Revision 992b2eeb
Added by Benoit Parmentier about 11 years ago
climate/research/oregon/interpolation/analyses_papers_methods_comparison_part5.R | ||
---|---|---|
75 | 75 |
in_dir8 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_kriging_fus_lst_comb3_09122013" |
76 | 76 |
in_dir9 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_kriging_fus_lst_comb3_09132013" |
77 | 77 |
in_dir10 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_kriging_fus_lst_comb3_09142013" |
78 |
in_dir11 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_gwr_CAI_lst_comb3_09162013" |
|
79 |
in_dir12 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_gwr_CAI_lst_comb3_09172013" |
|
80 |
in_dir13 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_gwr_cai_lst_comb3_09282013" |
|
81 |
in_dir14 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_gwr_fus_lst_comb3_09232013" |
|
82 |
in_dir15 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_gwr_fus_lst_comb3_09262013" |
|
78 | 83 |
|
84 |
#better as list and load one by one specific element from the object |
|
79 | 85 |
raster_prediction_obj1 <-load_obj(file.path(in_dir1,"raster_prediction_obj_gam_CAI_dailyTmax_365d_gam_CAI_lst_comb3_08312013.RData")) |
80 | 86 |
raster_prediction_obj2 <-load_obj(file.path(in_dir2,"raster_prediction_obj_gam_CAI_dailyTmax_365d_gam_CAI_lst_comb3_09012013.RData")) |
81 | 87 |
raster_prediction_obj3 <-load_obj(file.path(in_dir3,"raster_prediction_obj_gam_CAI_dailyTmax_365d_gam_CAI_lst_comb3_09032013.RData")) |
... | ... | |
87 | 93 |
raster_prediction_obj8 <-load_obj(file.path(in_dir8,"raster_prediction_obj_kriging_fusion_dailyTmax_365d_kriging_fus_lst_comb3_09122013.RData")) |
88 | 94 |
raster_prediction_obj9 <-load_obj(file.path(in_dir9,"raster_prediction_obj_kriging_fusion_dailyTmax_365d_kriging_fus_lst_comb3_09132013.RData")) |
89 | 95 |
raster_prediction_obj10 <-load_obj(file.path(in_dir10,"raster_prediction_obj_kriging_fusion_dailyTmax_365d_kriging_fus_lst_comb3_09142013.RData")) |
96 |
raster_prediction_obj11 <-load_obj(file.path(in_dir11,"raster_prediction_obj_gwr_CAI_dailyTmax_365d_gwr_CAI_lst_comb3_09162013.RData")) |
|
97 |
raster_prediction_obj12 <-load_obj(file.path(in_dir12,"raster_prediction_obj_gwr_CAI_dailyTmax_365d_gwr_CAI_lst_comb3_09172013.RData")) |
|
98 |
raster_prediction_obj13 <-load_obj(file.path(in_dir13,"raster_prediction_obj_gwr_CAI_dailyTmax_365d_gwr_cai_lst_comb3_09282013.RData")) |
|
99 |
raster_prediction_obj14 <-load_obj(file.path(in_dir14,"raster_prediction_obj_gwr_fusion_dailyTmax_365d_gwr_fus_lst_comb3_09232013.RData")) |
|
100 |
raster_prediction_obj15 <-load_obj(file.path(in_dir15,"raster_prediction_obj_gwr_fusion_dailyTmax_365d_gwr_fus_lst_comb3_09262013.RData")) |
|
101 |
|
|
102 |
#raster_prediction_obj_gwr_CAI_dailyTmax_365d_gwr_cai_lst_comb3_09282013.RData |
|
103 |
#raster_prediction_obj_gwr_fusion_dailyTmax_365d_gwr_fus_lst_comb3_09262013.RData |
|
90 | 104 |
|
91 | 105 |
out_dir<-"/home/parmentier/Data/IPLANT_project/paper_multitime_scale__analyses_tables_fig_09032013" |
92 | 106 |
setwd(out_dir) |
93 | 107 |
y_var_name <- "dailyTmax" |
94 | 108 |
y_var_month <- "TMax" |
95 | 109 |
#y_var_month <- "LSTD_bias" |
96 |
out_suffix <- "_OR_09132013"
|
|
110 |
out_suffix <- "_OR_09292013"
|
|
97 | 111 |
#script_path<-"/data/project/layers/commons/data_workflow/env_layers_scripts/" |
98 | 112 |
#### FUNCTION USED IN SCRIPT |
99 | 113 |
|
100 |
function_analyses_paper <-"contribution_of_covariates_paper_interpolation_functions_09092013.R"
|
|
114 |
function_analyses_paper <-"contribution_of_covariates_paper_interpolation_functions_09232013.R"
|
|
101 | 115 |
|
102 | 116 |
script_path<-"/home/parmentier/Data/IPLANT_project/env_layers_scripts/" #path to script |
103 | 117 |
source(file.path(script_path,function_analyses_paper)) #source all functions used in this script. |
... | ... | |
112 | 126 |
tb_s_gam_CAI <-rbind(raster_prediction_obj1$tb_diagnostic_s,raster_prediction_obj2$tb_diagnostic_s,raster_prediction_obj3$tb_diagnostic_s) |
113 | 127 |
#prop_obj_gam_CAI_v <- calc_stat_prop_tb_diagnostic(names_mod,names_id,tb_v) |
114 | 128 |
|
129 |
tb_mv_gwr_CAI <-rbind(raster_prediction_obj11$tb_month_diagnostic_v,raster_prediction_obj12$tb_month_diagnostic_v,raster_prediction_obj13$tb_month_diagnostic_v) |
|
130 |
tb_ms_gwr_CAI <-rbind(raster_prediction_obj11$tb_month_diagnostic_s,raster_prediction_obj12$tb_month_diagnostic_s,raster_prediction_obj13$tb_month_diagnostic_s) |
|
131 |
|
|
132 |
tb_v_gwr_CAI <-rbind(raster_prediction_obj11$tb_diagnostic_v,raster_prediction_obj12$tb_diagnostic_v,raster_prediction_obj13$tb_diagnostic_v) |
|
133 |
tb_s_gwr_CAI <-rbind(raster_prediction_obj11$tb_diagnostic_s,raster_prediction_obj12$tb_diagnostic_s,raster_prediction_obj13$tb_diagnostic_s) |
|
134 |
|
|
115 | 135 |
tb_mv_kriging_CAI <- raster_prediction_obj4$tb_month_diagnostic_v |
116 | 136 |
tb_ms_kriging_CAI <- raster_prediction_obj4$tb_month_diagnostic_s |
117 | 137 |
|
... | ... | |
126 | 146 |
tb_v_gam_fus <-rbind(raster_prediction_obj5$tb_diagnostic_v,raster_prediction_obj6$tb_diagnostic_v,raster_prediction_obj7$tb_diagnostic_v) |
127 | 147 |
tb_s_gam_fus <-rbind(raster_prediction_obj5$tb_diagnostic_s,raster_prediction_obj6$tb_diagnostic_s,raster_prediction_obj7$tb_diagnostic_s) |
128 | 148 |
|
149 |
tb_mv_gwr_fus <-rbind(raster_prediction_obj14$tb_month_diagnostic_v,raster_prediction_obj15$tb_month_diagnostic_v) |
|
150 |
tb_ms_gwr_fus <-rbind(raster_prediction_obj14$tb_month_diagnostic_s,raster_prediction_obj15$tb_month_diagnostic_s) |
|
151 |
|
|
152 |
tb_v_gwr_fus <-rbind(raster_prediction_obj14$tb_diagnostic_v,raster_prediction_obj15$tb_diagnostic_v) |
|
153 |
tb_s_gwr_fus <-rbind(raster_prediction_obj14$tb_diagnostic_s,raster_prediction_obj15$tb_diagnostic_s) |
|
154 |
|
|
129 | 155 |
tb_mv_kriging_fus <-rbind(raster_prediction_obj8$tb_month_diagnostic_v,raster_prediction_obj9$tb_month_diagnostic_v,raster_prediction_obj10$tb_month_diagnostic_v) |
130 | 156 |
tb_ms_kriging_fus <-rbind(raster_prediction_obj8$tb_month_diagnostic_s,raster_prediction_obj9$tb_month_diagnostic_s,raster_prediction_obj10$tb_month_diagnostic_s) |
131 | 157 |
|
132 | 158 |
tb_v_kriging_fus <-rbind(raster_prediction_obj8$tb_diagnostic_v,raster_prediction_obj9$tb_diagnostic_v,raster_prediction_obj10$tb_diagnostic_v) |
133 | 159 |
tb_s_kriging_fus <-rbind(raster_prediction_obj8$tb_diagnostic_s,raster_prediction_obj9$tb_diagnostic_s,raster_prediction_obj10$tb_diagnostic_s) |
134 | 160 |
|
135 |
#list_tb <-list(tb_v_gam_CAI,tb_v_kriging_CAI,tb_s_gam_CAI,tb_s_kriging_CAI,tb_mv_gam_CAI,tb_mv_kriging_CAI,tb_ms_gam_CAI,tb_ms_kriging_CAI) #Add fusion here |
|
136 |
#names(list_tb) <- c("tb_v_gam_CAI","tb_v_kriging_CAI","tb_s_gam_CAI","tb_s_kriging_CAI","tb_mv_gam_CAI","tb_mv_kriging_CAI","tb_ms_gam_CAI","tb_ms_kriging_CAI") #Add fusion here |
|
161 |
list_tb <- list(tb_v_gam_CAI,tb_v_kriging_CAI,tb_v_gwr_CAI,tb_s_gam_CAI,tb_s_kriging_CAI,tb_s_gwr_CAI, |
|
162 |
tb_mv_gam_CAI,tb_mv_kriging_CAI,tb_mv_gwr_CAI,tb_ms_gam_CAI,tb_ms_kriging_CAI,tb_ms_gwr_CAI, |
|
163 |
tb_v_gam_fus,tb_v_kriging_fus,tb_v_gwr_fus,tb_s_gam_fus,tb_s_kriging_fus,tb_s_gwr_fus, |
|
164 |
tb_mv_gam_fus,tb_mv_kriging_fus,tb_mv_gwr_fus,tb_ms_gam_fus,tb_ms_kriging_fus,tb_ms_gwr_fus) |
|
165 |
|
|
166 |
names(list_tb) <- c("tb_v_gam_CAI","tb_v_kriging_CAI","tb_v_gwr_CAI","tb_s_gam_CAI","tb_s_kriging_CAI","tb_s_gwr_CAI", |
|
167 |
"tb_mv_gam_CAI","tb_mv_kriging_CAI","tb_mv_gwr_CAI","tb_ms_gam_CAI","tb_ms_kriging_CAI","tb_ms_gwr_CAI", |
|
168 |
"tb_v_gam_fus","tb_v_kriging_fus","tb_v_gwr_fus","tb_s_gam_fus","tb_s_kriging_fus","tb_s_gwr_fus", |
|
169 |
"tb_mv_gam_fus","tb_mv_kriging_fus","tb_mv_gwr_fus","tb_ms_gam_fus","tb_ms_kriging_fus","tb_ms_gwr_fus") |
|
137 | 170 |
|
138 |
list_tb <-list(tb_v_gam_CAI,tb_v_kriging_CAI,tb_s_gam_CAI,tb_s_kriging_CAI,tb_mv_gam_CAI,tb_mv_kriging_CAI,tb_ms_gam_CAI,tb_ms_kriging_CAI, #Add fusion here
|
|
139 |
tb_v_gam_fus,tb_v_kriging_fus,tb_s_gam_fus,tb_s_kriging_fus,tb_mv_gam_fus,tb_mv_kriging_fus,tb_ms_gam_fus,tb_ms_kriging_fus) #Add fusion here |
|
140 |
names(list_tb) <- c("tb_v_gam_CAI","tb_v_kriging_CAI","tb_s_gam_CAI","tb_s_kriging_CAI","tb_mv_gam_CAI","tb_mv_kriging_CAI","tb_ms_gam_CAI","tb_ms_kriging_CAI", #Add fusion here
|
|
141 |
"tb_v_gam_fus","tb_v_kriging_fus","tb_s_gam_fus","tb_s_kriging_fus","tb_mv_gam_fus","tb_mv_kriging_fus","tb_ms_gam_fus","tb_ms_kriging_fus") #Add fusion here |
|
171 |
#list_tb <-list(tb_v_gam_CAI,tb_v_kriging_CAI,tb_v_gwr_CAI,tb_s_gam_CAI,tb_s_kriging_CAI,tb_s_gwr_CAI,tb_mv_gam_CAI,tb_mv_kriging_CAI,tb_ms_gam_CAI,tb_ms_kriging_CAI,tb_ms_gwr_CAI,tb_ms_gwr_CAI #Add fusion here
|
|
172 |
# tb_v_gam_fus,tb_v_kriging_fus,tb_s_gam_fus,tb_s_kriging_fus,tb_mv_gam_fus,tb_mv_kriging_fus,tb_ms_gam_fus,tb_ms_kriging_fus) #Add fusion here
|
|
173 |
#names(list_tb) <- c("tb_v_gam_CAI","tb_v_kriging_CAI","tb_v_gwr_CAI","tb_s_gam_CAI","tb_s_kriging_CAI","tb_s_gwr_CAI","tb_mv_gam_CAI","tb_mv_kriging_CAI","tb_ms_gam_CAI","tb_ms_kriging_CAI","tb_ms_gwr_CAI","tb_ms_gwr_CAI" #Add fusion here
|
|
174 |
# "tb_v_gam_fus","tb_v_kriging_fus","tb_s_gam_fus","tb_s_kriging_fus","tb_mv_gam_fus","tb_mv_kriging_fus","tb_ms_gam_fus","tb_ms_kriging_fus") #Add fusion here
|
|
142 | 175 |
|
143 |
##### DAILY AVERAGE ACCURACY : PLOT AND DIFFERENCES... |
|
176 |
##### DAILY AVERAGE ACCURACY : PLOT AND DIFFERENCES...Cd
|
|
144 | 177 |
|
145 | 178 |
for(i in 1:length(list_tb)){ |
146 |
i <- i+1 |
|
179 |
#i <- i+1
|
|
147 | 180 |
tb <-list_tb[[i]] |
148 | 181 |
plot_name <- names(list_tb)[i] |
149 | 182 |
pat_str <- "tb_m" |
... | ... | |
167 | 200 |
png(paste("Figure__accuracy_rmse_prop_month_",plot_name,out_suffix,".png", sep=""), |
168 | 201 |
height=480*layout_m[1],width=480*layout_m[2]) |
169 | 202 |
|
170 |
xyplot(as.formula(plot_formula),group=pred_mod,type="b", |
|
203 |
p<- xyplot(as.formula(plot_formula),group=pred_mod,type="b",
|
|
171 | 204 |
data=avg_tb, |
172 | 205 |
main=paste("rmse ",plot_name,sep=" "), |
173 | 206 |
pch=1:length(avg_tb$pred_mod), |
174 | 207 |
par.settings=list(superpose.symbol = list( |
175 | 208 |
pch=1:length(avg_tb$pred_mod))), |
176 | 209 |
auto.key=list(columns=5)) |
210 |
print(p) |
|
177 | 211 |
|
178 | 212 |
dev.off() |
179 | 213 |
|
... | ... | |
199 | 233 |
metric_names <- c("mae","rmse","me","r") |
200 | 234 |
diff_kriging_CAI <- diff_df(tb_s_kriging_CAI,tb_v_kriging_CAI,metric_names) |
201 | 235 |
diff_gam_CAI <- diff_df(tb_s_gam_CAI,tb_v_gam_CAI,metric_names) |
236 |
diff_gwr_CAI <- diff_df(tb_s_gwr_CAI,tb_v_gwr_CAI,metric_names) |
|
237 |
|
|
238 |
layout_m<-c(1,1) #one row two columns |
|
239 |
par(mfrow=layout_m) |
|
202 | 240 |
|
203 |
boxplot(diff_kriging_CAI$rmse,diff_gam_CAI$rmse,names=c("kriging_CAI","gam_CAI"), |
|
241 |
png(paste("Figure__accuracy_rmse_prop_month_",plot_name,out_suffix,".png", sep=""), |
|
242 |
height=480*layout_m[1],width=480*layout_m[2]) |
|
243 |
boxplot(diff_kriging_CAI$rmse,diff_gam_CAI$rmse,diff_gwr_CAI$rmse,names=c("kriging_CAI","gam_CAI","gwr_CAI"), |
|
204 | 244 |
main="Difference between training and testing daily rmse") |
245 |
dev.off() |
|
205 | 246 |
|
247 |
#remove prop 0, |
|
248 |
diff_kriging_CAI <- diff_df(tb_s_kriging_CAI[tb_s_kriging_CAI$prop_month!=0,],tb_v_kriging_CAI[tb_v_kriging_CAI$prop_month!=0,],metric_names) |
|
249 |
diff_gam_CAI <- diff_df(tb_s_gam_CAI[tb_s_gam_CAI$prop_month!=0,],tb_v_gam_CAI[tb_v_gam_CAI$prop_month!=0,],metric_names) |
|
250 |
diff_gwr_CAI <- diff_df(tb_s_gwr_CAI[tb_s_gwr_CAI$prop_month!=0,],tb_v_gwr_CAI[tb_v_gwr_CAI$prop_month!=0,],metric_names) |
|
251 |
boxplot(diff_kriging_CAI$rmse,diff_gam_CAI$rmse,diff_gwr_CAI$rmse,names=c("kriging_CAI","gam_CAI","gwr_CAI"), |
|
252 |
main="Difference between training and testing daily rmse") |
|
253 |
|
|
254 |
#now monthly accuracy |
|
206 | 255 |
metric_names <- c("mae","rmse","me","r") |
207 |
diff_kriging_m_CAI <- diff_df(tb_ms_kriging_CAI,tb_mv_kriging_CAI,metric_names) |
|
208 |
diff_gam_m_CAI <- diff_df(tb_ms_gam_CAI,tb_mv_gam_CAI,metric_names) |
|
256 |
diff_kriging_m_CAI <- diff_df(tb_ms_kriging_CAI[tb_ms_kriging_CAI$prop!=0,],tb_mv_kriging_CAI,metric_names) |
|
257 |
diff_gam_m_CAI <- diff_df(tb_ms_gam_CAI[tb_ms_gam_CAI$prop!=0,],tb_mv_gam_CAI,metric_names) |
|
258 |
diff_gwr_m_CAI <- diff_df(tb_ms_gwr_CAI[tb_ms_gwr_CAI$prop!=0,],tb_mv_gwr_CAI,metric_names) |
|
259 |
|
|
260 |
layout_m<-c(1,1) #one row two columns |
|
261 |
par(mfrow=layout_m) |
|
209 | 262 |
|
210 |
boxplot(diff_kriging_m_CAI$rmse,diff_gam_m_CAI$rmse,names=c("kriging_CAI","gam_CAI"), |
|
263 |
png(paste("Figure__accuracy_rmse_prop_month_",plot_name,out_suffix,".png", sep=""), |
|
264 |
height=480*layout_m[1],width=480*layout_m[2]) |
|
265 |
boxplot(diff_kriging_m_CAI$rmse,diff_gam_m_CAI$rmse,diff_gwr_m_CAI$rmse,names=c("kriging_CAI","gam_CAI","gwr_CAI"), |
|
211 | 266 |
main="Difference between training and monhtly testing rmse") |
267 |
dev.off() |
|
268 |
|
|
269 |
#boxplot(diff_kriging_m_CAI$rmse,diff_gam_m_CAI$rmse,diff_gwr_CAI,names=c("kriging_CAI","gam_CAI","gwr_CAI"), |
|
270 |
# main="Difference between training and monhtly testing rmse") |
|
212 | 271 |
|
213 | 272 |
### For fusion |
214 | 273 |
|
215 | 274 |
metric_names <- c("mae","rmse","me","r") |
216 | 275 |
diff_kriging_fus <- diff_df(tb_s_kriging_fus,tb_v_kriging_fus,metric_names) |
217 | 276 |
diff_gam_fus <- diff_df(tb_s_gam_fus,tb_v_gam_fus,metric_names) |
277 |
diff_gwr_fus <- diff_df(tb_s_gwr_fus,tb_v_gwr_fus,metric_names) |
|
278 |
|
|
279 |
layout_m<-c(1,1) #one row two columns |
|
280 |
par(mfrow=layout_m) |
|
218 | 281 |
|
219 |
boxplot(diff_kriging_fus$rmse,diff_gam_fus$rmse,names=c("kriging_fus","gam_fus"), |
|
282 |
png(paste("Figure__accuracy_rmse_prop_month_",plot_name,out_suffix,".png", sep=""), |
|
283 |
height=480*layout_m[1],width=480*layout_m[2]) |
|
284 |
boxplot(diff_kriging_fus$rmse,diff_gam_fus$rmse,diff_gwr_fus$rmse,names=c("kriging_fus","gam_fus","gwr_fus"), |
|
220 | 285 |
main="Difference between training and testing daily rmse") |
286 |
dev.off() |
|
221 | 287 |
|
222 | 288 |
metric_names <- c("mae","rmse","me","r") |
223 |
diff_kriging_m_fus <- diff_df(tb_ms_kriging_fus,tb_mv_kriging_fus,metric_names) |
|
224 |
diff_gam_m_fus <- diff_df(tb_ms_gam_fus,tb_mv_gam_fus,metric_names) |
|
289 |
diff_kriging_m_fus <- diff_df(tb_ms_kriging_fus[tb_ms_kriging_fus$prop!=0,],tb_mv_kriging_fus[tb_mv_kriging_fus$prop!=0,],metric_names) |
|
290 |
diff_gam_m_fus <- diff_df(tb_ms_gam_fus[tb_ms_gam_fus$prop!=0,],tb_mv_gam_fus[tb_mv_gam_fus$prop!=0,],metric_names) |
|
291 |
diff_gwr_m_fus <- diff_df(tb_ms_gwr_fus[tb_ms_gwr_fus$prop!=0,],tb_mv_gwr_fus[tb_mv_gwr_fus$prop!=0,],metric_names) |
|
292 |
|
|
293 |
layout_m<-c(1,1) #one row two columns |
|
294 |
par(mfrow=layout_m) |
|
225 | 295 |
|
226 |
boxplot(diff_kriging_m_fus$rmse,diff_gam_m_fus$rmse,names=c("kriging_fus","gam_fus"), |
|
296 |
png(paste("Figure__accuracy_rmse_prop_month_",plot_name,out_suffix,".png", sep=""), |
|
297 |
height=480*layout_m[1],width=480*layout_m[2]) |
|
298 |
boxplot(diff_kriging_m_fus$rmse,diff_gam_m_fus$rmse,diff_gwr_m_fus$rmse, names=c("kriging_fus","gam_fus","gwr_fus"), |
|
227 | 299 |
main="Difference between training and testing FUS rmse") |
300 |
dev.off() |
|
228 | 301 |
|
229 | 302 |
### NOW PLOT OF COMPARISON BETWEEN Kriging and GAM |
230 | 303 |
|
... | ... | |
235 | 308 |
tb_v_kriging_CAI |
236 | 309 |
tb_v_kriging_fus |
237 | 310 |
|
238 |
methods_names <- c("tb_v_gam_CAI","tb_v_gam_fus","tb_v_kriging_CAI","tb_v_kriging_fus") |
|
311 |
methods_names <- c("tb_v_gam_CAI","tb_v_gam_fus","tb_v_kriging_CAI","tb_v_kriging_fus","tb_v_gwr_CAI","tb_v_gwr_fus")
|
|
239 | 312 |
list_prop_obj <- vector("list",length=length(methods_names)) |
240 | 313 |
for(i in 1:length(methods_names)){ |
241 | 314 |
tb <- list_tb[[methods_names[i]]] |
... | ... | |
248 | 321 |
|
249 | 322 |
ac_prop_tb_list <- extract_list_from_list_obj(list_prop_obj,"avg_tb") |
250 | 323 |
nb_rows <- sapply(ac_prop_tb_list,FUN=nrow) |
251 |
method_interp_names<-c("gam_CAI","gam_fus","kriging_CAI","kriging_fus") |
|
324 |
method_interp_names<-c("gam_CAI","gam_fus","kriging_CAI","kriging_fus","gwr_CAI","gwr_fus")
|
|
252 | 325 |
for(i in 1:length(methods_names)){ |
253 | 326 |
avg_tb<-ac_prop_tb_list[[i]] |
254 | 327 |
avg_tb$method_interp <-rep(x=method_interp_names[i],times=nb_rows[i]) |
... | ... | |
258 | 331 |
|
259 | 332 |
#names(ac_prop_tb_list) <- names(list_prop_obj) |
260 | 333 |
|
261 |
t44 <- do.call(rbind,ac_prop_tb_list) |
|
334 |
t44 <- do.call(rbind,ac_prop_tb_list) #contains all accuracy by method, proportion, model, sample etc.
|
|
262 | 335 |
View(t44) |
263 | 336 |
|
264 |
t44[which.min(t44$rmse),] |
|
337 |
t44[which.min(t44$rmse),] #Find the mimum rmse across all models and methods...
|
|
265 | 338 |
|
266 | 339 |
test <- t44[order(t44$rmse),] |
340 |
test[1:24,] |
|
267 | 341 |
|
268 | 342 |
test2<-test[test$method_interp%in% c("gam_fus","gam_CAI"),] |
269 | 343 |
test2[1:24,] |
Also available in: Unified diff
analyses for multi-time scale paper, monthly hold-out proportions (0-70%) for all methods