Project

General

Profile

« Previous | Next » 

Revision 92551b87

Added by Benoit Parmentier almost 12 years ago

Results output analyses, splitting code for covariates output summary

View differences:

climate/research/oregon/interpolation/results_interpolation_date_output_analyses.R
39 39
raster_prediction_obj<-"raster_prediction_obj__365d_GAM_fus5_all_lstd_03132013.RData"
40 40
#out_prefix<-"_365d_GAM_fus5_all_lstd_03132013"
41 41
#out_prefix<-"_365d_GAM_fus5_all_lstd_03142013"                #User defined output prefix
42
out_prefix<-"_365d_GAM_fus5_all_lstd_03132013"                #User defined output prefix
42
out_prefix<-"_365d_GAM_fus5_all_lstd_03272013"                #User defined output prefix
43 43
var<-"TMAX"
44 44
#gam_fus_mod<-load_obj("gam_fus_mod_365d_GAM_fus5_all_lstd_02202013.RData")
45 45
#validation_obj<-load_obj("gam_fus_validation_mod_365d_GAM_fus5_all_lstd_02202013.RData")
......
72 72
  env[[nm]]
73 73
}
74 74

  
75
extract_number_obs<-function(list_param){
76
  
77
  method_mod_obj<-list_param$method_mod_obj
78
  #Change to results_mod_obj[[i]]$data_s to make it less specific
79
  lapply(1:length(method_obj),function(k) nrow(method_mod_obj[[k]]$data_s))
80
  lapply(1:length(method_obj),function(k) nrow(method_mod_obj[[k]]$data_v))
81
  lapply(1:length(clim_obj),function(k) nrow(method_mod_obj[[k]]$data_v))
82
  return()
83
}
84 75

  
85 76
### PLOTTING RESULTS FROM VENEZUELA INTERPOLATION FOR ANALYSIS
86 77
#source(file.path(script_path,"results_interpolation_date_output_analyses_03182013.R"))
......
114 105
  s_raster<-brick(infile_covar)                   #read in the data stack
115 106
  names(s_raster)<-covar_names               #Assigning names to the raster layers: making sure it is included in the extraction
116 107
  
117
  ## Figure 0: study area based on LC12 (water) mask
108
  ## Prepare study area  mask: based on LC12 (water)
118 109
  
119 110
  LC_mask<-subset(s_raster,"LC12")
120 111
  LC_mask[LC_mask==100]<-NA
121 112
  LC_mask <- LC_mask < 100
122 113
  LC_mask_rec<-LC_mask
123 114
  LC_mask_rec[is.na(LC_mask_rec)]<-0
124
  
125
  #Add proportion covered by study area+ total of image pixels
126
  tmp_tb<-freq(LC_mask_rec)
127
  tmp_tb[2,2]/sum(tmp_tb[,2])*100
128
  png(paste("Study_area_",
129
            out_prefix,".png", sep=""))
130
  plot(LC_mask_rec,legend=FALSE,col=c("black","red"))
131
  legend("topright",legend=c("Outside","Inside"),title="Study area",
132
         pt.cex=0.9,fill=c("black","red"),bty="n")
133
  title("Study area")
134
  dev.off()
135
  
115
    
136 116
  #determine index position matching date selected
137 117
  
138 118
  for (j in 1:length(date_selected)){
......
295 275
  
296 276
}
297 277

  
298

  
299

  
300
## Summarize information for the day: write out textfile...
301

  
302
#Number of station per month
303
#Number of station per day (training, testing,NA)
304
#metrics_v,metrics_s
305
#
306

  
307
# ################
308
# #PART 2: Region Covariate analyses ###
309
# ################
310
# 
311
# # This should be in a separate script to analyze covariates from region.
312
# 
313
# #MAP1:Study area with LC mask and tiles/polygon outline
314
# 
315
# 
316
# #MAP 2: plotting land cover in the study region:
317
# 
318
# l1<-"LC1,Evergreen/deciduous needleleaf trees"
319
# l2<-"LC2,Evergreen broadleaf trees"
320
# l3<-"LC3,Deciduous broadleaf trees"
321
# l4<-"LC4,Mixed/other trees"
322
# l5<-"LC5,Shrubs"
323
# l6<-"LC6,Herbaceous vegetation"
324
# l7<-"LC7,Cultivated and managed vegetation"
325
# l8<-"LC8,Regularly flooded shrub/herbaceous vegetation"
326
# l9<-"LC9,Urban/built-up"
327
# l10<-"LC10,Snow/ice"
328
# l11<-"LC11,Barren lands/sparse vegetation"
329
# l12<-"LC12,Open water"
330
# lc_names_str<-c(l1,l2,l3,l4,l5,l6,l7,l8,l9,l10,l11,l12)
331
# 
332
# names(lc_reg_s)<-lc_names_str
333
# 
334
# png(paste("LST_TMax_scatterplot_",sampling_dat$date[i],"_",sampling_dat$prop[i],"_",sampling_dat$run_samp[i], out_prefix,".png", sep=""))
335
# plot(modst$TMax,sta_tmax_from_lst,xlab="Station mo Tmax",ylab="LST mo Tmax",main=paste("LST vs TMax for",datelabel,sep=" "))
336
# abline(0,1)
337
# nb_point<-paste("n=",length(modst$TMax),sep="")
338
# mean_bias<-paste("LST bigrasas= ",format(mean(modst$LSTD_bias,na.rm=TRUE),digits=3),sep="")
339
# #Add the number of data points on the plot
340
# legend("topleft",legend=c(mean_bias,nb_point),bty="n")
341
# dev.off()
342
# 
343
# #Map 3: Elevation and LST in January
344
# tmp_s<-stack(LST,elev_1)
345
# png(paste("LST_elev_",sampling_dat$date[i],"_",sampling_dat$prop[i],"_",sampling_dat$run_samp[i], out_prefix,".png", sep=""))
346
# plot(tmp_s)
347
# 
348
# #Map 4: LST climatology per month
349
#         
350
# names_tmp<-c("mm_01","mm_02","mm_03","mm_04","mm_05","mm_06","mm_07","mm_08","mm_09","mm_10","mm_11","mm_12")
351
# LST_s<-subset(s_raster,names_tmp)
352
# names_tmp<-c("nobs_01","nobs_02","nobs_03","nobs_04","nobs_05","nobs_06","nobs_07","nobs_08",
353
#              "nobs_09","nobs_10","nobs_11","nobs_12")
354
# LST_nobs<-subset(s_raster,names_tmp)
355
# 
356
# LST_nobs<-mask(LST_nobs,LC_mask,filename="test2.tif")
357
# LST_s<-mask(LST_s,LC_mask,filename="test3.tif")
358
# c("Jan","Feb")
359
# plot(LST_s)
360
# plot(LST_nobs)
361
# 
362
# #Map 5: LST and TMax
363
# 
364
# #note differnces in patternin agricultural areas and 
365
# min_values<-cellStats(LST_s,"min")
366
# max_values<-cellStats(LST_s,"max")
367
# mean_values<-cellStats(LST_s,"mean")
368
# sd_values<-cellStats(LST_s,"sd")
369
# #median_values<-cellStats(molst,"median") Does not extist
370
# statistics_LST_s<-cbind(min_values,max_values,mean_values,sd_values) #This shows that some values are extremes...especially in October
371
# LST_stat_data<-as.data.frame(statistics_LST_s)
372
# names(LST_stat_data)<-c("min","max","mean","sd")
373
# # Statistics for number of valid observation stack
374
# min_values<-cellStats(nobslst,"min")
375
# max_values<-cellStats(nobslst,"max")
376
# mean_values<-cellStats(nobslst,"mean")
377
# sd_values<-cellStats(nobslst,"sd")
378
# statistics_LSTnobs_s<-cbind(min_values,max_values,mean_values,sd_values) #This shows that some values are extremes...especially in October
379
# LSTnobs_stat_data<-as.data.frame(statistics_LSTnobs_s)
380
# 
381
# X11(width=12,height=12)
382
# #Plot statiscs (mean,min,max) for monthly LST images
383
# plot(1:12,LST_stat_data$mean,type="b",ylim=c(-15,60),col="black",xlab="month",ylab="tmax (degree C)")
384
# lines(1:12,LST_stat_data$min,type="b",col="blue")
385
# lines(1:12,LST_stat_data$max,type="b",col="red")
386
# text(1:12,LST_stat_data$mean,rownames(LST_stat_data),cex=1,pos=2)
387
# 
388
# legend("topleft",legend=c("min","mean","max"), cex=1.5, col=c("blue","black","red"),
389
#        lty=1)
390
# title(paste("LST statistics for Oregon", "2010",sep=" "))
391
# savePlot("lst_statistics_OR.png",type="png")
392
# 
393
# #Plot number of valid observations for LST
394
# plot(1:12,LSTnobs_stat_data$mean,type="b",ylim=c(0,280),col="black",xlab="month",ylab="tmax (degree C)")
395
# lines(1:12,LSTnobs_stat_data$min,type="b",col="blue")
396
# lines(1:12,LSTnobs_stat_data$max,type="b",col="red")
397
# text(1:12,LSTnobs_stat_data$mean,rownames(LSTnobs_stat_data),cex=1,pos=2)
398
# 
399
# legend("topleft",legend=c("min","mean","max"), cex=1.5, col=c("blue","black","red"),
400
#        lty=1)
401
# title(paste("LST number of valid observations for Oregon", "2010",sep=" "))
402
# savePlot("lst_nobs_OR.png",type="png")
403
# 
404
# plot(data_month$TMax,add=TRUE)
405
# 
406
# ### Map 6: station in the region
407
# 
408
# plot(tmax_predicted)
409
# plot(data_s,col="black",cex=1.2,pch=4,add=TRUE)
410
# plot(data_v,col="blue",cex=1.2,pch=2,add=TRUE)
411
# 
412
# plot(tmax_predicted)
413
# plot(data_month,col="black",cex=1.2,pch=4,add=TRUE)
414
# title("Monthly ghcn station in Venezuela for 2000-2010")
415
# 
416
#png...output?
417
# plot(interp_area, axes =TRUE)
418
# plot(stat_reg, pch=1, col="red", cex= 0.7, add=TRUE)
419
# plot(data_reg,pch=2,col="blue",cex=2,add=TRUE)
420

  
421
#### End of script ####

Also available in: Unified diff