Revision 9807a6a1
Added by Benoit Parmentier over 8 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part3.R | ||
---|---|---|
7 | 7 |
#Analyses, figures, tables and data are also produced in the script. |
8 | 8 |
#AUTHOR: Benoit Parmentier |
9 | 9 |
#CREATED ON: 03/23/2014 |
10 |
#MODIFIED ON: 02/10/2016
|
|
10 |
#MODIFIED ON: 04/29/2016
|
|
11 | 11 |
#Version: 5 |
12 | 12 |
#PROJECT: Environmental Layers project |
13 | 13 |
#COMMENTS: Initial commit, script based on part 2 of assessment, will be modified further for overall assessment |
... | ... | |
243 | 243 |
|
244 | 244 |
## Step 2: only read what is necessary at this stage... |
245 | 245 |
list_tb <- lapply(list_tb_fname,function(x){read.table(x,stringsAsFactors=F,sep=",")}) |
246 |
|
|
246 | 247 |
tb <- do.call(rbind,list_tb) |
247 | 248 |
list_tb_s <- lapply(list_tb_s_fname,function(x){read.table(x,stringsAsFactors=F,sep=",")}) |
248 | 249 |
tb_s <- do.call(rbind,list_tb_s) |
... | ... | |
289 | 290 |
try(summary_metrics_v$reg <- summary_metrics_v$reg.x) |
290 | 291 |
try(summary_metrics_v$lat <- summary_metrics_v$lat.x) |
291 | 292 |
try(summary_metrics_v$lon <- summary_metrics_v$lon.x) |
292 |
|
|
293 |
#browser() |
|
294 |
|
|
293 | 295 |
############ PART 2: PRODUCE FIGURES ################ |
294 | 296 |
|
295 | 297 |
########################### |
... | ... | |
327 | 329 |
#This is slow...make a function and use mclapply?? |
328 | 330 |
#/data/project/layers/commons/NEX_data/output_run6_global_analyses_09162014/shapefiles |
329 | 331 |
|
330 |
in_dir_shp <- file.path(in_dir,in_dir_list[[1]],"shapefiles") #this should be set as a input parameter!!! |
|
332 |
centroids_shp_fun <- function(i,list_shp_reg_files,in_dir_shp){ |
|
333 |
|
|
334 |
} |
|
335 |
in_dir_shp <- file.path(in_dir_list[[1]],"shapefiles") #this should be set as a input parameter!!! |
|
331 | 336 |
for(i in 1:length(list_shp_reg_files)){ |
332 | 337 |
#path_to_shp <- dirname(list_shp_reg_files[[i]]) |
333 | 338 |
path_to_shp <- in_dir_shp |
... | ... | |
384 | 389 |
#to be able to run on NEX set font and usePolypath, maybe add option NEX? |
385 | 390 |
if(!inherits(shp1,"try-error")){ |
386 | 391 |
plot(shp1,add=T,border="blue",usePolypath = FALSE) #added usePolypath following error on brige and NEX |
392 |
#plot(shp1,add=T,border="blue",usePolypath = FALSE) #added usePolypath following error on brige and NEX |
|
393 |
|
|
387 | 394 |
#plot(pt,add=T,cex=2,pch=5) |
388 | 395 |
label_id <- df_tile_processed$tile_id[i] |
389 | 396 |
text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red"),family="HersheySerif") |
... | ... | |
402 | 409 |
############### |
403 | 410 |
### Figure 2: boxplot of average accuracy by model and by tiles |
404 | 411 |
|
405 |
tb$tile_id <- factor(tb$tile_id, levels=unique(tb$tile_id)) |
|
412 |
#tb$tile_id <- factor(tb$tile_id, levels=unique(mixedsort(tb$tile_id)))#fix level ordering for plotting |
|
413 |
#fix level ordering for plotting |
|
414 |
#tb$tile_nb <- unlist(mclapply(as.character(tb$tile_id),FUN=function(x){strsplit(x,"_")[[1]][2]},mc.preschedule=FALSE,mc.cores = num_cores)) |
|
415 |
#unlist(mclapply(as.character(tb$tile_id[1:10]),FUN=function(x){strsplit(x,"_")[[1]][2]},mc.preschedule=FALSE,mc.cores = num_cores)) |
|
416 |
|
|
406 | 417 |
model_name <- as.character(unique(tb$pred_mod)) |
407 | 418 |
|
408 | 419 |
## Figure 2a |
... | ... | |
415 | 426 |
png(filename=paste("Figure2a_boxplot_with_oultiers_by_tiles_",model_name[i],"_",out_suffix,".png",sep=""), |
416 | 427 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
417 | 428 |
|
418 |
boxplot(rmse~tile_id,data=subset(tb,tb$pred_mod==model_name[i])) |
|
429 |
boxplot(rmse~tile_id,data=subset(tb,tb$pred_mod==model_name[i]),las=2)
|
|
419 | 430 |
title(paste("RMSE per ",model_name[i])) |
420 | 431 |
|
421 | 432 |
dev.off() |
... | ... | |
439 | 450 |
|
440 | 451 |
model_name <- unique(tb$pred_mod) |
441 | 452 |
boxplot(rmse~tile_id,data=subset(tb,tb$pred_mod==model_name[i]) |
442 |
,ylim=c(0,4),outline=FALSE) |
|
453 |
,ylim=c(0,4),outline=FALSE,las=2)
|
|
443 | 454 |
title(paste("RMSE per ",model_name[i])) |
444 | 455 |
dev.off() |
445 | 456 |
#we already stored one figure |
Also available in: Unified diff
debugging part3, assessment part3 for combining yearly assessment