1
|
#! /bin/R
|
2
|
### Script to download and process the NDP-026D station cloud dataset
|
3
|
setwd("~/acrobates/adamw/projects/interp/data/NDP026D")
|
4
|
|
5
|
library(multicore)
|
6
|
library(latticeExtra)
|
7
|
library(doMC)
|
8
|
library(rasterVis)
|
9
|
library(rgdal)
|
10
|
library(reshape)
|
11
|
library(hexbin)
|
12
|
## register parallel processing
|
13
|
registerDoMC(10)
|
14
|
|
15
|
|
16
|
## available here http://cdiac.ornl.gov/epubs/ndp/ndp026d/ndp026d.html
|
17
|
|
18
|
## Get station locations
|
19
|
system("wget -N -nd http://cdiac.ornl.gov/ftp/ndp026d/cat01/01_STID -P data/")
|
20
|
st=read.table("data/01_STID",skip=1)
|
21
|
colnames(st)=c("StaID","LAT","LON","ELEV","ny1","fy1","ly1","ny7","fy7","ly7","SDC","b5c")
|
22
|
st$lat=st$LAT/100
|
23
|
st$lon=st$LON/100
|
24
|
st$lon[st$lon>180]=st$lon[st$lon>180]-360
|
25
|
st=st[,c("StaID","ELEV","lat","lon")]
|
26
|
colnames(st)=c("id","elev","lat","lon")
|
27
|
write.csv(st,"stations.csv",row.names=F)
|
28
|
|
29
|
## download data
|
30
|
system("wget -N -nd ftp://cdiac.ornl.gov/pub/ndp026d/cat67_78/* -A '.tc.Z' -P data/")
|
31
|
|
32
|
system("gunzip data/*.Z")
|
33
|
|
34
|
## define FWF widths
|
35
|
f162=c(5,5,4,7,7,7,4) #format 162
|
36
|
c162=c("StaID","YR","Nobs","Amt","Fq","AWP","NC")
|
37
|
|
38
|
## use monthly timeseries
|
39
|
cld=do.call(rbind.data.frame,mclapply(sprintf("%02d",1:12),function(m) {
|
40
|
d=read.fwf(list.files("data",pattern=paste("MNYDC.",m,".tc",sep=""),full=T),skip=1,widths=f162)
|
41
|
colnames(d)=c162
|
42
|
d$month=as.numeric(m)
|
43
|
print(m)
|
44
|
return(d)}
|
45
|
))
|
46
|
|
47
|
## add lat/lon
|
48
|
cld[,c("lat","lon")]=st[match(cld$StaID,st$StaID),c("lat","lon")]
|
49
|
|
50
|
## drop missing values
|
51
|
cld$Amt[cld$Amt<0]=NA
|
52
|
cld$Fq[cld$Fq<0]=NA
|
53
|
cld$AWP[cld$AWP<0]=NA
|
54
|
cld$NC[cld$NC<0]=NA
|
55
|
cld=cld[cld$Nobs>0,]
|
56
|
|
57
|
## calculate means and sds
|
58
|
cldm=do.call(rbind.data.frame,by(cld,list(month=as.factor(cld$month),StaID=as.factor(cld$StaID)),function(x){
|
59
|
data.frame(
|
60
|
month=x$month[1],
|
61
|
StaID=x$StaID[1],
|
62
|
cld=mean(x$Amt[x$Nobs>10]/100,na.rm=T),
|
63
|
cldsd=sd(x$Amt[x$Nobs>10]/100,na.rm=T))}))
|
64
|
cldm[,c("lat","lon")]=st[match(cldm$StaID,st$StaID),c("lat","lon")]
|
65
|
|
66
|
## means by year
|
67
|
cldy=do.call(rbind.data.frame,by(cld,list(year=as.factor(cld$YR),StaID=as.factor(cld$StaID)),function(x){
|
68
|
data.frame(
|
69
|
year=x$YR[1],
|
70
|
StaID=x$StaID[1],
|
71
|
cld=mean(x$Amt[x$Nobs>10]/100,na.rm=T),
|
72
|
cldsd=sd(x$Amt[x$Nobs>10]/100,na.rm=T))}))
|
73
|
cldy[,c("lat","lon")]=st[match(cldy$StaID,st$StaID),c("lat","lon")]
|
74
|
|
75
|
## add the MOD09 data to cld
|
76
|
#### Evaluate MOD35 Cloud data
|
77
|
mod09=brick("~/acrobates/adamw/projects/cloud/data/mod09.nc")
|
78
|
|
79
|
## overlay the data with 5km radius buffer
|
80
|
mod09st=extract(mod09,st,buffer=5000,fun=mean,na.rm=T,df=T)
|
81
|
mod09st$id=st$id
|
82
|
mod09stl=melt(mod09st[,-1],id.vars="id")
|
83
|
mod09stl[,c("year","month")]=do.call(rbind,strsplit(sub("X","",mod09stl$variable),"[.]"))[,1:2]
|
84
|
## add it to cld
|
85
|
cld$mod09=mod09stl$value[match(paste(cld$StaID,cld$YR,cld$month),paste(mod09stl$id,mod09stl$year,as.numeric(mod09stl$month)))]
|
86
|
|
87
|
## write out the tables
|
88
|
write.csv(cld,file="cld.csv",row.names=F)
|
89
|
write.csv(cldy,file="cldy.csv")
|
90
|
write.csv(cldm,file="cldm.csv")
|
91
|
|
92
|
#########################################################################
|
93
|
##################
|
94
|
###
|
95
|
cld=read.csv("cld.csv")
|
96
|
cldm=read.csv("cldm.csv")
|
97
|
cldy=read.csv("cldy.csv")
|
98
|
st=read.csv("stations.csv")
|
99
|
|
100
|
coordinates(st)=c("lon","lat")
|
101
|
projection(st)=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
|
102
|
|
103
|
##make spatial object
|
104
|
cldms=cldm
|
105
|
coordinates(cldms)=c("lon","lat")
|
106
|
projection(cldms)=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
|
107
|
|
108
|
##make spatial object
|
109
|
cldys=cldy
|
110
|
coordinates(cldys)=c("lon","lat")
|
111
|
projection(cldys)=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
|
112
|
|
113
|
#### Evaluate MOD35 Cloud data
|
114
|
mod09=brick("~/acrobates/adamw/projects/cloud/data/mod09.nc")
|
115
|
|
116
|
|
117
|
## LULC
|
118
|
#system(paste("gdalwarp -r near -co \"COMPRESS=LZW\" -tr ",paste(res(mod09),collapse=" ",sep=""),
|
119
|
# "-tap -multi -t_srs \"", projection(mod09),"\" /mnt/data/jetzlab/Data/environ/global/landcover/MODIS/MCD12Q1_IGBP_2005_v51.tif ../modis/mod12/MCD12Q1_IGBP_2005_v51.tif"))
|
120
|
lulc=raster("../modis/mod12/MCD12Q1_IGBP_2005_v51.tif")
|
121
|
#lulc=ratify(lulc)
|
122
|
require(plotKML); data(worldgrids_pal) #load IGBP palette
|
123
|
IGBP=data.frame(ID=0:16,col=worldgrids_pal$IGBP[-c(18,19)],stringsAsFactors=F)
|
124
|
IGBP$class=rownames(IGBP);rownames(IGBP)=1:nrow(IGBP)
|
125
|
levels(lulc)=list(IGBP)
|
126
|
#lulc=crop(lulc,mod09)
|
127
|
|
128
|
n=100
|
129
|
at=seq(0,100,length=n)
|
130
|
colr=colorRampPalette(c("black","green","red"))
|
131
|
cols=colr(n)
|
132
|
|
133
|
|
134
|
hexbinplot(Amt/100~mod09,data=cld[cld$Nobs>100,])+
|
135
|
layer(panel.abline(lm(y~x),col="blue"))+
|
136
|
layer(panel.abline(0,1,col="red"))
|
137
|
|
138
|
xyplot(Amt/100~mod09,grpups="month",data=cld[cld$Nobs>75,],cex=.2,pch=16)+
|
139
|
layer(panel.abline(lm(y~x),col="blue"))+
|
140
|
# layer(panel.lines(x,predict(lm(y~x),type="prediction")))+
|
141
|
layer(panel.abline(0,1,col="red"))
|
142
|
|
143
|
xyplot(Amt/100~mod09|month,data=cld[cld$Nobs>75,],cex=.2,pch=16)+
|
144
|
layer(panel.abline(lm(y~x),col="blue"))+
|
145
|
# layer(panel.lines(x,predict(lm(y~x),type="prediction")))+
|
146
|
layer(panel.abline(0,1,col="red"))
|
147
|
|
148
|
|
149
|
d$lulc=unlist(extract(lulc,d))
|
150
|
d$lulc_10=unlist(extract(lulc,d,buffer=10000,fun=mode,na.rm=T))
|
151
|
d$lulc=factor(d$lulc,labels=IGBP$class)
|
152
|
|
153
|
save(d,file="annualsummary.Rdata")
|
154
|
|
155
|
|
156
|
|
157
|
load("annualsummary.Rdata")
|
158
|
|
159
|
## quick model to explore fit
|
160
|
xyplot(cld~mod35c5_10,groups=lulc,data=d@data)
|
161
|
summary(lm(cld~mod35c5_10+as.factor(lulc),data=d@data))
|
162
|
summary(lm(Amt~mod09,data=cld))
|
163
|
summary(lm(cld~mod09_10+as.factor(lulc),data=d))
|
164
|
summary(lm(cld~mod09_10+as.factor(lulc),data=d))
|
165
|
|
166
|
### exploratory plots
|
167
|
xyplot(cld~mod09_10,groups=lulc,data=d@data,pch=16,cex=.5)+layer(panel.abline(0,1,col="red"))
|
168
|
xyplot(cld~mod09_10+mod35c5_10|as.factor(lulc),data=d@data,type=c("p","r"),pch=16,cex=.25,auto.key=T)+layer(panel.abline(0,1,col="green"))
|
169
|
xyplot(cld~mod35_10|as.factor(lulc),data=d@data,pch=16,cex=.5)+layer(panel.abline(0,1,col="red"))
|
170
|
xyplot(mod35_10~mod09_10|as.factor(lulc),data=d@data,pch=16,cex=.5)+layer(panel.abline(0,1,col="red"))
|
171
|
|
172
|
densityplot(stack(mod35,mod09))
|
173
|
boxplot(mod35,lulc)
|
174
|
|
175
|
bwplot(mod09~mod35|cut(y,5),data=stack(mod09,mod35))
|
176
|
|
177
|
## month factors
|
178
|
cldm$month2=factor(cldm$month,labels=month.name)
|
179
|
## add a color key
|
180
|
breaks=seq(0,100,by=25)
|
181
|
cldm$cut=cut(cldm$cld,breaks)
|
182
|
cp=colorRampPalette(c("blue","orange","red"))
|
183
|
cols=cp(length(at))
|
184
|
|
185
|
## read in global coasts for nice plotting
|
186
|
library(maptools)
|
187
|
|
188
|
data(wrld_simpl)
|
189
|
coast <- unionSpatialPolygons(wrld_simpl, rep("land",nrow(wrld_simpl)), threshold=5)
|
190
|
coast=as(coast,"SpatialLines")
|
191
|
#coast=spTransform(coast,CRS(projection(mod35)))
|
192
|
|
193
|
|
194
|
## write a pdf
|
195
|
#dir.create("output")
|
196
|
pdf("output/NDP026d.pdf",width=11,height=8.5)
|
197
|
|
198
|
## map of stations
|
199
|
xyplot(lat~lon,data=st,pch=16,cex=.5,col="black",auto.key=T,
|
200
|
main="NDP-026D Cloud Climatology Stations",ylab="Latitude",xlab="Longitude")+
|
201
|
layer(sp.lines(coast,col="grey"),under=T)
|
202
|
|
203
|
xyplot(lat~lon|month2,groups=cut,data=cldm,pch=".",cex=.2,auto.key=T,
|
204
|
main="Mean Monthly Cloud Coverage",ylab="Latitude",xlab="Longitude",
|
205
|
par.settings = list(superpose.symbol= list(pch=16,col=c("blue","green","yellow","red"))))+
|
206
|
layer(sp.lines(coast,col="grey"),under=T)
|
207
|
|
208
|
|
209
|
## Validation
|
210
|
m=10
|
211
|
zlim=c(40,100)
|
212
|
dr=subset(mod35,subset=m);projection(dr)=projection(mod35)
|
213
|
ds=cldms[cldms$month==m,]
|
214
|
plot(dr,col=cp(100),zlim=zlim,main="Comparison of MOD35 Cloud Frequency and NDP-026D Station Cloud Climatologies",
|
215
|
ylab="Northing (m)",xlab="Easting (m)",sub="MOD35 is proportion of cloudy days, while NDP-026D is Mean Cloud Coverage")
|
216
|
plot(ds,add=T,pch=21,cex=3,lwd=2,fg="black",bg=as.character(cut(ds$cld,breaks=seq(zlim[1],zlim[2],len=5),labels=cp(4))))
|
217
|
#legend("topright",legend=seq(zlim[1],zlim[2],len=5),pch=16,col=cp(length(breaks)))
|
218
|
|
219
|
|
220
|
xyplot(mod35~cld,data=mod35v,subscripts=T,auto.key=T,panel=function(x,y,subscripts){
|
221
|
td=mod35v[subscripts,]
|
222
|
# panel.segments(x-td$cldsd[subscripts],y,x+td$cldsd[subscripts],y,subscripts=subscripts)
|
223
|
panel.xyplot(x,y,subscripts=subscripts,type=c("p","smooth"),pch=16,col="black")
|
224
|
# panel.segments(x-td$cldsd[subscripts],y,x+td$cldsd[subscripts],y,subscripts=subscripts)
|
225
|
},ylab="MOD35 Proportion Cloudy Days",xlab="NDP-026D Mean Monthly Cloud Amount",
|
226
|
main="Comparison of MOD35 Cloud Mask and Station Cloud Climatologies")
|
227
|
|
228
|
#xyplot(mod35~cld|month,data=mod35v,subscripts=T,auto.key=T,panel=function(x,y,subscripts){
|
229
|
# td=mod35v[subscripts,]
|
230
|
# panel.segments(x-td$cldsd[subscripts],y,x+td$cldsd[subscripts],y,subscripts=subscripts)
|
231
|
# panel.xyplot(x,y,subscripts=subscripts,type=c("p","smooth"),pch=16,col="black")
|
232
|
# panel.segments(x-td$cldsd[subscripts],y,x+td$cldsd[subscripts],y,subscripts=subscripts)
|
233
|
# },ylab="MOD35 Proportion Cloudy Days",xlab="NDP-026D Mean Monthly Cloud Amount",
|
234
|
# main="Comparison of MOD35 Cloud Mask and Station Cloud Climatologies")
|
235
|
|
236
|
|
237
|
dev.off()
|
238
|
|
239
|
graphics.off()
|