Revision a05b1d76
Added by Benoit Parmentier almost 9 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R | ||
---|---|---|
5 | 5 |
#Analyses, figures, tables and data are also produced in the script. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 03/23/2014 |
8 |
#MODIFIED ON: 10/05/2015
|
|
8 |
#MODIFIED ON: 01/01/2016
|
|
9 | 9 |
#Version: 4 |
10 | 10 |
#PROJECT: Environmental Layers project |
11 | 11 |
#COMMENTS: analyses for run 10 global analyses,all regions 1500x4500km with additional tiles to increase overlap |
... | ... | |
89 | 89 |
#parent output dir for the current script analyes |
90 | 90 |
#out_dir <- "/nobackup/bparmen1/" #on NEX |
91 | 91 |
#in_dir_shp <- "/nobackupp4/aguzman4/climateLayers/output4/subset/shapefiles/" |
92 |
|
|
92 |
in_dir <- "" #PARAM 0 |
|
93 | 93 |
y_var_name <- "dailyTmax" #PARAM1 |
94 | 94 |
interpolation_method <- c("gam_CAI") #PARAM2 |
95 | 95 |
#out_suffix<-"run10_global_analyses_01282015" |
... | ... | |
97 | 97 |
out_suffix <- "run10_1500x4500_global_analyses_pred_1992_10052015" #PARAM3 |
98 | 98 |
out_dir <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_1992_10052015" #PARAM4 |
99 | 99 |
create_out_dir_param <- FALSE #PARAM 5 |
100 |
|
|
101 | 100 |
mosaic_plot <- FALSE #PARAM6 |
102 |
|
|
103 | 101 |
#if daily mosaics NULL then mosaicas all days of the year |
104 |
|
|
105 |
day_to_mosaic <- c("19920101","19920102","19920103") |
|
106 |
|
|
107 |
|
|
108 |
CRS_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 #CONSTANT1 |
|
102 |
#day_to_mosaic <- c("19920101","19920102","19920103") #PARAM7 |
|
103 |
#CRS_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 #CONSTANT1 |
|
109 | 104 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
110 |
|
|
111 | 105 |
proj_str<- CRS_WGS84 #PARAM 8 #check this parameter |
112 | 106 |
file_format <- ".rst" #PARAM 9 |
113 | 107 |
NA_value <- -9999 #PARAM10 |
114 | 108 |
NA_flag_val <- NA_value |
115 |
|
|
116 |
tile_size <- "1500x4500" #PARAM 11 |
|
109 |
#tile_size <- "1500x4500" #PARAM 11 |
|
117 | 110 |
multiple_region <- TRUE #PARAM 12 |
118 |
|
|
119 |
region_name <- "world" #PARAM 13
|
|
111 |
#region_name <- "world" #PARAM 13 |
|
112 |
countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #PARAM 13, copy this on NEX too
|
|
120 | 113 |
plot_region <- TRUE |
121 | 114 |
num_cores <- 6 #PARAM 14 |
122 |
reg_modified <- TRUE |
|
123 |
region <- c("reg4") #reference region to merge if necessary #PARAM 16 |
|
115 |
reg_modified <- TRUE #PARAM 15 |
|
116 |
region_name <- c("reg4") #reference region to merge if necessary, if world all the regions are together #PARAM 16 |
|
117 |
#use previous files produced in step 1a and stored in a data.frame |
|
118 |
df_assessment_files <- "df_assessment_files_reg4_1984_run_global_analyses_pred_12282015.txt" #PARAM 17 |
|
119 |
threshold_missing_day <- c(367,365,300,200) #PARM18 |
|
124 | 120 |
|
125 | 121 |
########################## START SCRIPT ############################## |
126 | 122 |
|
... | ... | |
135 | 131 |
} |
136 | 132 |
|
137 | 133 |
setwd(out_dir) |
134 |
#i <- year_predicted |
|
135 |
run_assessment_plotting_prediction_fun <-function(list_param_run_assessment_plotting){ |
|
136 |
|
|
137 |
in_dir <- list_param_run_assessment_plotting$in_dir #PARAM 0 |
|
138 |
y_var_name <- list_param_run_assessment_plotting$y_var_name #PARAM1 |
|
139 |
interpolation_method <- list_param_run_assessment_plotting$interpolation_method #c("gam_CAI") #PARAM2 |
|
140 |
out_suffix <- list_param_run_assessment_plotting$out_suffix #PARAM3 |
|
141 |
out_dir <- list_param_run_assessment_plotting$out_dir # |
|
142 |
create_out_dir_param <- list_param_run_assessment_plotting$create_out_dir_param # FALSE #PARAM 5 |
|
143 |
mosaic_plot <- list_param_run_assessment_plotting$mosaic_plot #FALSE #PARAM6 |
|
144 |
proj_str<- list_param_run_assessment_plotting$proj_str #CRS_WGS84 #PARAM 8 #check this parameter |
|
145 |
file_format <- list_param_run_assessment_plotting$file_format #".rst" #PARAM 9 |
|
146 |
NA_value <- list_param_run_assessment_plotting$NA_value #-9999 #PARAM10 |
|
147 |
multiple_region <- list_param_run_assessment_plotting$multiple_region # <- TRUE #PARAM 12 |
|
148 |
countries_shp <- list_param_run_assessment_plotting$countries_shp #<- "world" #PARAM 13 |
|
149 |
plot_region <- list_param_run_assessment_plotting$plot_region #<- TRUE |
|
150 |
num_cores <- list_param_run_assessment_plotting$num_cores # 6 #PARAM 14 |
|
151 |
reg_modified <- list_param_run_assessment_plotting$reg_modified #<- TRUE #PARAM 15 |
|
152 |
region <- list_param_run_assessment_plotting$region #<- c("reg4") #reference region to merge if necessary #PARAM 16 |
|
153 |
region_name <- list_param_run_assessment_plotting$region_name #<- "world" #PARAM 13 |
|
154 |
df_assessment_files <- list_param_run_assessment_plotting$df_assessment_files #PARAM 16 |
|
155 |
threshold_missing_day <- list_param_run_assessment_plotting$threshold_missing_day #PARM18 |
|
156 |
|
|
157 |
NA_flag_val <- NA_value |
|
158 |
|
|
159 |
#tile_size <- "1500x4500" #PARAM 11 |
|
160 |
|
|
161 |
##################### START SCRIPT ################# |
|
162 |
|
|
163 |
###Table 1: Average accuracy metrics |
|
164 |
###Table 2: daily accuracy metrics for all tiles |
|
138 | 165 |
|
139 |
###Table 1: Average accuracy metrics |
|
140 |
###Table 2: daily accuracy metrics for all tiles |
|
141 |
|
|
142 |
summary_metrics_v <- read.table(file=file.path(out_dir,paste("summary_metrics_v2_NA_",out_suffix,".txt",sep="")),sep=",") |
|
143 |
#fname <- file.path(out_dir,paste("summary_metrics_v2_NA_",out_suffix,".txt",sep="")) |
|
144 |
tb <- read.table(file=file.path(out_dir,paste("tb_diagnostic_v_NA","_",out_suffix,".txt",sep="")),sep=",") |
|
145 |
#tb_diagnostic_s_NA_run10_global_analyses_11302014.txt |
|
146 |
tb_s <- read.table(file=file.path(out_dir,paste("tb_diagnostic_s_NA","_",out_suffix,".txt",sep="")),sep=",") |
|
147 |
|
|
148 |
tb_month_s <- read.table(file=file.path(out_dir,paste("tb_month_diagnostic_s_NA","_",out_suffix,".txt",sep="")),sep=",") |
|
149 |
pred_data_month_info <- read.table(file=file.path(out_dir,paste("pred_data_month_info_",out_suffix,".txt",sep="")),sep=",") |
|
150 |
pred_data_day_info <- read.table(file=file.path(out_dir,paste("pred_data_day_info_",out_suffix,".txt",sep="")),sep=",") |
|
151 |
df_tile_processed <- read.table(file=file.path(out_dir,paste("df_tile_processed_",out_suffix,".txt",sep="")),sep=",") |
|
152 |
|
|
153 |
#add column for tile size later on!!! |
|
154 |
|
|
155 |
tb$pred_mod <- as.character(tb$pred_mod) |
|
156 |
summary_metrics_v$pred_mod <- as.character(summary_metrics_v$pred_mod) |
|
157 |
summary_metrics_v$tile_id <- as.character(summary_metrics_v$tile_id) |
|
158 |
df_tile_processed$tile_id <- as.character(df_tile_processed$tile_id) |
|
159 |
|
|
160 |
tb_month_s$pred_mod <- as.character(tb_month_s$pred_mod) |
|
161 |
tb_month_s$tile_id<- as.character(tb_month_s$tile_id) |
|
162 |
tb_s$pred_mod <- as.character(tb_s$pred_mod) |
|
163 |
tb_s$tile_id <- as.character(tb_s$tile_id) |
|
164 |
|
|
165 |
|
|
166 |
#multiple regions? |
|
167 |
if(multiple_region==TRUE){ |
|
168 |
df_tile_processed$reg <- basename(dirname(as.character(df_tile_processed$path_NEX))) |
|
169 |
|
|
170 |
tb <- merge(tb,df_tile_processed,by="tile_id") |
|
171 |
tb_s <- merge(tb_s,df_tile_processed,by="tile_id") |
|
172 |
tb_month_s<- merge(tb_month_s,df_tile_processed,by="tile_id") |
|
173 |
summary_metrics_v <- merge(summary_metrics_v,df_tile_processed,by="tile_id") |
|
174 |
|
|
175 |
} |
|
176 |
|
|
177 |
tb_all <- tb |
|
178 |
|
|
179 |
summary_metrics_v_all <- summary_metrics_v |
|
180 |
#deal with additional tiles... |
|
181 |
# if(reg_modified==T){ |
|
182 |
# |
|
183 |
# summary_metrics_v_tmp <- summary_metrics_v |
|
184 |
# #summary_metrics_v_tmp$reg[summary_metrics_v_tmp$reg=="reg_1b"] <- "reg1" |
|
185 |
# #summary_metrics_v_tmp$reg[summary_metrics_v_tmp$reg=="reg_1c"] <- "reg1" |
|
186 |
# #summary_metrics_v_tmp$reg[summary_metrics_v_tmp$reg=="reg_3b"] <- "reg3" |
|
187 |
# summary_metrics_v_tmp$reg[summary_metrics_v_tmp$reg=="reg5b"] <- "reg5" |
|
188 |
# |
|
189 |
# summary_metrics_v_tmp$reg_all <- summary_metrics_v$reg |
|
190 |
# ### |
|
191 |
# summary_metrics_v<- summary_metrics_v_tmp |
|
192 |
# |
|
193 |
# ### |
|
194 |
# tb_tmp <- tb |
|
195 |
# #tb_tmp$reg[tb_tmp$reg=="reg_1b"] <- "reg1" |
|
196 |
# #tb_tmp$reg[tb_tmp$reg=="reg_1c"] <- "reg1" |
|
197 |
# #tb_tmp$reg[tb_tmp$reg=="reg_3b"] <- "reg3" |
|
198 |
# tb_tmp$reg[tb_tmp$reg=="reg5b"] <- "reg5" |
|
199 |
# |
|
200 |
# ### |
|
201 |
# tb <- tb_tmp |
|
202 |
# } |
|
203 |
|
|
204 |
table(summary_metrics_v_all$reg) |
|
205 |
table(summary_metrics_v$reg) |
|
206 |
table(tb_all$reg) |
|
207 |
table(tb$reg) |
|
208 |
|
|
209 |
############ PART 2: PRODUCE FIGURES ################ |
|
210 |
|
|
211 |
########################### |
|
212 |
### Figure 1: plot location of the study area with tiles processed |
|
213 |
|
|
214 |
#df_tiled_processed <- na.omit(df_tile_processed) #remove other list of folders irrelevant |
|
215 |
#list_shp_reg_files <- df_tiled_processed$shp_files |
|
216 |
list_shp_reg_files<- as.character(df_tile_processed$shp_files) |
|
217 |
#list_shp_reg_files <- file.path("/data/project/layers/commons/NEX_data/",out_dir, |
|
218 |
# as.character(df_tile_processed$tile_coord),"shapefiles",basename(list_shp_reg_files)) |
|
219 |
list_shp_reg_files <- file.path("/data/project/layers/commons/NEX_data/",out_dir, |
|
220 |
"shapefiles",basename(list_shp_reg_files)) |
|
221 |
|
|
222 |
#table(summary_metrics_v$reg) |
|
223 |
#table(summary_metrics_v$reg) |
|
224 |
|
|
225 |
### Potential function starts here: |
|
226 |
#function(in_dir,out_dir,list_shp_reg_files,title_str,region_name,num_cores,out_suffix,out_suffix) |
|
227 |
|
|
228 |
### First get background map to display where study area is located |
|
229 |
#can make this more general later on..should have this already in a local directory on Atlas or NEX!!!! |
|
230 |
|
|
231 |
if (region_name=="USA"){ |
|
232 |
usa_map <- getData('GADM', country='USA', level=1) #Get US map |
|
233 |
#usa_map <- getData('GADM', country=region_name,level=1) #Get US map, this is not working right now |
|
234 |
usa_map <- usa_map[usa_map$NAME_1!="Alaska",] #remove Alaska |
|
235 |
reg_layer <- usa_map[usa_map$NAME_1!="Hawaii",] #remove Hawai |
|
236 |
} |
|
237 |
|
|
238 |
if (region_name=="world"){ |
|
166 |
#df_assessment_files, note that in_dir indicate the path of the textfiles |
|
167 |
summary_metrics_v <- file.path(in_dir,basename(df_assessment_files$files[1])) |
|
168 |
tb <- file.path(in_dir, basename(df_assessment_files$files[2])) |
|
169 |
tb_s <-file.path(in_dir, basename(df_assessment_files$files[4])) |
|
170 |
|
|
171 |
tb_month_s <- file.path(in_dir,basename(df_assessment_files$files[3])) |
|
172 |
pred_data_month_info <- file.path(in_dir, basename(df_assessment_files$files[10])) |
|
173 |
pred_data_day_info <- file.path(in_dir, basename(df_assessment_files$files[11])) |
|
174 |
df_tile_processed <- file.path(in_dir, basename(df_assessment_files$files[12])) |
|
175 |
|
|
176 |
#add column for tile size later on!!! |
|
177 |
|
|
178 |
tb$pred_mod <- as.character(tb$pred_mod) |
|
179 |
summary_metrics_v$pred_mod <- as.character(summary_metrics_v$pred_mod) |
|
180 |
summary_metrics_v$tile_id <- as.character(summary_metrics_v$tile_id) |
|
181 |
df_tile_processed$tile_id <- as.character(df_tile_processed$tile_id) |
|
182 |
|
|
183 |
tb_month_s$pred_mod <- as.character(tb_month_s$pred_mod) |
|
184 |
tb_month_s$tile_id<- as.character(tb_month_s$tile_id) |
|
185 |
tb_s$pred_mod <- as.character(tb_s$pred_mod) |
|
186 |
tb_s$tile_id <- as.character(tb_s$tile_id) |
|
187 |
|
|
188 |
#multiple regions? |
|
189 |
if(multiple_region==TRUE){ |
|
190 |
df_tile_processed$reg <- basename(dirname(as.character(df_tile_processed$path_NEX))) |
|
191 |
tb <- merge(tb,df_tile_processed,by="tile_id") |
|
192 |
tb_s <- merge(tb_s,df_tile_processed,by="tile_id") |
|
193 |
tb_month_s<- merge(tb_month_s,df_tile_processed,by="tile_id") |
|
194 |
summary_metrics_v <- merge(summary_metrics_v,df_tile_processed,by="tile_id") |
|
195 |
} |
|
196 |
|
|
197 |
tb_all <- tb |
|
198 |
|
|
199 |
summary_metrics_v_all <- summary_metrics_v |
|
200 |
|
|
201 |
#table(summary_metrics_v_all$reg) |
|
202 |
#table(summary_metrics_v$reg) |
|
203 |
#table(tb_all$reg) |
|
204 |
#table(tb$reg) |
|
205 |
|
|
206 |
############ PART 2: PRODUCE FIGURES ################ |
|
207 |
|
|
208 |
########################### |
|
209 |
### Figure 1: plot location of the study area with tiles processed |
|
210 |
|
|
211 |
#df_tiled_processed <- na.omit(df_tile_processed) #remove other list of folders irrelevant |
|
212 |
#list_shp_reg_files <- df_tiled_processed$shp_files |
|
213 |
list_shp_reg_files<- as.character(df_tile_processed$shp_files) |
|
214 |
#list_shp_reg_files <- file.path("/data/project/layers/commons/NEX_data/",out_dir, |
|
215 |
# as.character(df_tile_processed$tile_coord),"shapefiles",basename(list_shp_reg_files)) |
|
216 |
#list_shp_reg_files <- file.path("/data/project/layers/commons/NEX_data/",out_dir, |
|
217 |
#"shapefiles",basename(list_shp_reg_files)) |
|
218 |
|
|
219 |
#table(summary_metrics_v$reg) |
|
220 |
#table(summary_metrics_v$reg) |
|
221 |
|
|
222 |
### Potential function starts here: |
|
223 |
#function(in_dir,out_dir,list_shp_reg_files,title_str,region_name,num_cores,out_suffix,out_suffix) |
|
224 |
|
|
225 |
### First get background map to display where study area is located |
|
226 |
#can make this more general later on..should have this already in a local directory on Atlas or NEX!!!! |
|
227 |
|
|
239 | 228 |
#http://www.diva-gis.org/Data |
240 | 229 |
countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" |
241 | 230 |
path_to_shp <- dirname(countries_shp) |
... | ... | |
243 | 232 |
reg_layer <- readOGR(path_to_shp, layer_name) |
244 | 233 |
#proj4string(reg_layer) <- CRS_locs_WGS84 |
245 | 234 |
#reg_shp<-readOGR(dirname(list_shp_reg_files[[i]]),sub(".shp","",basename(list_shp_reg_files[[i]]))) |
246 |
} |
|
247 |
|
|
248 |
centroids_pts <- vector("list",length(list_shp_reg_files)) |
|
249 |
shps_tiles <- vector("list",length(list_shp_reg_files)) |
|
250 |
#collect info: read in all shapfiles |
|
251 |
#This is slow...make a function and use mclapply?? |
|
252 |
#/data/project/layers/commons/NEX_data/output_run6_global_analyses_09162014/shapefiles |
|
253 |
|
|
254 |
for(i in 1:length(list_shp_reg_files)){ |
|
255 |
#path_to_shp <- dirname(list_shp_reg_files[[i]]) |
|
256 |
path_to_shp <- file.path(out_dir,"/shapefiles") |
|
257 |
layer_name <- sub(".shp","",basename(list_shp_reg_files[[i]])) |
|
258 |
shp1 <- try(readOGR(path_to_shp, layer_name)) #use try to resolve error below |
|
259 |
#shp_61.0_-160.0 |
|
260 |
#Geographical CRS given to non-conformant data: -186.331747678 |
|
261 |
|
|
262 |
#shp1<-readOGR(dirname(list_shp_reg_files[[i]]),sub(".shp","",basename(list_shp_reg_files[[i]]))) |
|
263 |
if (!inherits(shp1,"try-error")) { |
|
235 |
|
|
236 |
centroids_pts <- vector("list",length(list_shp_reg_files)) |
|
237 |
shps_tiles <- vector("list",length(list_shp_reg_files)) |
|
238 |
#collect info: read in all shapfiles |
|
239 |
#This is slow...make a function and use mclapply?? |
|
240 |
#/data/project/layers/commons/NEX_data/output_run6_global_analyses_09162014/shapefiles |
|
241 |
|
|
242 |
for(i in 1:length(list_shp_reg_files)){ |
|
243 |
#path_to_shp <- dirname(list_shp_reg_files[[i]]) |
|
244 |
path_to_shp <- file.path(out_dir,"/shapefiles") |
|
245 |
layer_name <- sub(".shp","",basename(list_shp_reg_files[[i]])) |
|
246 |
shp1 <- try(readOGR(path_to_shp, layer_name)) #use try to resolve error below |
|
247 |
#shp_61.0_-160.0 |
|
248 |
#Geographical CRS given to non-conformant data: -186.331747678 |
|
249 |
|
|
250 |
#shp1<-readOGR(dirname(list_shp_reg_files[[i]]),sub(".shp","",basename(list_shp_reg_files[[i]]))) |
|
251 |
if (!inherits(shp1,"try-error")) { |
|
264 | 252 |
pt <- gCentroid(shp1) |
265 | 253 |
centroids_pts[[i]] <- pt |
266 |
}else{ |
|
267 |
pt <- shp1 |
|
268 |
centroids_pts[[i]] <- pt |
|
269 |
} |
|
270 |
shps_tiles[[i]] <- shp1 |
|
271 |
#centroids_pts[[i]] <- centroids |
|
272 |
} |
|
273 |
|
|
274 |
#fun <- function(i,list_shp_files) |
|
275 |
#coord_names <- c("lon","lat") |
|
276 |
#l_ras#t <- rasterize_df_fun(test,coord_names,proj_str,out_suffix=out_suffix,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005) |
|
277 |
|
|
278 |
#remove try-error polygons...we loose three tiles because they extend beyond -180 deg |
|
279 |
tmp <- shps_tiles |
|
280 |
shps_tiles <- remove_errors_list(shps_tiles) #[[!inherits(shps_tiles,"try-error")]] |
|
281 |
#shps_tiles <- tmp |
|
282 |
length(tmp)-length(shps_tiles) #number of tiles with error message |
|
283 |
|
|
284 |
tmp_pts <- centroids_pts |
|
285 |
centroids_pts <- remove_errors_list(centroids_pts) #[[!inherits(shps_tiles,"try-error")]] |
|
286 |
#centroids_pts <- tmp_pts |
|
287 |
|
|
288 |
#plot info: with labels |
|
289 |
res_pix <-1200 |
|
290 |
col_mfrow <- 1 |
|
291 |
row_mfrow <- 1 |
|
292 |
|
|
293 |
png(filename=paste("Figure1_tile_processed_region_",region_name,"_",out_suffix,".png",sep=""), |
|
294 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
295 |
|
|
296 |
plot(reg_layer) |
|
297 |
#Add polygon tiles... |
|
298 |
for(i in 1:length(shps_tiles)){ |
|
299 |
shp1 <- shps_tiles[[i]] |
|
300 |
pt <- centroids_pts[[i]] |
|
301 |
if(!inherits(shp1,"try-error")){ |
|
302 |
plot(shp1,add=T,border="blue") |
|
303 |
#plot(pt,add=T,cex=2,pch=5) |
|
304 |
label_id <- df_tile_processed$tile_id[i] |
|
305 |
text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red")) |
|
254 |
}else{ |
|
255 |
pt <- shp1 |
|
256 |
centroids_pts[[i]] <- pt |
|
257 |
} |
|
258 |
shps_tiles[[i]] <- shp1 |
|
259 |
#centroids_pts[[i]] <- centroids |
|
306 | 260 |
} |
307 |
} |
|
308 |
#title(paste("Tiles ", tile_size,region_name,sep="")) |
|
309 |
|
|
310 |
dev.off() |
|
311 |
|
|
312 |
#unique(summaty_metrics$tile_id) |
|
313 |
#text(lat-shp,) |
|
314 |
#union(list_shp_reg_files[[1]],list_shp_reg_files[[2]]) |
|
315 |
|
|
316 |
############### |
|
317 |
### Figure 2: boxplot of average accuracy by model and by tiles |
|
318 |
|
|
319 |
|
|
320 |
tb$tile_id <- factor(tb$tile_id, levels=unique(tb$tile_id)) |
|
321 |
|
|
322 |
model_name <- as.character(unique(tb$pred_mod)) |
|
323 |
|
|
324 |
|
|
325 |
## Figure 2a |
|
326 |
|
|
327 |
for(i in 1:length(model_name)){ |
|
328 | 261 |
|
329 |
res_pix <- 480 |
|
330 |
col_mfrow <- 1 |
|
262 |
#fun <- function(i,list_shp_files) |
|
263 |
#coord_names <- c("lon","lat") |
|
264 |
#l_ras#t <- rasterize_df_fun(test,coord_names,proj_str,out_suffix=out_suffix,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005) |
|
265 |
|
|
266 |
#remove try-error polygons...we loose three tiles because they extend beyond -180 deg |
|
267 |
tmp <- shps_tiles |
|
268 |
shps_tiles <- remove_errors_list(shps_tiles) #[[!inherits(shps_tiles,"try-error")]] |
|
269 |
#shps_tiles <- tmp |
|
270 |
length(tmp)-length(shps_tiles) #number of tiles with error message |
|
271 |
|
|
272 |
tmp_pts <- centroids_pts |
|
273 |
centroids_pts <- remove_errors_list(centroids_pts) #[[!inherits(shps_tiles,"try-error")]] |
|
274 |
#centroids_pts <- tmp_pts |
|
275 |
|
|
276 |
#plot info: with labels |
|
277 |
res_pix <-1200 |
|
278 |
col_mfrow <- 1 |
|
331 | 279 |
row_mfrow <- 1 |
332 |
|
|
333 |
png(filename=paste("Figure2a_boxplot_with_oultiers_by_tiles_",model_name[i],"_",out_suffix,".png",sep=""), |
|
334 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
335 | 280 |
|
336 |
boxplot(rmse~tile_id,data=subset(tb,tb$pred_mod==model_name[i])) |
|
337 |
title(paste("RMSE per ",model_name[i])) |
|
281 |
png(filename=paste("Figure1_tile_processed_region_",region_name,"_",out_suffix,".png",sep=""), |
|
282 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
283 |
|
|
284 |
plot(reg_layer) |
|
285 |
#Add polygon tiles... |
|
286 |
for(i in 1:length(shps_tiles)){ |
|
287 |
shp1 <- shps_tiles[[i]] |
|
288 |
pt <- centroids_pts[[i]] |
|
289 |
if(!inherits(shp1,"try-error")){ |
|
290 |
plot(shp1,add=T,border="blue") |
|
291 |
#plot(pt,add=T,cex=2,pch=5) |
|
292 |
label_id <- df_tile_processed$tile_id[i] |
|
293 |
text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red")) |
|
294 |
} |
|
295 |
} |
|
296 |
#title(paste("Tiles ", tile_size,region_name,sep="")) |
|
338 | 297 |
|
339 | 298 |
dev.off() |
340 |
} |
|
341 |
|
|
342 |
## Figure 2b |
|
343 |
#wtih ylim and removing trailing... |
|
344 |
for(i in 1:length(model_name)){ |
|
345 |
|
|
299 |
|
|
300 |
#unique(summaty_metrics$tile_id) |
|
301 |
#text(lat-shp,) |
|
302 |
#union(list_shp_reg_files[[1]],list_shp_reg_files[[2]]) |
|
303 |
|
|
304 |
############### |
|
305 |
### Figure 2: boxplot of average accuracy by model and by tiles |
|
306 |
|
|
307 |
|
|
308 |
tb$tile_id <- factor(tb$tile_id, levels=unique(tb$tile_id)) |
|
309 |
|
|
310 |
model_name <- as.character(unique(tb$pred_mod)) |
|
311 |
|
|
312 |
|
|
313 |
## Figure 2a |
|
314 |
|
|
315 |
for(i in 1:length(model_name)){ |
|
316 |
|
|
317 |
res_pix <- 480 |
|
318 |
col_mfrow <- 1 |
|
319 |
row_mfrow <- 1 |
|
320 |
|
|
321 |
png(filename=paste("Figure2a_boxplot_with_oultiers_by_tiles_",model_name[i],"_",out_suffix,".png",sep=""), |
|
322 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
323 |
|
|
324 |
boxplot(rmse~tile_id,data=subset(tb,tb$pred_mod==model_name[i])) |
|
325 |
title(paste("RMSE per ",model_name[i])) |
|
326 |
|
|
327 |
dev.off() |
|
328 |
} |
|
329 |
|
|
330 |
## Figure 2b |
|
331 |
#wtih ylim and removing trailing... |
|
332 |
for(i in 1:length(model_name)){ |
|
333 |
|
|
334 |
res_pix <- 480 |
|
335 |
col_mfrow <- 1 |
|
336 |
row_mfrow <- 1 |
|
337 |
png(filename=paste("Figure2b_boxplot_scaling_by_tiles","_",model_name[i],"_",out_suffix,".png",sep=""), |
|
338 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
339 |
|
|
340 |
model_name <- unique(tb$pred_mod) |
|
341 |
boxplot(rmse~tile_id,data=subset(tb,tb$pred_mod==model_name[i]) |
|
342 |
,ylim=c(0,4),outline=FALSE) |
|
343 |
title(paste("RMSE per ",model_name[i])) |
|
344 |
dev.off() |
|
345 |
} |
|
346 |
#bwplot(rmse~tile_id, data=subset(tb,tb$pred_mod=="mod1")) |
|
347 |
|
|
348 |
############### |
|
349 |
### Figure 3: boxplot of average RMSE by model acrosss all tiles |
|
350 |
|
|
351 |
## Figure 3a |
|
346 | 352 |
res_pix <- 480 |
347 | 353 |
col_mfrow <- 1 |
348 | 354 |
row_mfrow <- 1 |
349 |
png(filename=paste("Figure2b_boxplot_scaling_by_tiles","_",model_name[i],"_",out_suffix,".png",sep=""), |
|
350 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix)
|
|
351 |
|
|
352 |
model_name <- unique(tb$pred_mod) |
|
353 |
boxplot(rmse~tile_id,data=subset(tb,tb$pred_mod==model_name[i])
|
|
354 |
,ylim=c(0,4),outline=FALSE)
|
|
355 |
title(paste("RMSE per ",model_name[i])) |
|
355 |
|
|
356 |
png(filename=paste("Figure3a_boxplot_overall_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""),
|
|
357 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
358 |
|
|
359 |
boxplot(rmse~pred_mod,data=tb)#,names=tb$pred_mod)
|
|
360 |
title("RMSE per model over all tiles")
|
|
361 |
|
|
356 | 362 |
dev.off() |
357 |
} |
|
358 |
#bwplot(rmse~tile_id, data=subset(tb,tb$pred_mod=="mod1")) |
|
359 |
|
|
360 |
############### |
|
361 |
### Figure 3: boxplot of average RMSE by model acrosss all tiles |
|
362 |
|
|
363 |
## Figure 3a |
|
364 |
res_pix <- 480 |
|
365 |
col_mfrow <- 1 |
|
366 |
row_mfrow <- 1 |
|
367 |
|
|
368 |
png(filename=paste("Figure3a_boxplot_overall_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""), |
|
369 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
370 |
|
|
371 |
boxplot(rmse~pred_mod,data=tb)#,names=tb$pred_mod) |
|
372 |
title("RMSE per model over all tiles") |
|
373 |
|
|
374 |
dev.off() |
|
375 |
|
|
376 |
## Figure 3b |
|
377 |
png(filename=paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep=""), |
|
378 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
379 |
|
|
380 |
boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
|
381 |
title("RMSE per model over all tiles") |
|
382 |
|
|
383 |
dev.off() |
|
384 |
|
|
385 |
|
|
386 |
################ |
|
387 |
### Figure 4: plot predicted tiff for specific date per model |
|
388 |
|
|
389 |
#y_var_name <-"dailyTmax" |
|
390 |
#index <-244 #index corresponding to Sept 1 |
|
391 |
|
|
392 |
# if (mosaic_plot==TRUE){ |
|
393 |
# index <- 1 #index corresponding to Jan 1 |
|
394 |
# date_selected <- "20100901" |
|
395 |
# name_method_var <- paste(interpolation_method,"_",y_var_name,"_",sep="") |
|
396 |
# |
|
397 |
# pattern_str <- paste("mosaiced","_",name_method_var,"predicted",".*.",date_selected,".*.tif",sep="") |
|
398 |
# lf_pred_list <- list.files(pattern=pattern_str) |
|
399 |
# |
|
400 |
# for(i in 1:length(lf_pred_list)){ |
|
401 |
# |
|
402 |
# |
|
403 |
# r_pred <- raster(lf_pred_list[i]) |
|
404 |
# |
|
405 |
# res_pix <- 480 |
|
406 |
# col_mfrow <- 1 |
|
407 |
# row_mfrow <- 1 |
|
408 |
# |
|
409 |
# png(filename=paste("Figure4_models_predicted_surfaces_",model_name[i],"_",name_method_var,"_",data_selected,"_",out_suffix,".png",sep=""), |
|
410 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
411 |
# |
|
412 |
# plot(r_pred) |
|
413 |
# title(paste("Mosaiced",model_name[i],name_method_var,date_selected,sep=" ")) |
|
414 |
# dev.off() |
|
415 |
# } |
|
416 |
# #Plot Delta and clim... |
|
417 |
# |
|
418 |
# ## plotting of delta and clim for later scripts... |
|
419 |
# |
|
420 |
# } |
|
421 |
|
|
422 |
|
|
423 |
###################### |
|
424 |
### Figure 5: plot accuracy ranked |
|
425 |
|
|
426 |
#Turn summary table to a point shp |
|
427 |
|
|
428 |
list_df_ac_mod <- vector("list",length=length(model_name)) |
|
429 |
for (i in 1:length(model_name)){ |
|
430 | 363 |
|
431 |
ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],] |
|
432 |
### Ranking by tile... |
|
433 |
df_ac_mod <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("pred_mod","rmse","mae","tile_id")] |
|
434 |
list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")] |
|
364 |
## Figure 3b |
|
365 |
png(filename=paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep=""), |
|
366 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
367 |
|
|
368 |
boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
|
369 |
title("RMSE per model over all tiles") |
|
435 | 370 |
|
436 |
res_pix <- 480 |
|
437 |
col_mfrow <- 1 |
|
438 |
row_mfrow <- 1 |
|
439 |
|
|
440 |
png(filename=paste("Figure5_ac_metrics_ranked_",model_name[i],"_",out_suffix,".png",sep=""), |
|
441 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
442 |
x<- as.character(df_ac_mod$tile_id) |
|
443 |
barplot(df_ac_mod$rmse, names.arg=x) |
|
444 |
#plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T) |
|
445 |
#plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T) |
|
446 |
title(paste("RMSE ranked by tile for ",model_name[i],sep="")) |
|
447 |
|
|
448 | 371 |
dev.off() |
449 | 372 |
|
450 |
} |
|
451 |
|
|
452 |
###################### |
|
453 |
### Figure 6: plot map of average RMSE per tile at centroids |
|
454 |
|
|
455 |
#Turn summary table to a point shp |
|
456 |
|
|
457 |
# coordinates(summary_metrics_v) <- cbind(summary_metrics_v$lon,summary_metrics_v$lat) |
|
458 |
# proj4string(summary_metrics_v) <- CRS_WGS84 |
|
459 |
# #lf_list <- lf_pred_list |
|
460 |
# list_df_ac_mod <- vector("list",length=length(lf_pred_list)) |
|
461 |
# for (i in 1:length(lf_list)){ |
|
462 |
# |
|
463 |
# ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],] |
|
464 |
# r_pred <- raster(lf_list[i]) |
|
465 |
# |
|
466 |
# res_pix <- 480 |
|
467 |
# col_mfrow <- 1 |
|
468 |
# row_mfrow <- 1 |
|
469 |
# |
|
470 |
# png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_suffix,".png",sep=""), |
|
471 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
472 |
# |
|
473 |
# plot(r_pred) |
|
474 |
# |
|
475 |
# #plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T) |
|
476 |
# plot(ac_mod,cex=(ac_mod$rmse^2)/10,pch=1,add=T) |
|
477 |
# #plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T) |
|
478 |
# title(paste("Averrage RMSE per tile and by ",model_name[i])) |
|
479 |
# |
|
480 |
# dev.off() |
|
481 |
# |
|
482 |
# ### Ranking by tile... |
|
483 |
# #df_ac_mod <- |
|
484 |
# list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")] |
|
485 |
# } |
|
486 |
|
|
487 |
#quick kriging... |
|
488 |
#autokrige(rmse~1,r2,) |
|
489 |
|
|
490 |
|
|
491 |
### Without |
|
492 |
|
|
493 |
#list_df_ac_mod <- vector("list",length=length(lf_pred_list)) |
|
494 |
list_df_ac_mod <- vector("list",length=2) |
|
495 |
|
|
496 |
for (i in 1:length(model_name)){ |
|
497 | 373 |
|
498 |
ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],]
|
|
499 |
#r_pred <- raster(lf_list[i])
|
|
374 |
################
|
|
375 |
### Figure 4: plot predicted tiff for specific date per model
|
|
500 | 376 |
|
501 |
res_pix <- 1200 |
|
502 |
#res_pix <- 480 |
|
503 |
|
|
504 |
col_mfrow <- 1 |
|
505 |
row_mfrow <- 1 |
|
506 |
|
|
507 |
png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_suffix,".png",sep=""), |
|
508 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
509 |
|
|
510 |
#plot(r_pred) |
|
511 |
#plot(reg_layer) |
|
512 |
#plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T) |
|
513 |
#plot(ac_mod,cex=(ac_mod$rmse^2)/10,pch=1,col="red",add=T) |
|
514 |
|
|
515 |
#coordinates(ac_mod) <- ac_mod[,c("lon","lat")] |
|
516 |
coordinates(ac_mod) <- ac_mod[,c("lon.x","lat.x")] #solve this later |
|
517 |
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black')) |
|
518 |
#title("(a) Mean for 1 January") |
|
519 |
p <- bubble(ac_mod,"rmse",main=paste("Averrage RMSE per tile and by ",model_name[i])) |
|
520 |
p1 <- p+p_shp |
|
521 |
print(p1) |
|
522 |
#plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T) |
|
523 |
#title(paste("Averrage RMSE per tile and by ",model_name[i])) |
|
524 |
|
|
377 |
#y_var_name <-"dailyTmax" |
|
378 |
#index <-244 #index corresponding to Sept 1 |
|
379 |
|
|
380 |
# if (mosaic_plot==TRUE){ |
|
381 |
# index <- 1 #index corresponding to Jan 1 |
|
382 |
# date_selected <- "20100901" |
|
383 |
# name_method_var <- paste(interpolation_method,"_",y_var_name,"_",sep="") |
|
384 |
# |
|
385 |
# pattern_str <- paste("mosaiced","_",name_method_var,"predicted",".*.",date_selected,".*.tif",sep="") |
|
386 |
# lf_pred_list <- list.files(pattern=pattern_str) |
|
387 |
# |
|
388 |
# for(i in 1:length(lf_pred_list)){ |
|
389 |
# |
|
390 |
# |
|
391 |
# r_pred <- raster(lf_pred_list[i]) |
|
392 |
# |
|
393 |
# res_pix <- 480 |
|
394 |
# col_mfrow <- 1 |
|
395 |
# row_mfrow <- 1 |
|
396 |
# |
|
397 |
# png(filename=paste("Figure4_models_predicted_surfaces_",model_name[i],"_",name_method_var,"_",data_selected,"_",out_suffix,".png",sep=""), |
|
398 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
399 |
# |
|
400 |
# plot(r_pred) |
|
401 |
# title(paste("Mosaiced",model_name[i],name_method_var,date_selected,sep=" ")) |
|
402 |
# dev.off() |
|
403 |
# } |
|
404 |
# #Plot Delta and clim... |
|
405 |
# |
|
406 |
# ## plotting of delta and clim for later scripts... |
|
407 |
# |
|
408 |
# } |
|
409 |
|
|
410 |
|
|
411 |
###################### |
|
412 |
### Figure 5: plot accuracy ranked |
|
413 |
|
|
414 |
#Turn summary table to a point shp |
|
415 |
|
|
416 |
list_df_ac_mod <- vector("list",length=length(model_name)) |
|
417 |
for (i in 1:length(model_name)){ |
|
418 |
|
|
419 |
ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],] |
|
420 |
### Ranking by tile... |
|
421 |
df_ac_mod <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("pred_mod","rmse","mae","tile_id")] |
|
422 |
list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")] |
|
423 |
|
|
424 |
res_pix <- 480 |
|
425 |
col_mfrow <- 1 |
|
426 |
row_mfrow <- 1 |
|
427 |
|
|
428 |
png(filename=paste("Figure5_ac_metrics_ranked_",model_name[i],"_",out_suffix,".png",sep=""), |
|
429 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
430 |
x<- as.character(df_ac_mod$tile_id) |
|
431 |
barplot(df_ac_mod$rmse, names.arg=x) |
|
432 |
#plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T) |
|
433 |
#plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T) |
|
434 |
title(paste("RMSE ranked by tile for ",model_name[i],sep="")) |
|
435 |
|
|
436 |
dev.off() |
|
437 |
|
|
438 |
} |
|
439 |
|
|
440 |
###################### |
|
441 |
### Figure 6: plot map of average RMSE per tile at centroids |
|
442 |
|
|
443 |
### Without |
|
444 |
|
|
445 |
#list_df_ac_mod <- vector("list",length=length(lf_pred_list)) |
|
446 |
list_df_ac_mod <- vector("list",length=2) |
|
447 |
|
|
448 |
for (i in 1:length(model_name)){ |
|
449 |
|
|
450 |
ac_mod <- summary_metrics_v[summary_metrics_v$pred_mod==model_name[i],] |
|
451 |
#r_pred <- raster(lf_list[i]) |
|
452 |
|
|
453 |
res_pix <- 1200 |
|
454 |
#res_pix <- 480 |
|
455 |
|
|
456 |
col_mfrow <- 1 |
|
457 |
row_mfrow <- 1 |
|
458 |
|
|
459 |
png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_suffix,".png",sep=""), |
|
460 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
461 |
|
|
462 |
#plot(r_pred) |
|
463 |
#plot(reg_layer) |
|
464 |
#plot(ac_mod1,cex=sqrt(ac_mod1$rmse),pch=1,add=T) |
|
465 |
#plot(ac_mod,cex=(ac_mod$rmse^2)/10,pch=1,col="red",add=T) |
|
466 |
|
|
467 |
#coordinates(ac_mod) <- ac_mod[,c("lon","lat")] |
|
468 |
coordinates(ac_mod) <- ac_mod[,c("lon.x","lat.x")] #solve this later |
|
469 |
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black')) |
|
470 |
#title("(a) Mean for 1 January") |
|
471 |
p <- bubble(ac_mod,"rmse",main=paste("Averrage RMSE per tile and by ",model_name[i])) |
|
472 |
p1 <- p+p_shp |
|
473 |
print(p1) |
|
474 |
#plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T) |
|
475 |
#title(paste("Averrage RMSE per tile and by ",model_name[i])) |
|
476 |
|
|
477 |
dev.off() |
|
478 |
|
|
479 |
### Ranking by tile... |
|
480 |
#df_ac_mod <- |
|
481 |
list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")] |
|
482 |
} |
|
483 |
|
|
484 |
## Number of tiles with information: |
|
485 |
sum(df_tile_processed$metrics_v) #26,number of tiles with raster object |
|
486 |
length(df_tile_processed$metrics_v) #26,number of tiles in the region |
|
487 |
sum(df_tile_processed$metrics_v)/length(df_tile_processed$metrics_v) #80 of tiles with info |
|
488 |
|
|
489 |
#coordinates |
|
490 |
#coordinates(summary_metrics_v) <- c("lon","lat") |
|
491 |
coordinates(summary_metrics_v) <- c("lon.y","lat.y") |
|
492 |
|
|
493 |
#threshold_missing_day <- c(367,365,300,200) |
|
494 |
|
|
495 |
nb<-nrow(subset(summary_metrics_v,model_name=="mod1")) |
|
496 |
sum(subset(summary_metrics_v,model_name=="mod1")$n_missing)/nb #33/35 |
|
497 |
|
|
498 |
## Make this a figure... |
|
499 |
|
|
500 |
#plot(summary_metrics_v) |
|
501 |
#Make this a function later so that we can explore many thresholds... |
|
502 |
|
|
503 |
j<-1 #for model name 1 |
|
504 |
for(i in 1:length(threshold_missing_day)){ |
|
505 |
|
|
506 |
#summary_metrics_v$n_missing <- summary_metrics_v$n == 365 |
|
507 |
#summary_metrics_v$n_missing <- summary_metrics_v$n < 365 |
|
508 |
summary_metrics_v$n_missing <- summary_metrics_v$n < threshold_missing_day[i] |
|
509 |
summary_metrics_v_subset <- subset(summary_metrics_v,model_name=="mod1") |
|
510 |
|
|
511 |
#res_pix <- 1200 |
|
512 |
res_pix <- 960 |
|
513 |
|
|
514 |
col_mfrow <- 1 |
|
515 |
row_mfrow <- 1 |
|
516 |
|
|
517 |
png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i], |
|
518 |
"_",out_suffix,".png",sep=""), |
|
519 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
520 |
|
|
521 |
model_name[j] |
|
522 |
|
|
523 |
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black')) |
|
524 |
#title("(a) Mean for 1 January") |
|
525 |
p <- bubble(summary_metrics_v_subset,"n_missing",main=paste("Missing per tile and by ",model_name[j]," for ", |
|
526 |
threshold_missing_day[i])) |
|
527 |
p1 <- p+p_shp |
|
528 |
try(print(p1)) #error raised if number of missing values below a threshold does not exist |
|
529 |
#plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T) |
|
530 |
#title(paste("Averrage RMSE per tile and by ",model_name[i])) |
|
531 |
|
|
532 |
dev.off() |
|
533 |
} |
|
534 |
|
|
535 |
###################### |
|
536 |
### Figure 7: Number of predictions: daily and monthly |
|
537 |
|
|
538 |
#xyplot(rmse~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v), |
|
539 |
# pred_mod!="mod_kr"),type="b") |
|
540 |
|
|
541 |
#xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v), |
|
542 |
# pred_mod!="mod_kr"),type="h") |
|
543 |
|
|
544 |
#cor |
|
545 |
|
|
546 |
# |
|
547 |
## Figure 7a |
|
548 |
png(filename=paste("Figure7a_number_daily_predictions_per_models","_",out_suffix,".png",sep=""), |
|
549 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
550 |
|
|
551 |
xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v), |
|
552 |
pred_mod!="mod_kr"),type="h") |
|
525 | 553 |
dev.off() |
526 | 554 |
|
527 |
### Ranking by tile... |
|
528 |
#df_ac_mod <- |
|
529 |
list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")] |
|
530 |
} |
|
531 |
|
|
532 |
## Number of tiles with information: |
|
533 |
sum(df_tile_processed$metrics_v) #26,number of tiles with raster object |
|
534 |
length(df_tile_processed$metrics_v) #26,number of tiles in the region |
|
535 |
sum(df_tile_processed$metrics_v)/length(df_tile_processed$metrics_v) #80 of tiles with info |
|
536 |
|
|
537 |
#coordinates |
|
538 |
#coordinates(summary_metrics_v) <- c("lon","lat") |
|
539 |
coordinates(summary_metrics_v) <- c("lon.y","lat.y") |
|
540 |
|
|
541 |
threshold_missing_day <- c(367,365,300,200) |
|
542 |
|
|
543 |
nb<-nrow(subset(summary_metrics_v,model_name=="mod1")) |
|
544 |
sum(subset(summary_metrics_v,model_name=="mod1")$n_missing)/nb #33/35 |
|
545 |
|
|
546 |
## Make this a figure... |
|
547 |
|
|
548 |
#plot(summary_metrics_v) |
|
549 |
#Make this a function later so that we can explore many thresholds... |
|
550 |
|
|
551 |
j<-1 #for model name 1 |
|
552 |
for(i in 1:length(threshold_missing_day)){ |
|
555 |
table(tb$pred_mod) |
|
556 |
table(tb$index_d) |
|
557 |
table(subset(tb,pred_mod!="mod_kr")) |
|
558 |
table(subset(tb,pred_mod=="mod1")$index_d) |
|
559 |
#aggregate() |
|
560 |
tb$predicted <- 1 |
|
561 |
test <- aggregate(predicted~pred_mod+tile_id,data=tb,sum) |
|
562 |
xyplot(predicted~pred_mod | tile_id,data=subset(as.data.frame(test), |
|
563 |
pred_mod!="mod_kr"),type="h") |
|
553 | 564 |
|
554 |
#summary_metrics_v$n_missing <- summary_metrics_v$n == 365 |
|
555 |
#summary_metrics_v$n_missing <- summary_metrics_v$n < 365 |
|
556 |
summary_metrics_v$n_missing <- summary_metrics_v$n < threshold_missing_day[i] |
|
557 |
summary_metrics_v_subset <- subset(summary_metrics_v,model_name=="mod1") |
|
558 |
|
|
559 |
#res_pix <- 1200 |
|
560 |
res_pix <- 960 |
|
561 |
|
|
565 |
as.character(unique(test$tile_id)) #141 tiles |
|
566 |
|
|
567 |
dim(subset(test,test$predicted==365 & test$pred_mod=="mod1")) |
|
568 |
histogram(subset(test, test$pred_mod=="mod1")$predicted) |
|
569 |
unique(subset(test, test$pred_mod=="mod1")$predicted) |
|
570 |
table((subset(test, test$pred_mod=="mod1")$predicted)) |
|
571 |
|
|
572 |
#LST_avgm_min <- aggregate(LST~month,data=data_month_all,min) |
|
573 |
histogram(test$predicted~test$tile_id) |
|
574 |
#table(tb) |
|
575 |
## Figure 7b |
|
576 |
#png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""), |
|
577 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
578 |
|
|
579 |
#xyplot(n~month | tile_id + pred_mod,data=subset(as.data.frame(tb_month_s), |
|
580 |
# pred_mod!="mod_kr"),type="h") |
|
581 |
#xyplot(n~month | tile_id,data=subset(as.data.frame(tb_month_s), |
|
582 |
# pred_mod="mod_1"),type="h") |
|
583 |
#test=subset(as.data.frame(tb_month_s),pred_mod="mod_1") |
|
584 |
#table(tb_month_s$month) |
|
585 |
#dev.off() |
|
586 |
# |
|
587 |
|
|
588 |
|
|
589 |
########################################################## |
|
590 |
##### Figure 8: Breaking down accuracy by regions!! ##### |
|
591 |
|
|
592 |
#summary_metrics_v <- merge(summary_metrics_v,df_tile_processed,by="tile_id") |
|
593 |
|
|
594 |
## Figure 8a |
|
595 |
res_pix <- 480 |
|
562 | 596 |
col_mfrow <- 1 |
563 | 597 |
row_mfrow <- 1 |
564 |
|
|
565 |
png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i], |
|
566 |
"_",out_suffix,".png",sep=""), |
|
567 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
568 |
|
|
569 |
model_name[j] |
|
570 |
|
|
571 |
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black')) |
|
572 |
#title("(a) Mean for 1 January") |
|
573 |
p <- bubble(summary_metrics_v_subset,"n_missing",main=paste("Missing per tile and by ",model_name[j]," for ", |
|
574 |
threshold_missing_day[i])) |
|
575 |
p1 <- p+p_shp |
|
576 |
try(print(p1)) #error raised if number of missing values below a threshold does not exist |
|
577 |
#plot(ac_mod1,cex=(ac_mod1$rmse1)*2,pch=1,add=T) |
|
578 |
#title(paste("Averrage RMSE per tile and by ",model_name[i])) |
|
579 |
|
|
598 |
|
|
599 |
png(filename=paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""), |
|
600 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
601 |
|
|
602 |
p<- bwplot(rmse~pred_mod | reg, data=tb, |
|
603 |
main="RMSE per model and region over all tiles") |
|
604 |
print(p) |
|
580 | 605 |
dev.off() |
581 |
} |
|
582 |
|
|
583 |
###################### |
|
584 |
### Figure 7: Number of predictions: daily and monthly |
|
585 |
|
|
586 |
#xyplot(rmse~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v), |
|
587 |
# pred_mod!="mod_kr"),type="b") |
|
588 |
|
|
589 |
#xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v), |
|
590 |
# pred_mod!="mod_kr"),type="h") |
|
591 |
|
|
592 |
#cor |
|
593 |
|
|
594 |
# |
|
595 |
## Figure 7a |
|
596 |
png(filename=paste("Figure7a_number_daily_predictions_per_models","_",out_suffix,".png",sep=""), |
|
597 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
598 |
|
|
599 |
xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v), |
|
600 |
pred_mod!="mod_kr"),type="h") |
|
601 |
dev.off() |
|
602 |
|
|
603 |
table(tb$pred_mod) |
|
604 |
table(tb$index_d) |
|
605 |
table(subset(tb,pred_mod!="mod_kr")) |
|
606 |
table(subset(tb,pred_mod=="mod1")$index_d) |
|
607 |
#aggregate() |
|
608 |
tb$predicted <- 1 |
|
609 |
test <- aggregate(predicted~pred_mod+tile_id,data=tb,sum) |
|
610 |
xyplot(predicted~pred_mod | tile_id,data=subset(as.data.frame(test), |
|
611 |
pred_mod!="mod_kr"),type="h") |
|
612 |
|
|
613 |
test |
|
614 |
|
|
615 |
as.character(unique(test$tile_id)) #141 tiles |
|
616 |
|
|
617 |
dim(subset(test,test$predicted==365 & test$pred_mod=="mod1")) |
|
618 |
histogram(subset(test, test$pred_mod=="mod1")$predicted) |
|
619 |
unique(subset(test, test$pred_mod=="mod1")$predicted) |
|
620 |
table((subset(test, test$pred_mod=="mod1")$predicted)) |
|
621 |
|
|
622 |
#LST_avgm_min <- aggregate(LST~month,data=data_month_all,min) |
|
623 |
histogram(test$predicted~test$tile_id) |
|
624 |
#table(tb) |
|
625 |
## Figure 7b |
|
626 |
#png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""), |
|
627 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
628 |
|
|
629 |
#xyplot(n~month | tile_id + pred_mod,data=subset(as.data.frame(tb_month_s), |
|
630 |
# pred_mod!="mod_kr"),type="h") |
|
631 |
#xyplot(n~month | tile_id,data=subset(as.data.frame(tb_month_s), |
|
632 |
# pred_mod="mod_1"),type="h") |
|
633 |
#test=subset(as.data.frame(tb_month_s),pred_mod="mod_1") |
|
634 |
#table(tb_month_s$month) |
|
635 |
#dev.off() |
|
636 |
# |
|
637 |
|
|
638 |
|
|
639 |
########################################################## |
|
640 |
##### Figure 8: Breaking down accuracy by regions!! ##### |
|
641 |
|
|
642 |
#summary_metrics_v <- merge(summary_metrics_v,df_tile_processed,by="tile_id") |
|
643 |
|
|
644 |
## Figure 8a |
|
645 |
res_pix <- 480 |
|
646 |
col_mfrow <- 1 |
|
647 |
row_mfrow <- 1 |
|
648 |
|
|
649 |
png(filename=paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""), |
|
650 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
651 |
|
|
652 |
p<- bwplot(rmse~pred_mod | reg, data=tb, |
|
653 |
main="RMSE per model and region over all tiles") |
|
654 |
print(p) |
|
655 |
dev.off() |
|
656 |
|
|
657 |
## Figure 8b |
|
658 |
png(filename=paste("Figure8b_boxplot_overall_separated_by_region_scaling_",model_name[i],"_",out_suffix,".png",sep=""), |
|
659 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
660 |
|
|
661 |
boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
|
662 |
title("RMSE per model over all tiles") |
|
663 |
p<- bwplot(rmse~pred_mod | reg, data=tb,ylim=c(0,5), |
|
664 |
main="RMSE per model and region over all tiles") |
|
665 |
print(p) |
|
666 |
dev.off() |
|
667 |
|
|
668 |
##################################################### |
|
669 |
#### Figure 9: plotting mosaics of regions ########### |
|
670 |
## plot mosaics... |
|
671 |
|
|
672 |
#First collect file names |
|
673 |
|
|
674 |
|
|
675 |
#names(lf_mosaics_reg) <- l_reg_name |
|
676 |
|
|
677 |
#This part should be automated... |
|
678 |
#plot Australia |
|
679 |
#lf_m <- lf_mosaics_reg[[2]] |
|
680 |
#out_dir_str <- out_dir |
|
681 |
#reg_name <- "reg6_1000x3000" |
|
682 |
#lapply() |
|
683 |
#list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_suffix) |
|
684 |
#list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_suffix,l_dates=day_to_mosaic) |
|
685 |
|
|
686 |
#lf_m_mask_reg4_1500x4500 <- mclapply(1:2,FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6) |
|
687 |
#debug(plot_daily_mosaics) |
|
688 |
#lf_m_mask_reg6_1000x3000 <- plot_daily_mosaics(1,list_param=list_param_plot_daily_mosaics) |
|
689 |
|
|
690 |
#lf_m_mask_reg6_1000x3000 <- mclapply(1:length(lf_m),FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 10) |
|
691 |
|
|
692 |
|
|
693 |
################## WORLD MOSAICS NEEDS MAJOR CLEAN UP OF CODE HERE |
|
694 |
##make functions!! |
|
695 |
###Combine mosaics with modified code from Alberto |
|
696 |
|
|
697 |
#use list from above!! |
|
698 |
|
|
699 |
# test_list <-list.files(path=file.path(out_dir,"mosaics"), |
|
700 |
# pattern=paste("^world_mosaics.*.tif$",sep=""), |
|
701 |
# ) |
|
702 |
# #world_mosaics_mod1_output1500x4500_km_20101105_run10_1500x4500_global_analyses_03112015.tif |
|
703 |
# |
|
704 |
# #test_list<-lapply(1:30,FUN=function(i){lapply(1:x[[i]]},x=lf_mosaics_mask_reg) |
|
705 |
# #test_list<-unlist(test_list) |
|
706 |
# #mosaic_list_mean <- vector("list",length=1) |
|
707 |
# mosaic_list_mean <- test_list |
|
708 |
# out_rastnames <- "world_test_mosaic_20100101" |
|
709 |
# out_path <- out_dir |
|
710 |
# |
|
711 |
# list_param_mosaic<-list(mosaic_list_mean,out_path,out_rastnames,file_format,NA_flag_val,out_suffix) |
|
712 |
# names(list_param_mosaic)<-c("mosaic_list","out_path","out_rastnames","file_format","NA_flag_val","out_suffix") |
|
713 |
# #mean_m_list <-mclapply(1:12, list_param=list_param_mosaic, mosaic_m_raster_list,mc.preschedule=FALSE,mc.cores = 6) #This is the end bracket from mclapply(...) statement |
|
714 |
# |
|
715 |
# lf <- mosaic_m_raster_list(1,list_param_mosaic) |
|
716 |
# |
|
717 |
# debug(mosaic_m_raster_list) |
|
718 |
# mosaic_list<-list_param$mosaic_list |
|
719 |
# out_path<-list_param$out_path |
|
720 |
# out_names<-list_param$out_rastnames |
|
721 |
# file_format <- list_param$file_format |
|
722 |
# NA_flag_val <- list_param$NA_flag_val |
|
723 |
# out_suffix <- list_param$out_suffix |
|
724 |
|
|
725 |
##Now mosaic for mean: should reorder files!! |
|
726 |
#out_rastnames_mean<-paste("_",lst_pat,"_","mean",out_suffix,sep="") |
|
727 |
#list_date_names<-c("jan","feb","mar","apr","may","jun","jul","aug","sep","oct","nov","dec") |
|
728 |
#mosaic_list<-split(tmp_str1,list_date_names) |
|
729 |
#new_list<-vector("list",length(mosaic_list)) |
|
730 |
# for (i in 1:length(list_date_names)){ |
|
731 |
# j<-grep(list_date_names[i],mosaic_list,value=FALSE) |
|
732 |
# names(mosaic_list)[j]<-list_date_names[i] |
|
733 |
# new_list[i]<-mosaic_list[j] |
|
734 |
# } |
|
735 |
# mosaic_list_mean <-new_list #list ready for mosaicing |
|
736 |
# out_rastnames_mean<-paste(list_date_names,out_rastnames_mean,sep="") |
|
737 | 606 |
|
738 |
### Now mosaic tiles...Note that function could be improved to use less memory |
|
739 |
|
|
740 |
|
|
741 |
################## PLOTTING WORLD MOSAICS ################ |
|
742 |
|
|
743 |
#lf_world_pred <-list.files(path=file.path(out_dir,"mosaics"), |
|
744 |
# pattern=paste("^world_mosaics.*.tif$",sep=""),full.names=T) |
|
745 |
|
|
746 |
lf_world_pred <-list.files(path=file.path(out_dir,"mosaics"), |
|
747 |
pattern=paste("^reg5.*.",".tif$",sep=""),full.names=T) |
|
748 |
l_reg_name <- unique(df_tile_processed$reg) |
|
749 |
lf_world_pred <-list.files(path=file.path(out_dir,l_reg_name[[i]]), |
|
750 |
pattern=paste(".tif$",sep=""),full.names=T) |
|
751 |
|
|
752 |
#mosaic_list_mean <- test_list |
|
753 |
#out_rastnames <- "world_test_mosaic_20100101" |
|
754 |
#out_path <- out_dir |
|
755 |
|
|
756 |
#lf_world_pred <- list.files(pattern="world.*2010090.*.tif$") |
|
757 |
#lf_raster_fname <- list.files(pattern="world.*2010*.*02162015.tif$",full.names=T) |
|
758 |
lf_raster_fname <- lf_world_pred |
|
759 |
prefix_str <- "Figure10_clim_world_mosaics_day_" |
|
760 |
l_dates <-day_to_mosaic |
|
761 |
screenRast=FALSE |
|
762 |
list_param_plot_screen_raster <- list(lf_raster_fname,screenRast,l_dates,out_dir,prefix_str,out_suffix) |
|
763 |
names(list_param_plot_screen_raster) <- c("lf_raster_fname","screenRast","l_dates","out_dir_str","prefix_str","out_suffix_str") |
|
764 |
|
|
765 |
debug(plot_screen_raster_val) |
|
766 |
|
|
767 |
world_m_list1<- plot_screen_raster_val(1,list_param_plot_screen_raster) |
|
768 |
#world_m_list <- mclapply(11:30, list_param=list_param_plot_screen_raster, plot_screen_raster_val,mc.preschedule=FALSE,mc.cores = num_cores) #This is the end bracket from mclapply(...) statement |
|
769 |
world_m_list <- mclapply(1:length(l_dates), list_param=list_param_plot_screen_raster, plot_screen_raster_val,mc.preschedule=FALSE,mc.cores = num_cores) #This is the end bracket from mclapply(...) statement |
|
770 |
|
|
771 |
s_pred <- stack(lf_raster_fname) |
|
772 |
|
|
773 |
res_pix <- 1500 |
|
774 |
col_mfrow <- 3 |
|
775 |
row_mfrow <- 2 |
|
776 |
|
|
777 |
png(filename=paste("Figure10_levelplot_combined_",region_name,"_",out_suffix,".png",sep=""), |
|
778 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
779 |
|
|
780 |
levelplot(s_pred,layers=1:6,col.regions=rev(terrain.colors(255)),cex=4) |
|
781 |
|
|
782 |
dev.off() |
|
783 |
|
|
784 |
# blues<- designer.colors(6, c( "blue", "white") ) |
|
785 |
# reds <- designer.colors(6, c( "white","red") ) |
|
786 |
# colorTable<- c( blues[-6], reds) |
|
787 |
# breaks with a gap of 10 to 17 assigned the white color |
|
788 |
# brks<- c(seq( 1, 10,,6), seq( 17, 25,,6)) |
|
789 |
# image.plot( x,y,z,breaks=brks, col=colorTable) |
|
790 |
# |
|
791 |
|
|
792 |
#lf_world_mask_reg <- vector("list",length=length(lf_world_pred)) |
|
793 |
#for(i in 1:length(lf_world_pred)){ |
|
794 |
# |
|
795 |
# lf_m <- lf_mosaics_reg[i] |
|
796 |
# out_dir_str <- out_dir |
|
797 |
#reg_name <- paste(l_reg_name[i],"_",tile_size,sep="") #make this automatic |
|
607 |
## Figure 8b |
|
608 |
png(filename=paste("Figure8b_boxplot_overall_separated_by_region_scaling_",model_name[i],"_",out_suffix,".png",sep=""), |
|
609 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
610 |
|
|
611 |
boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
|
612 |
title("RMSE per model over all tiles") |
|
613 |
p<- bwplot(rmse~pred_mod | reg, data=tb,ylim=c(0,5), |
|
614 |
main="RMSE per model and region over all tiles") |
|
615 |
print(p) |
|
616 |
dev.off() |
|
617 |
|
|
618 |
##################################################### |
|
619 |
#### Figure 9: plotting mosaics of regions ########### |
|
620 |
## plot mosaics... |
|
621 |
|
|
622 |
#First collect file names |
|
623 |
|
|
624 |
|
|
625 |
#names(lf_mosaics_reg) <- l_reg_name |
|
626 |
|
|
627 |
#This part should be automated... |
|
628 |
#plot Australia |
|
629 |
#lf_m <- lf_mosaics_reg[[2]] |
|
630 |
#out_dir_str <- out_dir |
|
631 |
#reg_name <- "reg6_1000x3000" |
|
798 | 632 |
#lapply() |
799 |
# list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=tile_size,out_dir_str=out_dir_str,out_suffix=out_suffix,l_dates=day_to_mosaic) |
|
633 |
#list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_suffix) |
|
634 |
#list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=reg_name,out_dir_str=out_dir_str,out_suffix=out_suffix,l_dates=day_to_mosaic) |
|
635 |
|
|
800 | 636 |
#lf_m_mask_reg4_1500x4500 <- mclapply(1:2,FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6) |
801 |
|
|
802 |
#lf_world_mask_reg[[i]] <- mclapply(1:length(lf_m),FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 10) |
|
803 |
} |
|
804 |
|
|
805 |
############# NEW MASK AND DATA |
|
806 |
## Plot areas and day predicted as first check |
|
637 |
#debug(plot_daily_mosaics) |
|
638 |
#lf_m_mask_reg6_1000x3000 <- plot_daily_mosaics(1,list_param=list_param_plot_daily_mosaics) |
|
639 |
|
|
640 |
#lf_m_mask_reg6_1000x3000 <- mclapply(1:length(lf_m),FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 10) |
|
641 |
|
|
642 |
|
|
643 |
################## WORLD MOSAICS NEEDS MAJOR CLEAN UP OF CODE HERE |
|
644 |
##make functions!! |
|
645 |
###Combine mosaics with modified code from Alberto |
|
646 |
|
|
647 |
#use list from above!! |
|
648 |
|
|
649 |
# test_list <-list.files(path=file.path(out_dir,"mosaics"), |
|
650 |
# pattern=paste("^world_mosaics.*.tif$",sep=""), |
|
651 |
# ) |
|
652 |
# #world_mosaics_mod1_output1500x4500_km_20101105_run10_1500x4500_global_analyses_03112015.tif |
|
653 |
# |
|
654 |
# #test_list<-lapply(1:30,FUN=function(i){lapply(1:x[[i]]},x=lf_mosaics_mask_reg) |
|
655 |
# #test_list<-unlist(test_list) |
|
656 |
# #mosaic_list_mean <- vector("list",length=1) |
|
657 |
# mosaic_list_mean <- test_list |
|
658 |
# out_rastnames <- "world_test_mosaic_20100101" |
|
659 |
# out_path <- out_dir |
|
660 |
# |
|
661 |
# list_param_mosaic<-list(mosaic_list_mean,out_path,out_rastnames,file_format,NA_flag_val,out_suffix) |
|
662 |
# names(list_param_mosaic)<-c("mosaic_list","out_path","out_rastnames","file_format","NA_flag_val","out_suffix") |
|
663 |
# #mean_m_list <-mclapply(1:12, list_param=list_param_mosaic, mosaic_m_raster_list,mc.preschedule=FALSE,mc.cores = 6) #This is the end bracket from mclapply(...) statement |
|
664 |
# |
|
665 |
# lf <- mosaic_m_raster_list(1,list_param_mosaic) |
|
666 |
# |
|
667 |
# debug(mosaic_m_raster_list) |
|
668 |
# mosaic_list<-list_param$mosaic_list |
|
669 |
# out_path<-list_param$out_path |
|
670 |
# out_names<-list_param$out_rastnames |
|
671 |
# file_format <- list_param$file_format |
|
672 |
# NA_flag_val <- list_param$NA_flag_val |
|
673 |
# out_suffix <- list_param$out_suffix |
|
674 |
|
|
675 |
##Now mosaic for mean: should reorder files!! |
|
676 |
#out_rastnames_mean<-paste("_",lst_pat,"_","mean",out_suffix,sep="") |
|
677 |
#list_date_names<-c("jan","feb","mar","apr","may","jun","jul","aug","sep","oct","nov","dec") |
|
678 |
#mosaic_list<-split(tmp_str1,list_date_names) |
|
679 |
#new_list<-vector("list",length(mosaic_list)) |
|
680 |
# for (i in 1:length(list_date_names)){ |
|
681 |
# j<-grep(list_date_names[i],mosaic_list,value=FALSE) |
|
682 |
# names(mosaic_list)[j]<-list_date_names[i] |
|
683 |
# new_list[i]<-mosaic_list[j] |
|
684 |
# } |
|
685 |
# mosaic_list_mean <-new_list #list ready for mosaicing |
|
686 |
# out_rastnames_mean<-paste(list_date_names,out_rastnames_mean,sep="") |
|
687 |
|
|
688 |
### Now mosaic tiles...Note that function could be improved to use less memory |
|
689 |
|
|
690 |
|
|
691 |
################## PLOTTING WORLD MOSAICS ################ |
|
692 |
|
|
693 |
#lf_world_pred <-list.files(path=file.path(out_dir,"mosaics"), |
|
694 |
# pattern=paste("^world_mosaics.*.tif$",sep=""),full.names=T) |
|
695 |
|
|
696 |
lf_world_pred <-list.files(path=file.path(out_dir,"mosaics"), |
|
697 |
pattern=paste("^reg5.*.",".tif$",sep=""),full.names=T) |
|
698 |
l_reg_name <- unique(df_tile_processed$reg) |
|
699 |
lf_world_pred <-list.files(path=file.path(out_dir,l_reg_name[[i]]), |
|
700 |
pattern=paste(".tif$",sep=""),full.names=T) |
|
807 | 701 |
|
808 |
l_reg_name <- unique(df_tile_processed$reg) |
|
809 |
#(subset(df_tile_processed$reg == l_reg_name[i],date) |
|
810 |
|
|
811 |
for(i in 1:length(l_reg_name)){ |
|
812 |
lf_world_pred<-list.files(path=file.path(out_dir,l_reg_name[[i]]), |
|
813 |
pattern=paste(".tif$",sep=""),full.names=T) |
|
814 |
|
|
815 | 702 |
#mosaic_list_mean <- test_list |
816 | 703 |
#out_rastnames <- "world_test_mosaic_20100101" |
817 | 704 |
#out_path <- out_dir |
818 |
|
|
705 |
|
|
819 | 706 |
#lf_world_pred <- list.files(pattern="world.*2010090.*.tif$") |
820 | 707 |
#lf_raster_fname <- list.files(pattern="world.*2010*.*02162015.tif$",full.names=T) |
821 | 708 |
lf_raster_fname <- lf_world_pred |
822 |
prefix_str <- paste("Figure10_",l_reg_name[i],sep="") |
|
823 |
|
|
824 |
l_dates <- basename(lf_raster_fname) |
|
825 |
tmp_name <- gsub(".tif","",l_dates) |
|
826 |
tmp_name <- gsub("gam_CAI_dailyTmax_predicted_mod1_0_1_","",tmp_name) |
|
827 |
#l_dates <- tmp_name |
|
828 |
l_dates <- paste(l_reg_name[i],"_",tmp_name,sep="") |
|
829 |
|
|
830 |
screenRast=TRUE |
|
709 |
prefix_str <- "Figure10_clim_world_mosaics_day_" |
|
710 |
l_dates <-day_to_mosaic |
|
711 |
screenRast=FALSE |
|
831 | 712 |
list_param_plot_screen_raster <- list(lf_raster_fname,screenRast,l_dates,out_dir,prefix_str,out_suffix) |
832 | 713 |
names(list_param_plot_screen_raster) <- c("lf_raster_fname","screenRast","l_dates","out_dir_str","prefix_str","out_suffix_str") |
833 |
|
|
834 |
#undebug(plot_screen_raster_val)
|
|
835 |
|
|
836 |
#world_m_list1<- plot_screen_raster_val(1,list_param_plot_screen_raster)
|
|
714 |
|
|
715 |
debug(plot_screen_raster_val) |
|
716 |
|
|
717 |
world_m_list1<- plot_screen_raster_val(1,list_param_plot_screen_raster) |
|
837 | 718 |
#world_m_list <- mclapply(11:30, list_param=list_param_plot_screen_raster, plot_screen_raster_val,mc.preschedule=FALSE,mc.cores = num_cores) #This is the end bracket from mclapply(...) statement |
838 | 719 |
world_m_list <- mclapply(1:length(l_dates), list_param=list_param_plot_screen_raster, plot_screen_raster_val,mc.preschedule=FALSE,mc.cores = num_cores) #This is the end bracket from mclapply(...) statement |
720 |
|
|
721 |
s_pred <- stack(lf_raster_fname) |
|
722 |
|
|
723 |
res_pix <- 1500 |
|
724 |
col_mfrow <- 3 |
|
725 |
row_mfrow <- 2 |
|
726 |
|
|
727 |
png(filename=paste("Figure10_levelplot_combined_",region_name,"_",out_suffix,".png",sep=""), |
|
728 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
729 |
|
|
730 |
levelplot(s_pred,layers=1:6,col.regions=rev(terrain.colors(255)),cex=4) |
|
731 |
|
|
732 |
dev.off() |
|
733 |
|
|
734 |
# blues<- designer.colors(6, c( "blue", "white") ) |
|
735 |
# reds <- designer.colors(6, c( "white","red") ) |
|
736 |
# colorTable<- c( blues[-6], reds) |
|
737 |
# breaks with a gap of 10 to 17 assigned the white color |
|
738 |
# brks<- c(seq( 1, 10,,6), seq( 17, 25,,6)) |
|
739 |
# image.plot( x,y,z,breaks=brks, col=colorTable) |
|
740 |
# |
|
741 |
|
|
742 |
#lf_world_mask_reg <- vector("list",length=length(lf_world_pred)) |
|
743 |
#for(i in 1:length(lf_world_pred)){ |
|
744 |
# |
|
745 |
# lf_m <- lf_mosaics_reg[i] |
|
746 |
# out_dir_str <- out_dir |
|
747 |
#reg_name <- paste(l_reg_name[i],"_",tile_size,sep="") #make this automatic |
|
748 |
#lapply() |
|
749 |
# list_param_plot_daily_mosaics <- list(lf_m=lf_m,reg_name=tile_size,out_dir_str=out_dir_str,out_suffix=out_suffix,l_dates=day_to_mosaic) |
|
750 |
#lf_m_mask_reg4_1500x4500 <- mclapply(1:2,FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 6) |
|
751 |
|
|
752 |
#lf_world_mask_reg[[i]] <- mclapply(1:length(lf_m),FUN=plot_daily_mosaics,list_param=list_param_plot_daily_mosaics,mc.preschedule=FALSE,mc.cores = 10) |
|
753 |
} |
|
839 | 754 |
|
840 |
#s_pred <- stack(lf_raster_fname) |
|
841 |
|
|
842 |
#res_pix <- 1500 |
|
843 |
#col_mfrow <- 3 |
|
844 |
#row_mfrow <- 2 |
|
845 |
|
|
846 |
#png(filename=paste("Figure10_levelplot_combined_",region_name,"_",out_suffix,".png",sep=""), |
|
847 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
755 |
############# NEW MASK AND DATA |
|
756 |
## Plot areas and day predicted as first check |
|
848 | 757 |
|
849 |
#levelplot(s_pred,layers=1:6,col.regions=rev(terrain.colors(255)),cex=4) |
|
758 |
l_reg_name <- unique(df_tile_processed$reg) |
|
759 |
#(subset(df_tile_processed$reg == l_reg_name[i],date) |
|
850 | 760 |
|
851 |
#dev.off() |
|
761 |
for(i in 1:length(l_reg_name)){ |
|
762 |
lf_world_pred<-list.files(path=file.path(out_dir,l_reg_name[[i]]), |
|
763 |
pattern=paste(".tif$",sep=""),full.names=T) |
|
764 |
|
|
765 |
#mosaic_list_mean <- test_list |
|
766 |
#out_rastnames <- "world_test_mosaic_20100101" |
|
767 |
#out_path <- out_dir |
|
768 |
|
|
769 |
#lf_world_pred <- list.files(pattern="world.*2010090.*.tif$") |
|
770 |
#lf_raster_fname <- list.files(pattern="world.*2010*.*02162015.tif$",full.names=T) |
|
771 |
lf_raster_fname <- lf_world_pred |
|
772 |
prefix_str <- paste("Figure10_",l_reg_name[i],sep="") |
|
773 |
|
|
774 |
l_dates <- basename(lf_raster_fname) |
|
775 |
tmp_name <- gsub(".tif","",l_dates) |
|
776 |
tmp_name <- gsub("gam_CAI_dailyTmax_predicted_mod1_0_1_","",tmp_name) |
|
777 |
#l_dates <- tmp_name |
|
778 |
l_dates <- paste(l_reg_name[i],"_",tmp_name,sep="") |
|
779 |
|
|
780 |
screenRast=TRUE |
|
781 |
list_param_plot_screen_raster <- list(lf_raster_fname,screenRast,l_dates,out_dir,prefix_str,out_suffix) |
|
782 |
names(list_param_plot_screen_raster) <- c("lf_raster_fname","screenRast","l_dates","out_dir_str","prefix_str","out_suffix_str") |
|
783 |
|
|
784 |
#undebug(plot_screen_raster_val) |
|
785 |
|
|
786 |
#world_m_list1<- plot_screen_raster_val(1,list_param_plot_screen_raster) |
|
787 |
#world_m_list <- mclapply(11:30, list_param=list_param_plot_screen_raster, plot_screen_raster_val,mc.preschedule=FALSE,mc.cores = num_cores) #This is the end bracket from mclapply(...) statement |
|
788 |
world_m_list <- mclapply(1:length(l_dates), list_param=list_param_plot_screen_raster, plot_screen_raster_val,mc.preschedule=FALSE,mc.cores = num_cores) #This is the end bracket from mclapply(...) statement |
|
789 |
|
|
790 |
#s_pred <- stack(lf_raster_fname) |
|
791 |
|
|
792 |
#res_pix <- 1500 |
|
793 |
#col_mfrow <- 3 |
|
794 |
#row_mfrow <- 2 |
|
795 |
|
|
796 |
#png(filename=paste("Figure10_levelplot_combined_",region_name,"_",out_suffix,".png",sep=""), |
|
797 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
798 |
|
|
799 |
#levelplot(s_pred,layers=1:6,col.regions=rev(terrain.colors(255)),cex=4) |
|
800 |
|
|
801 |
#dev.off() |
|
852 | 802 |
} |
853 | 803 |
|
854 | 804 |
|
Also available in: Unified diff
assessment part2 plotting of figures into function callable from stage 6