |
#tb_tmp_reg4 <- subset(tb,reg=="reg4") |
|
292 |
#tb_tmp_reg4 <- subset(tb_tmp_reg4,pred_mod!="mod1") #remove mod1 because it is not in reg5 |
|
293 |
#tb_tmp_reg4$pred_mod <- replace(tb_tmp_reg4$pred_mod, tb_tmp_reg4$pred_mod=="mod2", "mod1") |
|
294 |
#tb <- rbind(tb_tmp_reg4,tb_tmp_reg5) |
|
295 |
|
|
296 |
#ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],] |
|
297 |
#summary_metrics_v <- merge(summary_metrics_v,df_tile_processed,by="tile_id") |
|
298 |
#table(summary_metrics_v$reg) |
|
299 |
|
|
300 |
#summary_metrics_v_reg5 <- subset(summary_metrics_v,reg=="reg5") |
|
301 |
#summary_metrics_v_reg4 <- subset(summary_metrics_v,reg=="reg4") |
|
302 |
#summary_metrics_v_reg4 <- subset(summary_metrics_v_reg4,pred_mod!="mod1") #remove mod1 because it is not in reg5 |
|
303 |
#summary_metrics_v_reg4$pred_mod <- replace(summary_metrics_v_reg4$pred_mod, |
|
304 |
# summary_metrics_v_reg4$pred_mod=="mod2", "mod1") |
|
305 |
#summary_metrics_v <- rbind(summary_metrics_v_reg4,summary_metrics_v_reg5) |
|
306 | 347 |
|
307 | 348 |
############### |
308 | 349 |
### Figure 1: plot location of the study area with tiles processed |
... | ... | |
666 | 707 |
coordinates(summary_metrics_v) <- c("lon","lat") |
667 | 708 |
#coordinates(summary_metrics_v) <- c("lon.y","lat.y") |
668 | 709 |
|
669 |
summary_metrics_v$n_missing <- summary_metrics_v$n == 365 |
|
670 |
summary_metrics_v$n_missing <- summary_metrics_v$n < 365 |
|
671 |
summary_metrics_v$n_missing <- summary_metrics_v$n < 300 |
|
710 |
threshold_missing_day <- c(367,365,300,200) |
|
672 | 711 |
|
673 | 712 |
nb<-nrow(subset(summary_metrics_v,model_name=="mod1")) |
674 | 713 |
sum(subset(summary_metrics_v,model_name=="mod1")$n_missing)/nb #33/35 |
... | ... | |
676 | 715 |
## Make this a figure... |
677 | 716 |
|
678 | 717 |
#plot(summary_metrics_v) |
679 |
i <- 1 |
|
680 |
model_name[1] |
|
681 |
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black')) |
|
682 |
#title("(a) Mean for 1 January") |
|
683 |
p <- bubble(summary_metrics_v,"n_missing",main=paste("Missing per tile and by ",model_name[i])) |
|
684 |
p1 <- p+p_shp |
|
685 |
print(p1) |
|
718 |
#Make this a function later so that we can explore many thresholds... |
|
719 |
|
|
720 |
j<-1 #for model name 1 |
|
721 |
for(i in 1:length(threshold_missing_day)){ |
|
722 |
|
|
723 |
#summary_metrics_v$n_missing <- summary_metrics_v$n == 365 |
|
724 |
#summary_metrics_v$n_missing <- summary_metrics_v$n < 365 |
|
725 |
summary_metrics_v$n_missing <- summary_metrics_v$n < threshold_missing_day[i] |
|
726 |
summary_metrics_v_subset <- subset(summary_metrics_v,model_name=="mod1") |
|
727 |
|
|
728 |
#res_pix <- 1200 |
|
729 |
res_pix <- 960 |
|
730 |
|
|
731 |
col_mfrow <- 1 |
|
732 |
row_mfrow <- 1 |
|
733 |
|
|
734 |
png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i], |
|
735 |
"_",out_prefix,".png",sep=""), |
|
736 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
737 |
|
|
738 |
model_name[j] |
|
739 |
|
|
740 |
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black')) |
|
741 |
#title("(a) Mean for 1 January") |
|
742 |
p <- bubble(summary_metrics_v_subset,"n_missing",main=paste("Missing per tile and by ",model_name[j]," for ", |
|
743 |
threshold_missing_day[i])) |
|
744 |
p1 <- p+p_shp |
|
745 |
print(p1) |
|
746 |
#plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T) |
|
747 |
#title(paste("Averrage RMSE per tile and by ",model_name[i])) |
|
748 |
|
|
749 |
dev.off() |
|
750 |
} |
|
686 | 751 |
|
687 | 752 |
###################### |
688 | 753 |
### Figure 7: Number of predictions: daily and monthly |
... | ... | |
738 | 803 |
#dev.off() |
739 | 804 |
# |
740 | 805 |
|
741 |
## plot mosaics... |
|
742 | 806 |
|
743 |
lf_mosaics_reg5 <- mixedsort(list.files(path="/data/project/layers/commons/NEX_data/output_run10_global_analyses_11302014/mosaics/reg5", |
|
744 |
pattern="CAI_TMAX_clim_month_.*_mod1_all.tif", full.names=T)) |
|
807 |
########################################################## |
|
808 |
##### Figure 8: Breaking down accuaracy by regions!! ##### |
|
809 |
|
|
810 |
|
|
811 |
#This part is specifically related to this run : dropping model with elev |
|
812 |
#tb <- merge(tb,df_tile_processed,by="tile_id") |
|
813 |
|
|
814 |
#tb_tmp_reg5 <- subset(tb,reg=="reg5") |
|
815 |
#tb_tmp_reg4 <- subset(tb,reg=="reg4") |
|
816 |
#tb_tmp_reg4 <- subset(tb_tmp_reg4,pred_mod!="mod1") #remove mod1 because it is not in reg5 |
|
817 |
#tb_tmp_reg4$pred_mod <- replace(tb_tmp_reg4$pred_mod, tb_tmp_reg4$pred_mod=="mod2", "mod1") |
|
818 |
#tb <- rbind(tb_tmp_reg4,tb_tmp_reg5) |
|
819 |
|
|
820 |
#ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],] |
|
821 |
#summary_metrics_v <- merge(summary_metrics_v,df_tile_processed,by="tile_id") |
|
822 |
#table(summary_metrics_v$reg) |
|
823 |
|
|
824 |
#summary_metrics_v_reg5 <- subset(summary_metrics_v,reg=="reg5") |
|
825 |
#summary_metrics_v_reg4 <- subset(summary_metrics_v,reg=="reg4") |
|
826 |
#summary_metrics_v_reg4 <- subset(summary_metrics_v_reg4,pred_mod!="mod1") #remove mod1 because it is not in reg5 |
|
827 |
#summary_metrics_v_reg4$pred_mod <- replace(summary_metrics_v_reg4$pred_mod, |
|
828 |
# summary_metrics_v_reg4$pred_mod=="mod2", "mod1") |
|
829 |
#summary_metrics_v <- rbind(summary_metrics_v_reg4,summary_metrics_v_reg5) |
|
830 |
|
|
831 |
|
|
832 |
##################################################### |
|
833 |
#### Figure 9: plotting mosaics of regions ########### |
|
834 |
## plot mosaics... |
|
835 |
l_reg_name <- unique(df_tile_processed$reg) |
|
836 |
#lf_mosaics_reg5 <- mixedsort(list.files(path="/data/project/layers/commons/NEX_data/output_run10_global_analyses_11302014/mosaics/reg5", |
|
837 |
# pattern="CAI_TMAX_clim_month_.*_mod1_all.tif", full.names=T)) |
|
838 |
lf_mosaics_reg <- vector("list",length=length(l_reg_name)) |
|
839 |
for(i in 1:length(l_reg_name)){ |
|
840 |
lf_mosaics_reg[[i]] <- mixedsort(list.files( |
|
841 |
path=file.path(out_dir,"mosaics"), |
|
842 |
#pattern="reg6_.*._CAI_TMAX_clim_month_.*._mod1_all_mean.tif", |
|
843 |
pattern=paste(l_reg_name[i],".*._CAI_TMAX_clim_month_.*._mod1_all_mean.tif",sep=""), |
|
844 |
full.names=T)) |
|
845 |
} |
|
745 | 846 |
|
746 | 847 |
#r_reg5 <- stack(lf_mosaics_reg5) |
747 | 848 |
lf_m <- lf_mosaics_reg5[1:12] |
... | ... | |
845 | 946 |
dev.off() |
846 | 947 |
} |
847 | 948 |
|
848 |
#################### IMAGE DIFFERENCING BETWEEN 1000x3000 and 1500x4500 predictions for reg4 and reg5 |
|
849 |
|
|
850 |
#### Use previous results for differencing |
|
851 |
### for reg4_1500x4500: use "mod2 in this case... |
|
852 |
|
|
853 |
out_prefix_str <- "reg4_1500x4500" |
|
854 |
lf_mosaics_reg4_1500x4500 <- mixedsort( |
|
855 |
list.files(path= |
|
856 |
"/data/project/layers/commons/NEX_data/output_run10_global_analyses_12152014/mosaics/reg4_1500x4500", |
|
857 |
pattern=".*._mod2_all_mean.tif$",full.names=T) |
|
858 |
) |
|
859 |
lf_m <- lf_mosaics_reg4_1500x4500 |
|
860 |
out_dir_str <- "/data/project/layers/commons/NEX_data/output_run10_global_analyses_12152014/mosaics/" |
|
861 |
|
|
862 |
reg_name <- "reg4_1500x4500" |
|
863 |
#lapply() |
|
864 |
#list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir=out_dir_str,out_suffix=out_prefix) |
|
865 |
list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_prefix) |
|
866 |
|
|
867 |
#lf_m_mask_reg4_1500x4500 <- mclapply(1:2,FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6) |
|
868 |
#debug(plot_daily_mosaics) |
|
869 |
#test<- plot_daily_mosaics(1,list_param=list_param_plot_daily_mosaics)#,mc.preschedule)#=FALSE,mc.cores = 6) |
|
870 |
|
|
871 |
lf_m_mask_reg4_1500x4500 <- mclapply(1:length(lf_m),FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6) |
|
872 |
|
|
873 |
### for reg5_1500x4500: use "mod1 in this case |
|
874 |
|
|
875 |
out_prefix_str <- "reg5_1500x4500" |
|
876 |
lf_mosaics_reg5 <- mixedsort( |
|
877 |
list.files(path= |
|
878 |
"/data/project/layers/commons/NEX_data/output_run10_global_analyses_12152014/mosaics/reg5_1500x4500", |
|
879 |
pattern=".*._mod1_all_mean.tif$",full.names=T) |
|
880 |
) |
|
881 |
lf_m <- lf_mosaics_reg5 |
|
882 |
out_dir_str <- "/data/project/layers/commons/NEX_data/output_run10_global_analyses_12152014/mosaics/" |
|
883 |
reg_name <- "reg5_1500x4500" |
|
884 |
#lapply() |
|
885 |
list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_prefix) |
|
886 |
#lf_m_mask_reg4_1500x4500 <- mclapply(1:2,FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6) |
|
887 |
|
|
888 |
lf_m_mask_reg5_1500x4500 <- mclapply(1:length(lf_m),FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6) |
|
889 |
|
|
890 |
### for reg5_1500x4500: use "mod1 in this case, this is Africa |
|
891 |
|
|
892 |
out_prefix_str <- "reg5_1000x3000" |
|
893 |
lf_mosaics_reg5 <- mixedsort( |
|
894 |
list.files(path= |
|
895 |
"/data/project/layers/commons/NEX_data/output_run10_global_analyses_12152014/mosaics/reg5_1000x4500", |
|
896 |
pattern=".*._mod1_all_mean.tif$",full.names=T) |
|
897 |
) |
|
898 |
lf_m <- lf_mosaics_reg5 |
|
899 |
out_dir_str <- "/data/project/layers/commons/NEX_data/output_run10_global_analyses_12152014/mosaics/" |
|
900 |
reg_name <- "reg5_1500x4500" |
|
901 |
#lapply() |
|
902 |
list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_prefix) |
|
903 |
#lf_m_mask_reg4_1500x4500 <- mclapply(1:2,FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6) |
|
904 |
|
|
905 |
lf_m_mask_reg5_1500x4500 <- mclapply(1:length(lf_m),FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6) |
|
906 |
|
|
907 |
|
|
908 |
|
|
909 |
|
|
910 |
### for reg4_1000x3000: use "mod1 in this case |
|
911 |
|
|
912 |
out_prefix_str <- "reg4_1000x3000" |
|
913 |
lf_mosaics_reg5 <- mixedsort( |
|
914 |
list.files(path= |
|
915 |
"/data/project/layers/commons/NEX_data/output_run10_global_analyses_12152014/mosaics/reg5_1000x3000", |
|
916 |
pattern=".*._mod1_all_mean.tif$",full.names=T) |
|
917 |
) |
|
918 |
lf_m <- lf_mosaics_reg5 |
|
919 |
out_dir_str <- "/data/project/layers/commons/NEX_data/output_run10_global_analyses_12152014/mosaics/" |
|
920 |
reg_name <- "reg5_1000x4500" |
|
921 |
#lapply() |
|
922 |
list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_prefix) |
|
923 |
#lf_m_mask_reg4_1500x4500 <- mclapply(1:2,FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6) |
|
924 |
|
|
925 |
lf_m_mask_reg5_1000x4500 <- mclapply(1:length(lf_m),FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6) |
|
926 |
|
|
927 |
|
|
928 |
plot_daily_mosaics <- function(i,list_param_plot_daily_mosaics){ |
|
929 |
#Purpose: |
|
930 |
#This functions mask mosaics files for a default range (-100,100 deg). |
|
931 |
#It produces a masked tif in a given dataType format (FLT4S) |
|
932 |
#It creates a figure of mosaiced region being interpolated. |
|
933 |
#Author: Benoit Parmentier |
|
934 |
#Parameters: |
|
935 |
#lf_m: list of files |
|
936 |
#reg_name:region name with tile size included |
|
937 |
#To do: |
|
938 |
#Add filenames |
|
939 |
#Add range |
|
940 |
#Add output dir |
|
941 |
#Add dataType_val option |
|
942 |
|
|
943 |
##### BEGIN ######## |
|
944 |
|
|
945 |
#Parse the list of parameters |
|
946 |
lf_m <- list_param_plot_daily_mosaics$lf_m |
|
947 |
reg_name <- list_param_plot_daily_mosaics$reg_name |
|
948 |
out_dir_str <- list_param_plot_daily_mosaics$out_dir_str |
|
949 |
out_suffix <- list_param_plot_daily_mosaics$out_suffix |
|
950 |
|
|
951 |
|
|
952 |
#list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str) |
|
953 |
|
|
954 |
|
|
955 |
#rast_list <- vector("list",length=length(lf_m)) |
|
956 |
r_test<- raster(lf_m[i]) |
|
957 |
|
|
958 |
m <- c(-Inf, -100, NA, |
|
959 |
-100, 100, 1, |
|
960 |
100, Inf, NA) #can change the thresholds later |
|
961 |
rclmat <- matrix(m, ncol=3, byrow=TRUE) |
|
962 |
rc <- reclassify(r_test, rclmat,filename=paste("rc_tmp_",i,".tif",sep=""),dataType="FLT4S",overwrite=T) |
|
963 |
file_name <- unlist(strsplit(basename(lf_m[i]),"_")) |
|
964 |
date_proc <- file_name[7] #specific tot he current naming of files |
|
965 |
#paste(raster_name[1:7],collapse="_") |
|
966 |
#add filename option later |
|
967 |
extension_str <- extension(filename(r_test)) |
|
968 |
raster_name_tmp <- gsub(extension_str,"",basename(filename(r_test))) |
|
969 |
raster_name <- file.path(out_dir_str,paste(raster_name_tmp,"_",date_proc,"_masked.tif",sep="")) |
|
970 |
r_pred <- mask(r_test,rc,filename=raster_name,overwrite=TRUE) |
|
971 |
|
|
972 |
res_pix <- 1200 |
|
973 |
#res_pix <- 480 |
|
974 |
|
|
975 |
col_mfrow <- 1 |
|
976 |
row_mfrow <- 1 |
|
977 |
|
|
978 |
png(filename=paste("Figure9_clim_mosaics_day_test","_",date_proc,"_",reg_name,"_",out_suffix,".png",sep=""), |
|
979 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
980 |
|
|
981 |
plot(r_pred,main=paste("climatology month ",date_proc , " ", reg_name,sep=""),cex.main=1.5) |
|
982 |
dev.off() |
|
983 |
|
|
984 |
return(raster_name) |
|
985 |
|
|
986 |
} |
|
987 |
|
|
988 |
|
|
989 |
###################### |
|
990 |
### Figure 10: Plot the difference in mosaics for processing tiles at 1500x4500 and 1000x3500 |
|
991 |
|
|
992 |
|
|
993 |
reg_name <- "reg4" |
|
994 |
for(i in 1:length(lf_m)){ |
|
995 |
r_test<- raster(lf_m[i]) |
|
996 |
|
|
997 |
m <- c(-Inf, -100, NA, |
|
998 |
-100, 100, 1, |
|
999 |
100, Inf, NA) |
|
1000 |
rclmat <- matrix(m, ncol=3, byrow=TRUE) |
|
1001 |
rc <- reclassify(r_test, rclmat,filename="rc.tif",dataType="FLT4S",overwrite=T) |
|
1002 |
raster_name <- unlist(strsplit(basename(lf_m[i]),"_")) |
|
1003 |
date_proc <- raster_name[5] |
|
1004 |
#paste(raster_name[1:7],collapse="_") |
|
1005 |
r_pred <- mask(r_test,rc,filename=paste("CAI_TMAX_clim_month_mod1_all_",reg_name,"_",date_proc,"_masked.tif",sep=""),overwrite=TRUE) |
|
1006 |
|
|
1007 |
res_pix <- 1200 |
|
1008 |
#res_pix <- 480 |
|
1009 |
|
|
1010 |
col_mfrow <- 1 |
|
1011 |
row_mfrow <- 1 |
|
1012 |
|
|
1013 |
png(filename=paste("Figure9_clim_mosaics_day_test","_",date_proc,"_",reg_name,"_",out_prefix,".png",sep=""), |
|
1014 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
1015 |
|
|
1016 |
plot(r_pred,main=paste("climatology month ",date_proc , " ", reg_name,sep=""),cex.main=1.5) |
|
1017 |
dev.off() |
|
1018 |
} |
|
1019 |
|
|
1020 | 949 |
##################### END OF SCRIPT ###################### |
Also available in: Unified diff
NEX assessment part2 adding function to plot daily mosaics in parrallel