Project

General

Profile

« Previous | Next » 

Revision 9ad802bf

Added by Benoit Parmentier over 8 years ago

moving more functions, quick small test for extraction function, listing date produced and missing for mosaics

View differences:

climate/research/oregon/interpolation/global_product_assessment_part1.R
4 4
#Combining tables and figures for individual runs for years and tiles.
5 5
#AUTHOR: Benoit Parmentier 
6 6
#CREATED ON: 05/15/2016  
7
#MODIFIED ON: 09/16/2016            
7
#MODIFIED ON: 09/17/2016            
8 8
#Version: 1
9 9
#PROJECT: Environmental Layers project     
10 10
#COMMENTS: Initial commit, script based on part NASA biodiversity conferenc 
......
19 19
#
20 20
#setfacl -Rmd user:aguzman4:rwx /nobackupp8/bparmen1/output_run10_1500x4500_global_analyses_pred_1992_10052015
21 21

  
22
#COMMIT: fixing extraction function and and missing dates 
22
#COMMIT: clean up and first testing of extraction function
23 23

  
24 24
#################################################################################################
25 25

  
......
518 518

  
519 519
#debug(extract_date)
520 520
#test <- extract_date(6431,lf_mosaic_list,12) #extract item number 12 from the name of files to get the data
521
list_dates_produced <- unlist(mclapply(1:length(lf_mosaic_list),FUN=extract_date,x=lf_mosaic_list,item_no=13,mc.preschedule=FALSE,mc.cores = num_cores))                         
521
#list_dates_produced <- unlist(mclapply(1:length(lf_mosaic_list),FUN=extract_date,x=lf_mosaic_list,item_no=13,mc.preschedule=FALSE,mc.cores = num_cores))                         
522 522
#list_dates_produced <-  mclapply(1:2,FUN=extract_date,x=lf_mosaic_list,item_no=13,mc.preschedule=FALSE,mc.cores = 2)                         
523 523

  
524
list_dates_produced_date_val <- as.Date(strptime(list_dates_produced,"%Y%m%d"))
525
month_str <- format(list_dates_produced_date_val, "%b") ## Month, char, abbreviated
526
year_str <- format(list_dates_produced_date_val, "%Y") ## Year with century
527
day_str <- as.numeric(format(list_dates_produced_date_val, "%d")) ## numeric month
528

  
529
df_produced <- data.frame(basename(lf_mosaic_list),list_dates_produced_date_val,month_str,year_str,day_str,dirname(lf_mosaic_list))
530

  
531

  
532

  
533
####
534
df_points$date <- list_dates_produced_date_val
535
df_points$month <- month_str
536
df_points$year <- year_str
537
df_points$day <- day_str
538

  
539
in_dir_mosaic <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg1/mosaics/mosaic"
540
in_dir_mosaic_rmse <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg1/mosaicsRMSE/mosaic"
541
#pattern_str <- ".*.tif"
524
if(is.null(df_points_extracted_fname)){
525
  
526
  in_dir_mosaic <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg1/mosaics/mosaic"
527
  #in_dir_mosaic_rmse <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg1/mosaicsRMSE/mosaic"
528
  pattern_str <- ".*.tif"
529
  df_points <- #this contains the location of points to be used for extraction
530
  
531
  #extract from var pred mosaic, tmax in this case:
532
  extract_obj_var_pred <- extract_from_time_series_raster_stack(df_points,date_start,date_end,lf_raster=NULL,item_no=13,
533
                                      num_cores=11,pattern_str=NULL,in_dir=in_dir_mosaic,out_dir=out_dir,out_suffix=out_suffix)
534
  df_points_extracted_fname <-extract_obj_var_pred$df_points_extracted_fname
535
  df_raster_fname <- extract_obj_var_pred$df_raster_fname
536
  df_time_series_fname <- extract_obj_var_pred$df_time_series_fname
542 537

  
543
extract_from_time_series_raster_stack(df_points,date_start,date_end,lf_raster,item_no=13,num_cores=4,pattern_str=NULL,in_dir=NULL,out_dir=".",out_suffix="")
544
  #
538
  df_raster <- read.table(df_points_extracted_fname,sep=",")
539
  df_time_series <- read.table( df_time_series,sep=",")
540
  df_points_extracted <- read.table(df_points_extracted_fname,sep=",")
545 541

  
546 542

  
547 543
}else{
548 544
  df_points_day_extracted <- read.table(df_points_extracted_fname,sep=",")
545
  df_time_series <- read.table( df_time_series,sep=",")
546
  df_points_extracted <- read.table(df_points_extracted_fname,sep=",")
549 547
}
550 548

  
551
df_points_day_extracted 
552
names(df_points_day_extracted)[1:10]
553
(df_points_day_extracted$ID)[1:10]
554

  
555
df_points_day_extracted_tmp <- df_points_day_extracted
556
df_points_extracted <- cbind(df_points_day,df_points_day_extracted_tmp)
557
#df_points_extracted$id <- df_points_day$id
558

  
549
#################################################################################################
550
###################### PART 5: combine stations data and extracted values ############################
559 551
#### Now combined with the station data extracted from the assessment stage
560
combine
552

  
553
#combine
561 554
data_stations_var_pred
562 555

  
563 556
##write function to combine data!!!

Also available in: Unified diff