Project

General

Profile

« Previous | Next » 

Revision 98deadc2

Added by Benoit Parmentier over 9 years ago

plot function figure in mosaic test script

View differences:

climate/research/oregon/interpolation/global_run_scalingup_mosaicing.R
5 5
#Analyses, figures, tables and data are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 04/14/2015  
8
#MODIFIED ON: 06/16/2015            
8
#MODIFIED ON: 06/20/2015            
9 9
#Version: 4
10 10
#PROJECT: Environmental Layers project     
11 11
#COMMENTS: analyses run for reg5 for test of mosaicing using 1500x4500km and other tiles
12 12
#TODO:
13
#1) Split functions and master script
14
#2) Make this is a script/function callable from the shell/bash
15
#3) Check image format for tif
16
#4) generalize to run dates and region fast
13
#1) Make this is a script/function callable from the shell/bash
14
#2) generalize to run dates and region fast
17 15

  
18 16
#################################################################################################
19 17

  
......
189 187
save(mosaic_unweighted_20100831_obj,file=file.path(out_dir,paste(mosaic_method,"_","mosaic_obj_",
190 188
                                                           "20100831_",out_suffix,".RData",sep="")))
191 189

  
192
#r2_unweighted <-raster(mosaic_unweighted_20100901_obj$mean_mosaic)
193
#r2_edge <-raster(mosaic_edge_20100901_obj$mean_mosaic)
194

  
195
#r1_unweighted <-raster(mosaic_unweighted_20100831_obj$mean_mosaic)
196
#r1_edge <-raster(mosaic_edge_20100831_obj$mean_mosaic)
197
#plot(r1_edge)
198

  
199 190
#####################
200 191
###### PART 2: Analysis and figures for the outputs of mosaic function #####
201 192

  
......
219 210
#plot_mosaic(lf_mean_mosaic1[1],method="edge",out_suffix="20100831")
220 211
list_param_plot_mosaic <- list(lf_mosaic=lf_mean_mosaic1,method=c("edge","unweighted"),out_suffix=c("20100831","20100831"))
221 212
#l_png_files <- lapply(1:length(lf_mean_mosaic1),FUN=plot_mosaic,list_param= list_param_plot_mosaic)
213
num_cores <- 2
222 214
l_png_files <- mclapply(1:length(lf_mean_mosaic1),FUN=plot_mosaic,list_param= list_param_plot_mosaic,
223 215
                        mc.preschedule=FALSE,mc.cores = num_cores)
224 216

  
225
plot_mosaic <- function(i,list_param){
226
  #Plot for mosaic list assess via slope as well
227
  #Inputs:
228
  #
229
  
230
  method_str <- list_param$method[i]
231
  f_mosaic <- list_param$lf_mosaic[i]
232
  out_suffix_str <- list_param$out_suffix[i]
233
  
234
  r_mosaic <- raster(f_mosaic)
235

  
236
  r_mosaic_terrain <- terrain(r_mosaic,opt=c("slope","aspect"),unit="degrees")
237

  
238
  res_pix <- 1200
239
  col_mfrow <- 1 
240
  row_mfrow <- 0.8
241
  
242
  out_file1 <- paste("Figure2_mosaic_mean_",method_str,"_",out_suffix_str,".png",sep="")
243
  png(filename= out_file1,
244
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
245

  
246
  plot(r_mosaic,main=paste("mosaic mean ",method_str,sep=""))
247

  
248
  dev.off()
249
  
250
  #### plot terrain to emphasize possible edges..
251
  res_pix <- 1200
252
  col_mfrow <- 1 
253
  row_mfrow <- 0.8
254

  
255
  out_file2 <- paste("Figure2_slope_mean_",method_str,"_",out_suffix_str,".png",sep="")
256
  png(filename= out_file2,
257
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
258

  
259
  plot(r_mosaic_terrain,y=1,main=paste("slope mosaic mean ",method_str,sep=""))
260

  
261
  dev.off()
262

  
263
  out_file3 <- paste("Figure2_aspect_mean_",method_str,"_",out_suffix_str,".png",sep="")
264
  png(filename= out_file3,
265
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
266

  
267
  plot(r_mosaic_terrain,y=2,main=paste("aspect mean ",method_str,sep=""))
268

  
269
  dev.off()
270
  
271
  l_out_files <- list(out_file1,out_file2,out_file3)
272
  return(l_out_files)
273
}
274

  
275 217
####################
276 218
#### Now difference figures...
277
r_m_edge_weighted_mean <- raster(list_mosaiced_files2[1])#edge
278
r_m_linear_weighted_mean <- raster(list_mosaiced_files2[2])#linear
279
r_m_sine_weighted_mean <- raster(list_mosaiced_files2[3])#sine  
280
r_m_unweighted_mean <- raster(list_mosaiced_files2[4])#unweighted
281 219

  
282
r_diff_linear_sine_weighted_mean <- r_m_linear_weighted_mean - r_m_sine_weighted_mean
220
lf_obj2 <- list.files(path=out_dir,pattern="*edge_.*.RData")
221
lf_obj1 <- list.files(path=out_dir,pattern="*unweighted.*.RData")
283 222

  
284
res_pix <- 1200
285
col_mfrow <- 1 
286
row_mfrow <- 0.8
223
lf1 <- unlist(lapply(lf_mosaic_obj2,function(x){load_obj(x)[["mean_mosaic"]]}))
224
lf2 <- unlist(lapply(lf_mosaic_obj1,function(x){load_obj(x)[["mean_mosaic"]]}))
287 225

  
288
png(filename=paste("Figure2_diff_linear_sine_weigthed_mean_for_region_",region_name,"_",out_suffix,".png",sep=""),
289
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
290

  
291
plot(r_diff_linear_sine_weighted_mean)
292

  
293
dev.off()
294

  
295
r_diff_linear_edge_weighted_mean <- r_m_linear_weighted_mean - r_m_edge_weighted_mean
296

  
297
png(filename=paste("Figure2_diff_linear_edge_weigthed_mean_for_region_",region_name,"_",out_suffix,".png",sep=""),
298
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
299

  
300
plot(r_diff_linear_edge_weighted_mean)
301

  
302
dev.off()
303

  
304

  
305
#r_diff_linear_edge_weighted_mean <- r_m_linear_weighted_mean - r_m_edge_weighted_mean
306
r_diff_edge_sine_weighted_mean <- r_m_edge_weighted_mean - r_m_sine_weighted_mean
226
list_param_plot_diff <- list(lf1=lf1,lf2=lf2,out_suffix=c("20100831","20100901"))
227
#l_png_files <- lapply(1:length(lf_mean_mosaic1),FUN=plot_mosaic,list_param= list_param_plot_mosaic)
228
num_cores <- 2
307 229

  
308
png(filename=paste("Figure2_diff_edge_sine_weigthed_mean_for_region_",region_name,"_",out_suffix,".png",sep=""),
309
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
230
#debug(plot_diff_raster)
231
#plot_diff_raster(1,list_param=list_param_plot_diff)
310 232

  
311
plot(r_diff_edge_sine_weighted_mean)
233
num_cores <- 2
234
l_diff_png_files <- mclapply(1:length(lf1),FUN=plot_diff_raster,list_param= list_param_plot_diff,
235
                        mc.preschedule=FALSE,mc.cores = num_cores)
312 236

  
313
dev.off()
314 237

  
315 238
###############
316 239
##### Now compare to unweighted values
317 240

  
318
r_diff_unweighted_linear_weighted_mean <- r_m_mean - r_m_linear_weighted_mean 
319
r_diff_unweighted_sine_weighted_mean <- r_m_mean - r_m_sine_weighted_mean 
320
r_diff_unweighted_edge_weighted_mean <- r_m_mean - r_m_edge_weighted_mean 
321

  
322
png(filename=paste("Figure2_diff_unweighted_edge_weigthed_mean_for_region_",region_name,"_",out_suffix,".png",sep=""),
323
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
324

  
325
plot(r_diff_unweighted_edge_weighted_mean)
326

  
327
dev.off()
328

  
329
png(filename=paste("Figure2_diff_unweighted_linear_weighted_mean_for_region_",region_name,"_",out_suffix,".png",sep=""),
330
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
331

  
332
plot(r_diff_unweighted_linear_weighted_mean)
333

  
334
dev.off()
335

  
336
png(filename=paste("Figure2_diff_unweighted_sine_weigthed_mean_for_region_",region_name,"_",out_suffix,".png",sep=""),
337
    width=col_mfrow*res_pix,height=row_mfrow*res_pix)
338

  
339
plot(r_diff_unweighted_sine_weighted_mean)
340

  
341
dev.off()
342 241

  
343 242
##################### END OF SCRIPT ######################
344 243

  

Also available in: Unified diff