7 |
7 |
library(doMC)
|
8 |
8 |
library(rasterVis)
|
9 |
9 |
library(rgdal)
|
|
10 |
library(reshape)
|
|
11 |
library(hexbin)
|
10 |
12 |
## register parallel processing
|
11 |
13 |
registerDoMC(10)
|
12 |
14 |
|
... | ... | |
20 |
22 |
st$lat=st$LAT/100
|
21 |
23 |
st$lon=st$LON/100
|
22 |
24 |
st$lon[st$lon>180]=st$lon[st$lon>180]-360
|
|
25 |
st=st[,c("StaID","ELEV","lat","lon")]
|
|
26 |
colnames(st)=c("id","elev","lat","lon")
|
|
27 |
write.csv(st,"stations.csv",row.names=F)
|
23 |
28 |
|
24 |
29 |
## download data
|
25 |
30 |
system("wget -N -nd ftp://cdiac.ornl.gov/pub/ndp026d/cat67_78/* -A '.tc.Z' -P data/")
|
26 |
|
system("gunzip data/*.Z")
|
27 |
31 |
|
28 |
|
## get monthly mean cloud amount MMCF
|
29 |
|
#system("wget -N -nd ftp://cdiac.ornl.gov/pub/ndp026d/cat08_09/* -A '.tc.Z' -P data/")
|
30 |
|
#system("gunzip data/*.Z")
|
31 |
|
#f121=c(6,6,6,7,6,7,6,2) #format 121
|
32 |
|
#c121=c("StaID","NobD","AvgDy","NobN","AvgNt","NobDN","AvgDN","Acode")
|
33 |
|
#cld=do.call(rbind.data.frame,lapply(sprintf("%02d",1:12),function(m) {
|
34 |
|
# d=read.fwf(list.files("data",pattern=paste("MMCA.",m,".tc",sep=""),full=T),skip=1,widths=f162)
|
35 |
|
# colnames(d)=c121
|
36 |
|
# d$month=as.numeric(m)
|
37 |
|
# return(d)}
|
38 |
|
# ))
|
|
32 |
system("gunzip data/*.Z")
|
39 |
33 |
|
40 |
34 |
## define FWF widths
|
41 |
35 |
f162=c(5,5,4,7,7,7,4) #format 162
|
... | ... | |
78 |
72 |
cldsd=sd(x$Amt[x$Nobs>10]/100,na.rm=T))}))
|
79 |
73 |
cldy[,c("lat","lon")]=st[match(cldy$StaID,st$StaID),c("lat","lon")]
|
80 |
74 |
|
|
75 |
## add the MOD09 data to cld
|
|
76 |
#### Evaluate MOD35 Cloud data
|
|
77 |
mod09=brick("~/acrobates/adamw/projects/cloud/data/mod09.nc")
|
81 |
78 |
|
82 |
|
#cldm=foreach(m=unique(cld$month),.combine='rbind')%:%
|
83 |
|
# foreach(s=unique(cld$StaID),.combine="rbind") %dopar% {
|
84 |
|
# x=cld[cld$month==m&cld$StaID==s,]
|
85 |
|
# data.frame(
|
86 |
|
# month=x$month[1],
|
87 |
|
# StaID=x$StaID[1],
|
88 |
|
# Amt=mean(x$Amt[x$Nobs>10],na.rm=T)/100)}
|
89 |
|
|
|
79 |
## overlay the data with 5km radius buffer
|
|
80 |
mod09st=extract(mod09,st,buffer=5000,fun=mean,na.rm=T,df=T)
|
|
81 |
mod09st$id=st$id
|
|
82 |
mod09stl=melt(mod09st[,-1],id.vars="id")
|
|
83 |
mod09stl[,c("year","month")]=do.call(rbind,strsplit(sub("X","",mod09stl$variable),"[.]"))[,1:2]
|
|
84 |
## add it to cld
|
|
85 |
cld$mod09=mod09stl$value[match(paste(cld$StaID,cld$YR,cld$month),paste(mod09stl$id,mod09stl$year,as.numeric(mod09stl$month)))]
|
90 |
86 |
|
91 |
87 |
## write out the tables
|
|
88 |
write.csv(cld,file="cld.csv",row.names=F)
|
92 |
89 |
write.csv(cldy,file="cldy.csv")
|
93 |
90 |
write.csv(cldm,file="cldm.csv")
|
94 |
91 |
|
95 |
92 |
#########################################################################
|
96 |
93 |
##################
|
97 |
94 |
###
|
|
95 |
cld=read.csv("cld.csv")
|
98 |
96 |
cldm=read.csv("cldm.csv")
|
99 |
97 |
cldy=read.csv("cldy.csv")
|
|
98 |
st=read.csv("stations.csv")
|
100 |
99 |
|
|
100 |
coordinates(st)=c("lon","lat")
|
|
101 |
projection(st)=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
|
101 |
102 |
|
102 |
103 |
##make spatial object
|
103 |
104 |
cldms=cldm
|
... | ... | |
110 |
111 |
projection(cldys)=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
|
111 |
112 |
|
112 |
113 |
#### Evaluate MOD35 Cloud data
|
113 |
|
mod35c6=brick("~/acrobates/adamw/projects/MOD35C5/data/MOD35C6_2009_new.tif")
|
114 |
|
#projection(mod35c6)="+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs"
|
115 |
|
|
|
114 |
mod09=brick("~/acrobates/adamw/projects/cloud/data/mod09.nc")
|
116 |
115 |
|
117 |
|
### use data from google earth engine
|
118 |
|
mod35c5=raster("../modis/mod09/global_2009/MOD35_2009.tif")
|
119 |
|
mod09=raster("../modis/mod09/global_2009/MOD09_2009.tif")
|
120 |
116 |
|
121 |
117 |
## LULC
|
122 |
118 |
#system(paste("gdalwarp -r near -co \"COMPRESS=LZW\" -tr ",paste(res(mod09),collapse=" ",sep=""),
|
123 |
119 |
# "-tap -multi -t_srs \"", projection(mod09),"\" /mnt/data/jetzlab/Data/environ/global/landcover/MODIS/MCD12Q1_IGBP_2005_v51.tif ../modis/mod12/MCD12Q1_IGBP_2005_v51.tif"))
|
124 |
120 |
lulc=raster("../modis/mod12/MCD12Q1_IGBP_2005_v51.tif")
|
125 |
|
lulc=ratify(lulc)
|
|
121 |
#lulc=ratify(lulc)
|
126 |
122 |
require(plotKML); data(worldgrids_pal) #load IGBP palette
|
127 |
123 |
IGBP=data.frame(ID=0:16,col=worldgrids_pal$IGBP[-c(18,19)],stringsAsFactors=F)
|
128 |
124 |
IGBP$class=rownames(IGBP);rownames(IGBP)=1:nrow(IGBP)
|
129 |
125 |
levels(lulc)=list(IGBP)
|
130 |
|
lulc=crop(lulc,mod09)
|
|
126 |
#lulc=crop(lulc,mod09)
|
131 |
127 |
|
132 |
128 |
n=100
|
133 |
129 |
at=seq(0,100,length=n)
|
134 |
130 |
colr=colorRampPalette(c("black","green","red"))
|
135 |
131 |
cols=colr(n)
|
136 |
132 |
|
137 |
|
#dif=mod35-mod09
|
138 |
|
#bwplot(dif~as.factor(lulc))
|
139 |
133 |
|
140 |
|
#levelplot(mod35,col.regions=cols,at=at,margins=F,maxpixels=1e6)#,xlim=c(-100,-50),ylim=c(0,10))
|
141 |
|
#levelplot(lulc,att="class",col.regions=levels(lulc)[[1]]$col,margin=F,maxpixels=1e6)
|
|
134 |
hexbinplot(Amt/100~mod09,data=cld[cld$Nobs>100,])+
|
|
135 |
layer(panel.abline(lm(y~x),col="blue"))+
|
|
136 |
layer(panel.abline(0,1,col="red"))
|
142 |
137 |
|
143 |
|
#cldys=spTransform(cldys,CRS(projection(mod35)))
|
|
138 |
xyplot(Amt/100~mod09,grpups="month",data=cld[cld$Nobs>75,],cex=.2,pch=16)+
|
|
139 |
layer(panel.abline(lm(y~x),col="blue"))+
|
|
140 |
# layer(panel.lines(x,predict(lm(y~x),type="prediction")))+
|
|
141 |
layer(panel.abline(0,1,col="red"))
|
144 |
142 |
|
145 |
|
#mod35v=foreach(m=unique(cldm$month),.combine="rbind") %do% {
|
146 |
|
# dr=subset(mod35,subset=m);projection(dr)=projection(mod35)
|
147 |
|
# dr2=subset(mod35sd,subset=m);projection(dr2)=projection(mod35)
|
148 |
|
# ds=cldms[cldms$month==m,]
|
149 |
|
# ds$mod35=unlist(extract(dr,ds,buffer=10,fun=mean,na.rm=T))
|
150 |
|
# ds$mod35sd=extract(dr2,ds,buffer=10)
|
151 |
|
# print(m)
|
152 |
|
# return(ds@data[!is.na(ds$mod35),])}
|
|
143 |
xyplot(Amt/100~mod09|month,data=cld[cld$Nobs>75,],cex=.2,pch=16)+
|
|
144 |
layer(panel.abline(lm(y~x),col="blue"))+
|
|
145 |
# layer(panel.lines(x,predict(lm(y~x),type="prediction")))+
|
|
146 |
layer(panel.abline(0,1,col="red"))
|
153 |
147 |
|
154 |
|
y=2009
|
155 |
|
d=cldys[cldys$year==y,]
|
156 |
|
|
157 |
|
d$mod35c6_10=unlist(extract(mod35c6,d,buffer=10000,fun=mean,na.rm=T))
|
158 |
|
d$mod35c5_10=unlist(extract(mod35c5,d,buffer=10000,fun=mean,na.rm=T))
|
159 |
|
d$mod09_10=unlist(extract(mod09,d,buffer=10000,fun=mean,na.rm=T))
|
160 |
|
#d$dif=d$mod35_10-d$mod09_10
|
161 |
|
#d$dif2=d$mod35_10-d$cld
|
162 |
148 |
|
163 |
149 |
d$lulc=unlist(extract(lulc,d))
|
164 |
150 |
d$lulc_10=unlist(extract(lulc,d,buffer=10000,fun=mode,na.rm=T))
|
... | ... | |
166 |
152 |
|
167 |
153 |
save(d,file="annualsummary.Rdata")
|
168 |
154 |
|
|
155 |
|
|
156 |
|
|
157 |
load("annualsummary.Rdata")
|
|
158 |
|
169 |
159 |
## quick model to explore fit
|
170 |
|
plot(cld~mod35,groups=lulc,data=d)
|
171 |
|
summary(lm(cld~mod35+as.factor(lulc),data=d))
|
172 |
|
summary(lm(cld~mod09_10,data=d))
|
|
160 |
xyplot(cld~mod35c5_10,groups=lulc,data=d@data)
|
|
161 |
summary(lm(cld~mod35c5_10+as.factor(lulc),data=d@data))
|
|
162 |
summary(lm(Amt~mod09,data=cld))
|
173 |
163 |
summary(lm(cld~mod09_10+as.factor(lulc),data=d))
|
174 |
164 |
summary(lm(cld~mod09_10+as.factor(lulc),data=d))
|
175 |
165 |
|
addied initial MOD09 visualization script and updates to NDP script to use the new mod09 data