Revision 9a19743f
Added by Adam Wilson about 11 years ago
climate/procedures/NDP-026D.R | ||
---|---|---|
7 | 7 |
library(doMC) |
8 | 8 |
library(rasterVis) |
9 | 9 |
library(rgdal) |
10 |
library(reshape) |
|
11 |
library(hexbin) |
|
10 | 12 |
## register parallel processing |
11 | 13 |
registerDoMC(10) |
12 | 14 |
|
... | ... | |
20 | 22 |
st$lat=st$LAT/100 |
21 | 23 |
st$lon=st$LON/100 |
22 | 24 |
st$lon[st$lon>180]=st$lon[st$lon>180]-360 |
25 |
st=st[,c("StaID","ELEV","lat","lon")] |
|
26 |
colnames(st)=c("id","elev","lat","lon") |
|
27 |
write.csv(st,"stations.csv",row.names=F) |
|
23 | 28 |
|
24 | 29 |
## download data |
25 | 30 |
system("wget -N -nd ftp://cdiac.ornl.gov/pub/ndp026d/cat67_78/* -A '.tc.Z' -P data/") |
26 |
system("gunzip data/*.Z") |
|
27 | 31 |
|
28 |
## get monthly mean cloud amount MMCF |
|
29 |
#system("wget -N -nd ftp://cdiac.ornl.gov/pub/ndp026d/cat08_09/* -A '.tc.Z' -P data/") |
|
30 |
#system("gunzip data/*.Z") |
|
31 |
#f121=c(6,6,6,7,6,7,6,2) #format 121 |
|
32 |
#c121=c("StaID","NobD","AvgDy","NobN","AvgNt","NobDN","AvgDN","Acode") |
|
33 |
#cld=do.call(rbind.data.frame,lapply(sprintf("%02d",1:12),function(m) { |
|
34 |
# d=read.fwf(list.files("data",pattern=paste("MMCA.",m,".tc",sep=""),full=T),skip=1,widths=f162) |
|
35 |
# colnames(d)=c121 |
|
36 |
# d$month=as.numeric(m) |
|
37 |
# return(d)} |
|
38 |
# )) |
|
32 |
system("gunzip data/*.Z") |
|
39 | 33 |
|
40 | 34 |
## define FWF widths |
41 | 35 |
f162=c(5,5,4,7,7,7,4) #format 162 |
... | ... | |
78 | 72 |
cldsd=sd(x$Amt[x$Nobs>10]/100,na.rm=T))})) |
79 | 73 |
cldy[,c("lat","lon")]=st[match(cldy$StaID,st$StaID),c("lat","lon")] |
80 | 74 |
|
75 |
## add the MOD09 data to cld |
|
76 |
#### Evaluate MOD35 Cloud data |
|
77 |
mod09=brick("~/acrobates/adamw/projects/cloud/data/mod09.nc") |
|
81 | 78 |
|
82 |
#cldm=foreach(m=unique(cld$month),.combine='rbind')%:% |
|
83 |
# foreach(s=unique(cld$StaID),.combine="rbind") %dopar% { |
|
84 |
# x=cld[cld$month==m&cld$StaID==s,] |
|
85 |
# data.frame( |
|
86 |
# month=x$month[1], |
|
87 |
# StaID=x$StaID[1], |
|
88 |
# Amt=mean(x$Amt[x$Nobs>10],na.rm=T)/100)} |
|
89 |
|
|
79 |
## overlay the data with 5km radius buffer |
|
80 |
mod09st=extract(mod09,st,buffer=5000,fun=mean,na.rm=T,df=T) |
|
81 |
mod09st$id=st$id |
|
82 |
mod09stl=melt(mod09st[,-1],id.vars="id") |
|
83 |
mod09stl[,c("year","month")]=do.call(rbind,strsplit(sub("X","",mod09stl$variable),"[.]"))[,1:2] |
|
84 |
## add it to cld |
|
85 |
cld$mod09=mod09stl$value[match(paste(cld$StaID,cld$YR,cld$month),paste(mod09stl$id,mod09stl$year,as.numeric(mod09stl$month)))] |
|
90 | 86 |
|
91 | 87 |
## write out the tables |
88 |
write.csv(cld,file="cld.csv",row.names=F) |
|
92 | 89 |
write.csv(cldy,file="cldy.csv") |
93 | 90 |
write.csv(cldm,file="cldm.csv") |
94 | 91 |
|
95 | 92 |
######################################################################### |
96 | 93 |
################## |
97 | 94 |
### |
95 |
cld=read.csv("cld.csv") |
|
98 | 96 |
cldm=read.csv("cldm.csv") |
99 | 97 |
cldy=read.csv("cldy.csv") |
98 |
st=read.csv("stations.csv") |
|
100 | 99 |
|
100 |
coordinates(st)=c("lon","lat") |
|
101 |
projection(st)=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs") |
|
101 | 102 |
|
102 | 103 |
##make spatial object |
103 | 104 |
cldms=cldm |
... | ... | |
110 | 111 |
projection(cldys)=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs") |
111 | 112 |
|
112 | 113 |
#### Evaluate MOD35 Cloud data |
113 |
mod35c6=brick("~/acrobates/adamw/projects/MOD35C5/data/MOD35C6_2009_new.tif") |
|
114 |
#projection(mod35c6)="+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs" |
|
115 |
|
|
114 |
mod09=brick("~/acrobates/adamw/projects/cloud/data/mod09.nc") |
|
116 | 115 |
|
117 |
### use data from google earth engine |
|
118 |
mod35c5=raster("../modis/mod09/global_2009/MOD35_2009.tif") |
|
119 |
mod09=raster("../modis/mod09/global_2009/MOD09_2009.tif") |
|
120 | 116 |
|
121 | 117 |
## LULC |
122 | 118 |
#system(paste("gdalwarp -r near -co \"COMPRESS=LZW\" -tr ",paste(res(mod09),collapse=" ",sep=""), |
123 | 119 |
# "-tap -multi -t_srs \"", projection(mod09),"\" /mnt/data/jetzlab/Data/environ/global/landcover/MODIS/MCD12Q1_IGBP_2005_v51.tif ../modis/mod12/MCD12Q1_IGBP_2005_v51.tif")) |
124 | 120 |
lulc=raster("../modis/mod12/MCD12Q1_IGBP_2005_v51.tif") |
125 |
lulc=ratify(lulc) |
|
121 |
#lulc=ratify(lulc)
|
|
126 | 122 |
require(plotKML); data(worldgrids_pal) #load IGBP palette |
127 | 123 |
IGBP=data.frame(ID=0:16,col=worldgrids_pal$IGBP[-c(18,19)],stringsAsFactors=F) |
128 | 124 |
IGBP$class=rownames(IGBP);rownames(IGBP)=1:nrow(IGBP) |
129 | 125 |
levels(lulc)=list(IGBP) |
130 |
lulc=crop(lulc,mod09) |
|
126 |
#lulc=crop(lulc,mod09)
|
|
131 | 127 |
|
132 | 128 |
n=100 |
133 | 129 |
at=seq(0,100,length=n) |
134 | 130 |
colr=colorRampPalette(c("black","green","red")) |
135 | 131 |
cols=colr(n) |
136 | 132 |
|
137 |
#dif=mod35-mod09 |
|
138 |
#bwplot(dif~as.factor(lulc)) |
|
139 | 133 |
|
140 |
#levelplot(mod35,col.regions=cols,at=at,margins=F,maxpixels=1e6)#,xlim=c(-100,-50),ylim=c(0,10)) |
|
141 |
#levelplot(lulc,att="class",col.regions=levels(lulc)[[1]]$col,margin=F,maxpixels=1e6) |
|
134 |
hexbinplot(Amt/100~mod09,data=cld[cld$Nobs>100,])+ |
|
135 |
layer(panel.abline(lm(y~x),col="blue"))+ |
|
136 |
layer(panel.abline(0,1,col="red")) |
|
142 | 137 |
|
143 |
#cldys=spTransform(cldys,CRS(projection(mod35))) |
|
138 |
xyplot(Amt/100~mod09,grpups="month",data=cld[cld$Nobs>75,],cex=.2,pch=16)+ |
|
139 |
layer(panel.abline(lm(y~x),col="blue"))+ |
|
140 |
# layer(panel.lines(x,predict(lm(y~x),type="prediction")))+ |
|
141 |
layer(panel.abline(0,1,col="red")) |
|
144 | 142 |
|
145 |
#mod35v=foreach(m=unique(cldm$month),.combine="rbind") %do% { |
|
146 |
# dr=subset(mod35,subset=m);projection(dr)=projection(mod35) |
|
147 |
# dr2=subset(mod35sd,subset=m);projection(dr2)=projection(mod35) |
|
148 |
# ds=cldms[cldms$month==m,] |
|
149 |
# ds$mod35=unlist(extract(dr,ds,buffer=10,fun=mean,na.rm=T)) |
|
150 |
# ds$mod35sd=extract(dr2,ds,buffer=10) |
|
151 |
# print(m) |
|
152 |
# return(ds@data[!is.na(ds$mod35),])} |
|
143 |
xyplot(Amt/100~mod09|month,data=cld[cld$Nobs>75,],cex=.2,pch=16)+ |
|
144 |
layer(panel.abline(lm(y~x),col="blue"))+ |
|
145 |
# layer(panel.lines(x,predict(lm(y~x),type="prediction")))+ |
|
146 |
layer(panel.abline(0,1,col="red")) |
|
153 | 147 |
|
154 |
y=2009 |
|
155 |
d=cldys[cldys$year==y,] |
|
156 |
|
|
157 |
d$mod35c6_10=unlist(extract(mod35c6,d,buffer=10000,fun=mean,na.rm=T)) |
|
158 |
d$mod35c5_10=unlist(extract(mod35c5,d,buffer=10000,fun=mean,na.rm=T)) |
|
159 |
d$mod09_10=unlist(extract(mod09,d,buffer=10000,fun=mean,na.rm=T)) |
|
160 |
#d$dif=d$mod35_10-d$mod09_10 |
|
161 |
#d$dif2=d$mod35_10-d$cld |
|
162 | 148 |
|
163 | 149 |
d$lulc=unlist(extract(lulc,d)) |
164 | 150 |
d$lulc_10=unlist(extract(lulc,d,buffer=10000,fun=mode,na.rm=T)) |
... | ... | |
166 | 152 |
|
167 | 153 |
save(d,file="annualsummary.Rdata") |
168 | 154 |
|
155 |
|
|
156 |
|
|
157 |
load("annualsummary.Rdata") |
|
158 |
|
|
169 | 159 |
## quick model to explore fit |
170 |
plot(cld~mod35,groups=lulc,data=d)
|
|
171 |
summary(lm(cld~mod35+as.factor(lulc),data=d))
|
|
172 |
summary(lm(cld~mod09_10,data=d))
|
|
160 |
xyplot(cld~mod35c5_10,groups=lulc,data=d@data)
|
|
161 |
summary(lm(cld~mod35c5_10+as.factor(lulc),data=d@data))
|
|
162 |
summary(lm(Amt~mod09,data=cld))
|
|
173 | 163 |
summary(lm(cld~mod09_10+as.factor(lulc),data=d)) |
174 | 164 |
summary(lm(cld~mod09_10+as.factor(lulc),data=d)) |
175 | 165 |
|
Also available in: Unified diff
addied initial MOD09 visualization script and updates to NDP script to use the new mod09 data