Project

General

Profile

« Previous | Next » 

Revision 9ed7cd0e

Added by Benoit Parmentier over 10 years ago

revisions2 muli-timescale paper adding residuals analysis

View differences:

climate/research/oregon/interpolation/multi_timescale_paper_interpolation.R
7 7
#Analyses, figures, tables and data for the  paper are also produced in the script.
8 8
#AUTHOR: Benoit Parmentier 
9 9
#CREATED ON: 10/31/2013  
10
#MODIFIED ON: 08/11/2014            
10
#MODIFIED ON: 08/12/2014            
11 11
#Version: 6
12 12
#PROJECT: Environmental Layers project                                     
13 13
#################################################################################################
......
41 41

  
42 42
#### FUNCTION USED IN SCRIPT
43 43

  
44
function_analyses_paper1 <-"contribution_of_covariates_paper_interpolation_functions_10222013.R" #first interp paper
45
function_analyses_paper2 <-"multi_timescales_paper_interpolation_functions_05052014.R"
44
function_analyses_paper1 <-"contribution_of_covariates_paper_interpolation_functions_07182014.R" #first interp paper
45
function_analyses_paper2 <-"multi_timescales_paper_interpolation_functions_08122014.R"
46 46

  
47 47
##############################
48 48
#### Parameters and constants  
......
1199 1199
trans_data3 <- plot_transect_m2(list_transect3,rast_pred3,title_plot2,disp=FALSE,m_layers_sc)
1200 1200

  
1201 1201
         
1202
         
1203
#### DATA INFORMATION ON STATIONS
1202
### REVISIONS 1 PAPER #####
1204 1203

  
1204
## DATA INFORMATION ON STATIONS
1205 1205

  
1206 1206
#Stations located in Oregon
1207 1207
loc_spdf <- readOGR(dsn=dirname(met_stations_obj$loc_stations),
......
1285 1285
file_name<-paste("table8__paper","_",out_prefix,".txt",sep="")
1286 1286
write.table(table8_paper,file=file_name,sep=",",row.names=F)
1287 1287

  
1288

  
1288
######## RESIDUALS ANALYSES ######
1289 1289
#############
1290
list_data_s <-extract_list_from_list_obj(raster_prediction_obj_2$validation_mod_obj,"data_s")
1291
list_data_v <-extract_list_from_list_obj(raster_prediction_obj_2$validation_mod_obj,"data_v")
1292
names_mod <- names(raster_prediction_obj_2$method_mod_obj[[1]][[y_var_name]]) #names of models to plot
1293 1290

  
1294
#number of observations per day
1295
year_nbv <- sapply(list_data_v,FUN=length)
1296
year_nbs <- sapply(list_data_s,FUN=length)
1297
nb_df <- data.frame(nv=year_nbv,ns=year_nbs)
1298
nb_df$n_tot <- year_nbv + year_nbs
1299
range(nb_df$n_tot)
1291
#names(list_raster_obj_files)<- c("gam_daily","kriging_daily","gwr_daily_a","gwr_daily_b",
1292
#                                 "gam_CAI","kriging_CAI","gwr_CAI",
1293
#                                 "gam_fss","kriging_fss","gwr_fss")
1300 1294

  
1301
data_v_test <- list_data_v[[1]]
1295
list_data_v <-lapply(list_raster_obj_files[5:7],FUN=function(x){x<-load_obj(x);extract_list_from_list_obj(x$validation_mod_obj,"data_v")})                           
1296
#list_data_s <-lapply(list_raster_obj_files[5:7],FUN=function(x){x<-load_obj(x);extract_list_from_list_obj(x$validation_mod_obj,"data_s")})                           
1302 1297

  
1303
#Convert sp data.frame and combined them in one unique df, see function define earlier
1304
data_v_combined <-convert_spdf_to_df_from_list(list_data_v) #long rownames
1305
names_var<-c("res_mod1","res_mod2","res_mod3","res_mod4","res_mod5","res_mod6","res_mod7","res_mod8","res_mod9","res_mod10")
1298
met_obj <-load_obj(file.path(in_dir1,met_obj_file_1))
1299
stat_loc<-readOGR(dsn=in_dir1,layer=sub(".shp","",basename(met_obj$loc_stations)))
1300
  
1301
elev <- subset(s_raster,"elev_s") #background var
1302
var_background <- elev #raster image used as background image
1303
names_var <- c("mod1","mod2","mod3","mod4","mod5","mod6","mod7")
1304

  
1305
interp_method <- "gam_CAI"
1306
list_data_v <- list_data_v_all$gam_CAI
1307
data_mae_gam_CAI_obj  <- plot_MAE_per_station_fun(list_data_v,names_var,interp_method,var_background,stat_loc,out_suffix)
1306 1308

  
1307
t<-melt(data_v_combined,
1308
        measure=names_var, 
1309
interp_method <- "kriging_CAI"
1310
list_data_v <- list_data_v_all$kriging_CAI
1311
data_mae_kriging_CAI_obj  <- plot_MAE_per_station_fun(list_data_v,names_var,interp_method,var_background,stat_loc,out_suffix)
1312

  
1313
interp_method <- "gwr_CAI"
1314
list_data_v <- list_data_v_all$gwr_CAI
1315
data_mae_gwr_CAI_obj  <- plot_MAE_per_station_fun(list_data_v,names_var,interp_method,var_background,stat_loc,out_suffix)
1316

  
1317
plot_MAE_per_station_fun <- function(list_data_v,names_var,interp_method,var_background,stat_loc,out_suffix){
1318
  #Function to create a series of residuals MAE plots...
1319
  
1320
  mae_fun<-function(x){mean(abs(x))} #Mean Absolute Error give a residuals vector
1321
  sd_abs_fun<-function(x){sd(abs(x))} #sd Absolute Error give a residuals vector
1322
  
1323
  ### Start script ###
1324
  
1325
  data_v_test <- list_data_v[[1]]
1326
  #Convert sp data.frame and combined them in one unique df, see function define earlier
1327
  data_v_combined <-convert_spdf_to_df_from_list(list_data_v) #long rownames
1328
  
1329
  #names_var_all<-c("res_mod1","res_mod2","res_mod3","res_mod4","res_mod5","res_mod6","res_mod7")#,"res_mod8","res_mod9","res_mod10")
1330
  names_var_all <- res_model_name <- paste("res",names_var,sep="_")
1331

  
1332
  t<-melt(data_v_combined,
1333
        measure=names_var_all, 
1309 1334
        id=c("id"),
1310 1335
        na.rm=T)
1311 1336

  
1312
#hist(data_v_combined)
1313
names(data_v_combined)
1337
  names(data_v_combined)
1338
  mae_tb<-cast(t,id~variable,mae_fun) #join to station location...
1314 1339

  
1315
mae_fun<-function(x){mean(abs(x))} #Mean Absolute Error give a residuals vector
1316
sd_abs_fun<-function(x){sd(abs(x))} #sd Absolute Error give a residuals vector
1340
  data_v_mae <-merge(mae_tb,stat_loc,by.x=c("id"),by.y=c("STAT_ID"))
1317 1341

  
1318
mae_tb<-cast(t,id~variable,mae_fun) #join to station location...
1342
  coords<- data_v_mae[c('longitude','latitude')]              #Define coordinates in a data frame
1343
  CRS_interp<-proj4string(data_v_test)
1344
  coordinates(data_v_mae)<-coords                      #Assign coordinates to the data frame
1345
  proj4string(data_v_mae)<- proj4string(stat_loc)                #Assign coordinates reference system in PROJ4 format
1346
  data_v_mae<-spTransform(data_v_mae,CRS(CRS_interp))     #Project from WGS84 to new coord. system
1319 1347

  
1320
met_obj <-load_obj(file.path(in_dir1,met_obj_file_1))
1321
stat_loc<-readOGR(dsn=in_dir1,layer=sub(".shp","",basename(met_obj$loc_stations)))
1348
  list_p_mae <- vector("list", length(names_var_all))
1349
  #names_var <- c("mod1","mod2","mod3","mod7")
1322 1350

  
1323
data_v_mae <-merge(mae_tb,stat_loc,by.x=c("id"),by.y=c("STAT_ID"))
1324
hist(data_v_mae$res_mod1)
1325
mean(data_v_mae$res_mod1)
1351
  for (k in 1:length(names_var)){
1352
    model_name <- names_var[k]
1353
    res_model_name <- paste("res",model_name,sep="_")
1326 1354

  
1327
coords<- data_v_mae[c('longitude','latitude')]              #Define coordinates in a data frame
1328
CRS_interp<-proj4string(data_v_test)
1329
coordinates(data_v_mae)<-coords                      #Assign coordinates to the data frame
1330
proj4string(data_v_mae)<- proj4string(stat_loc)                #Assign coordinates reference system in PROJ4 format
1331
data_v_mae<-spTransform(data_v_mae,CRS(CRS_interp))     #Project from WGS84 to new coord. system
1332
elev <- subset(s_raster,"elev_s")
1333
list_p_mae <- vector("list", 3)
1334
names_var <- c("mod1","mod2","mod5")
1355
    p1 <- levelplot(var_background,scales = list(draw = FALSE), colorkey = FALSE,par.settings = GrTheme)
1356
    df_tmp=subset(data_v_mae,data_v_mae[[res_model_name]]!="NaN")
1357
  
1358
    p2 <- bubble(df_tmp,res_model_name, main=paste("Average MAE per station for ",model_name," ",interp_method, sep=""),
1359
               na.rm=TRUE)
1360
    p3 <- p2 + p1 + p2 #to force legend...
1361
    list_p_mae[[k]] <- p3
1362
  }
1363
  
1364
  data_mae_obj <- list(list_p_mae,data_v_mae)
1365
  names(data_mae_obj) <- c("list_p_mae","data_v_mae")
1366
  return(data_mae_obj)
1367
}
1368

  
1369
list_p_mae <- data_mae_gam_CAI_obj$list_p_mae
1370
interp_method <- "gam_CAI"
1371

  
1372
layout_m<-c(1,4) # works if set to this?? ok set the resolution...
1373

  
1374
png(paste("Figure10_paper_","average_MAE_",interp_method,out_prefix,".png", sep=""),
1375
    height=480*layout_m[1],width=480*layout_m[2])
1376

  
1377
grid.arrange(list_p_mae[[1]],list_p_mae[[2]],list_p_mae[[3]],list_p_mae[[7]], ncol=4)
1378
      
1379
dev.off()   
1335 1380

  
1381
list_p_mae <- data_mae_kriging_CAI_obj$list_p_mae
1336 1382

  
1383
layout_m<-c(1,4) # works if set to this?? ok set the resolution...
1384
interp_method <- "kriging_CAI"
1385

  
1386
png(paste("Figure10_paper_","average_MAE_",interp_method,out_prefix,".png", sep=""),
1387
    height=480*layout_m[1],width=480*layout_m[2])
1388

  
1389
grid.arrange(list_p_mae[[1]],list_p_mae[[2]],list_p_mae[[3]],list_p_mae[[7]], ncol=4)
1390
      
1391
dev.off()   
1392

  
1393
list_p_mae <- data_mae_gwr_CAI_obj$list_p_mae
1394
layout_m<-c(1,4) # works if set to this?? ok set the resolution...
1395
interp_method <- "gwr_CAI"
1396

  
1397
png(paste("Figure10_paper_","average_MAE_",interp_method,out_prefix,".png", sep=""),
1398
    height=480*layout_m[1],width=480*layout_m[2])
1399

  
1400
grid.arrange(list_p_mae[[1]],list_p_mae[[2]],list_p_mae[[3]],list_p_mae[[7]], ncol=4)
1401
      
1402
dev.off()   
1403

  
1404
# boxplot compare lat*lon, lat*lon+elev , lat*lon+LST for  all three methods?
1405

  
1406
# Do MAE per stations for the best model  for  kriging, GWR and GAM/.
1407
names(data_mae_gam_CAI_obj)
1408
data_v_mae_gam_CAI <- data_mae_gam_CAI_obj$data_v_mae
1409
data_v_mae_kriging_CAI <- data_mae_kriging_CAI_obj$data_v_mae
1410
data_v_mae_gwr_CAI <- data_mae_gwr_CAI_obj$data_v_mae
1411

  
1412
## Histogram plots: Show histo for mod1,mod2,mod3 and mod7 for gam, kriging and  gwr
1413

  
1414
#Combine fig??
1415

  
1416
#hist(data_v_mae_gam_CAI$res_mod1,breaks=c(1,2,3))
1417
hist(data_v_mae_gam_CAI$res_mod1) #,breaks=c(1,2,3))
1418
hist(data_v_mae_kriging_CAI$res_mod1)
1419
hist(data_v_mae_gwr_CAI$res_mod1)
1420

  
1421
hist(data_v_mae_gam_CAI$res_mod2) #,breaks=c(1,2,3))
1422
hist(data_v_mae_kriging_CAI$res_mod2)
1423
hist(data_v_mae_gwr_CAI$res_mod2)
1424

  
1425
hist(data_v_mae_gam_CAI$res_mod3) #,breaks=c(1,2,3))
1426
hist(data_v_mae_kriging_CAI$res_mod3)
1427
hist(data_v_mae_gwr_CAI$res_mod3)
1428

  
1429
hist(data_v_mae_gam_CAI$res_mod7) #,breaks=c(1,2,3))
1430
hist(data_v_mae_kriging_CAI$res_mod7)
1431
hist(data_v_mae_gwr_CAI$res_mod7)
1432

  
1433
### Figure 13: Analysing residuals and relationship to elevation for mod1, mod2 and mod4 ######
1434

  
1435
#raster_predicton object for baseline 1 () s(lat,lon) + s(elev)) and baseline 2 (slat,lon))      
1436
#list_data_v <- lapply(1:365,function(i){raster_prediction_obj_2$validation_mod_obj[[i]]$data_v}) #testing with residuals
1437
#l_formulas<-(extract_from_list_obj(raster_prediction_obj_2$method_mod_obj,"formulas")) #get vector of dates
1438

  
1439
test <- do.call(rbind,list_data_v$gam_CAI)        
1440
data_v_ag <-test                
1441
cor(test$res_mod1,test$elev)
1442
cor(test$res_mod2,test$elev,use="complete.obs") #decrease in corellation when using elev
1443
cor(test$res_mod1,test$LST,,use="complete.obs")
1444
cor(test$res_mod3,test$LST,use="complete.obs") #decrease in correlation when using LST
1445
                     
1446
brks<- c(0,500,1000,1500,2000)
1447
lab_brks<-1:4
1448
elev_rcstat<-cut(data_v_ag$elev,breaks=brks,labels=lab_brks,right=F)
1449

  
1450
#Now set up plotting device
1451

  
1452
layout_m <- c(1,3) # works if set to this?? ok set the resolution...      
1453
png(paste("Figure_13_paper_","residuals_MAE_",out_prefix,".png", sep=""),
1454
    height=480*layout_m[1],width=480*layout_m[2])
1455
    #height=480*6,width=480*4)
1456

  
1457
p_bw1<-bwplot(data_v_ag$res_mod1~elev_rcstat,do.out=F,ylim=c(-15,15),
1458
         ylab=list(label="Residuals (deg C)",cex=1.5),
1459
         xlab=list(label="Elevation classes (meter)",cex=1.5),
1460
         main=list(label="Residuals vs elev for mod1=lat*lon",cex=1.8),
1461
         scales = list(x = list(at = c(1, 2, 3, 4), #provide tick location and labels
1462
                               labels = c("0-500","500-1000","1000-1500","1500-2000"))),
1463
                       par.settings = list(axis.text = list(font = 2, cex = 1.3), #control the font size!!
1464
        par.main.text=list(font=2,cex=2),strip.background=list(col="white")),
1465
        par.strip.text=list(font=2,cex=1.5)
1466
        )
1467

  
1468
p_bw1<-bwplot(data_v_ag$res_mod1~data_v_ag$LST,do.out=F,ylim=c(-15,15),
1469
         ylab=list(label="Residuals (deg C)",cex=1.5),
1470
         xlab=list(label="Elevation classes (meter)",cex=1.5),
1471
         main=list(label="Residuals vs elev for mod1=lat*lon",cex=1.8),
1472
         scales = list(x = list(at = c(1, 2, 3, 4), #provide tick location and labels
1473
                               labels = c("0-500","500-1000","1000-1500","1500-2000"))),
1474
                       par.settings = list(axis.text = list(font = 2, cex = 1.3), #control the font size!!
1475
        par.main.text=list(font=2,cex=2),strip.background=list(col="white")),
1476
        par.strip.text=list(font=2,cex=1.5)
1477
        )
1478

  
1479
p_bw2 <- bwplot(data_v_ag$res_mod2~elev_rcstat,do.out=F,ylim=c(-15,15),
1480
         ylab=list(label="Residuals (deg C)",cex=1.5),
1481
         xlab=list(label="Elevation classes (meter)",cex=1.5),
1482
         main=list(label="Residuals vs elev for mod5=lat*lon+LST",cex=1.8),
1483
         scales = list(x = list(at = c(1, 2, 3, 4), 
1484
                               labels = c("0-500","500-1000","1000-1500","1500-2000"))),
1485
         par.settings = list(axis.text = list(font = 2, cex = 1.3), #control the font size!!
1486
         par.main.text=list(font=2,cex=2),strip.background=list(col="white")),
1487
         par.strip.text=list(font=2,cex=1.5)
1488
         )
1489

  
1490
p_bw3 <- bwplot(data_v_ag$res_mod7~elev_rcstat,do.out=F,ylim=c(-15,15),
1491
         ylab=list(label="Residuals (deg C)",cex=1.5),
1492
         xlab=list(label="Elevation classes (meter)",cex=1.5),
1493
         main=list(label="Residuals vs elev for mod2=lat*lon+elev",cex=1.8),
1494
         scales = list(x = list(at = c(1, 2, 3, 4), 
1495
                               labels = c("0-500","500-1000","1000-1500","1500-2000"))),
1496
         par.settings = list(axis.text = list(font = 2, cex = 1.3), #control the font size!!
1497
                par.main.text=list(font=2,cex=2),strip.background=list(col="white")),
1498
                par.strip.text=list(font=2,cex=1.5)
1499
                )
1500
grid.arrange(p_bw1,p_bw2,p_bw3,ncol=3)
1501
dev.off()
1337 1502

  
1338 1503

  
1339 1504

  
1340 1505
###################### END OF SCRIPT #######################
1341 1506

  
1342
# #LAND COVER INFORMATION
1507
# #LAND COVER ###########################################
1508

  
1509
#INFORMATION
1343 1510

  
1344 1511
# LC1: Evergreen/deciduous needleleaf trees
1345 1512
# LC2: Evergreen broadleaf trees

Also available in: Unified diff